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ESTIMATES OF THE LARGEST DISC COVERED
BY A RANDOM WALK'

By P. RtvEsz

Technical University of Vienna

Let R(n) be the largest integer for which the disc of radius R(n)
around the origin is covered by the first n steps of a random walk. The
main objective of the present paper is to obtain better estimates for the
upper tail of the distribution of R(n). For example, we show that there are
constants 0 < A, < A; < » such that
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(log R(n))" z}

exp(—A;2) < linnling{ Tog 1
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n—oo

{ (log R(n))*

> - .
Tog 1 z} < exp(—Ay2)

1. Introduction. Let X, X,,... be a sequence of independent, identi-
cally distributed random vectors taking values from R? with distribution

P{X,; = (0,1)} = P{X, =(0,- 1)} =P{X, = (1,0)}
=P{X,=(-1,0)} = e
and let
Se=0=(0,00 and S(n)=8,=X,+X,+ - +X,, n=12...,
i.e., {S,} is the simple symmetric random walk on the plane. Further, let
&(x,n) = #{k:0<k<n,S, =x},

n=12...,x=(@,j),i,j=0,+1,+ 2..., be the local time of the random
walk. We say that the circle

QN) = {x = (i,4):lIxll = (2 +,2)"” < N)
is covered by the random walk in time n if
&(x,n) >0 foreveryx € Q(N).

Let R(n) be the largest integer for which Q(R(n)) is covered in n.
We quote two previous results on the properties of R(n).
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TuEOREM A [Erdos and Révész (1988) and Auer and Révész (1989)]. For
any ¢ > 0, we have

(log n)"*
(loglog n)'/?*¢
for all but finitely many n, where log,, is the p-th iterate of log.

< R(n) < exp(2(log n)'?log, n) a.s,

THEOREM B [Révész (1989)]. Foranyz> 0 and n =2,3,..., we have
(108' R(n))2 2
_— TS ——.
P{ Tog 1 z) < exp( 1 )

In the present paper we prove the following.

THEOREM 1. For any ¢ > 0,

( ) 1 € (l l )1/2 .
13 n)=>ex —5 (10g n 10 n 1.0.a.8.
p (120 1/2 g g3

THEOREM 2. For any z > 0, we have

{(log R(n))*

lim inf P
logn

n—o

> z} > exp(—120z).

In fact, instead of Theorem 1 we prove the following stronger theorem.

THEOREM 3. For any 0 < 0 < (7/120)*/%, 9/10 < 62< 1 and & > 0, we
have

, Vv
inf &(x,n) 2(1-8)—=(lognlogsn)
lll| < expl(1— )8/ / Klog n logg n)*/2 126

1/2 .
/ 1.0.Qa.s.

2. Notation and lemmas. Introduce the following notation:
p(0 ~»x) =P{inf{n:n>1,8, =0} >inf{n:n >1, S, = x}}
= P{{S,} reaches x before returning to 0}.

Let p(0 ~ x), po(0 ~> x),..., resp., p(x ~ 0), po(x ~ 0),... be the first, sec-
ond, ... waiting times to reach x from 0, resp., to reach 0 from x, i.e.,

p(0~»x)=inf{n:n >1, S, =x},

pi(x ~ 0) = inf{n:n > py(0 = x), S, = 0} — py(0 ~ x),

p2(0 » x) = inf{n: n > p;(0 ~» x) + p,(x » 0), S, = x}
—(py(0 » x) + py(x ~ 0)),

pa(x ~ 0) =inf{n: n > py(0 ~ x) + py(x ~ 0) + py(0 ~ x), S, = 0}
—(p1(0 » x) + py(x ~ 0) + py(0 ~ x)),... .
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Let 7(0 ~> x, n) be the number of 0 ~ x excursions completed before n, i.e.,

i—-1
(0 = x,n) = max{i: T (p,(0 = x) +p;(x = 0)) + (0 > %) < n}.
j=1

Put p; = min{k: £ > 0, S, = 0}, p, = min{k: & > p;, S, = 0},..., p, = min{k:
k>p,_ 1, S, =0}

Let a(r) be the probability that the random walk {S,} exits from the open
disc of radius r before returning to 0 = (0, 0), i.e.,

a(r) =P{inf{n: IS, > r} <inf{n:n > 1, S, = 0}}.

LEMMA A [Erdos and Révész (1988)].

NIE

lim a(r)logr =
r—o

LEMMA 1. There exists a positive constant C such that

C
1 0~>x)> ,
for any x € Z? with ||x|| > 2. Further,
T
(2) lim inf p(0 ~ x)logllx|l = —.
Nl — o0 12

ProoF. Let x = ||x|le!*. Then, by Lemma A for any ¢ > 0, there exists an
R, = Ry(¢) > 0 such that the probability that the particle crosses the arc
llxlle?*, ¢ —7/3 <y < ¢ + m/3, before returning to 0 is larger than
(1 — eXm/6Xlogllx|D~1. Since starting from any lattice point within unit dis-
tance of the arc |xlle’¥, ¢ — m/3 < ¢ < ¢ + 7/3, the probability that the
particle hits x before 0 is larger than 3 we obtain (2). (1) is a trivial
consequence of (2).0

Spitzer [(1964), pages 117, 124 and 125] obtained the exact order of p(0 ~ x).
He proved the following.

LemMma B.
7+ o(1)

— o as llxll - .
4 log|lx|l

p(0 ~x) =

LemMA 2. For any 0 < 8 < (7/120)'/2,9/10 < 62 < 1 and n big enough,
we have

1/2
(3) P{n—l/z inf 7(0~x,p,) <(1- S)L} < exp(_l nl/ )
llxll <e®V™ 126 60 6
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Proor. Let g =1—p =1 — p(0 ~ x). Then, applying the Bernstein in-
equality, we obtain

i

provided that ||x|| is big enough.
Hence,

(0~ x,p,)
n

né?p
- D

29(1 + (8/29))*

> Sp} < 2exp(—

w n
< — e—— C———
= e"p( 60 log ||x||)’

P{ inf n_I/ZT(OWx,pn)s(l—S)L}

llxll< eV 120
7(0 ~»x,p,
sP{ inf (——plsl—s}
llxll < e® np
7(0 ~ x,p,
= P{ Z {_S___p_) <1-— 5}}
llxll < eV np
T n1/2
< ez"ﬁ'n-exp(— 50 7 ),

which implies (3). O

Lemma C [Erdés and Taylor (1960)]. For any £ > 0, we have

l+e¢ ‘
£00,n) < lognlogsn a.s.,
aw
for all but finitely many n,
1—¢
£&00,n) > lognlogsn i.0.a.s.,
aw
and
lim P{£(0,n) <zlogn} =1—e ™,
n—-o
Consequently,

(1 -¢)wn
P = exp(—ng—n—) a.s.,
for all but finitely many n,
(1+e)mn

4
(4) p, < exp oz

) i.0.a.s.,

and

(5) lim P{pn < exp(—:—)} = exp(—mz).

n—oow
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3. Proof of Theorem 3. (3) clearly implies that

o
6 liminfn~ 2 inf 7(0 »x,p,) = (1 —8)— aus,,
© n—e lxll < eV ( ) 126

for any 0 < 6 < (7/120)*/2 and 9/10 < §% < 1.
(4) and (6) combined imply

aw
>(1-68)— i.o.as,

126

n~Y2 inf T(O»»x,exp(
log, n

llxll < e

(1+ e)‘n'n))

that is,

inf 7(0 ~ x,n)
llxll < expl(1—¢) /o 10(log n logg n)*/2

Vv
> (1- B)E(log nloggn)/?  io.as.,

which in turn implies Theorem 3.

4. Proof of Theorem 2. Instead of proving Theorem 2 we prove the
following stronger theorem.

THEOREM 4. For any ¢ >0 and z > 0 there exists a positive integer
N, = Ny(e, 2) such that

. ™ 1/2
P{ inf 7(0~x,n) > (1 - 8)@(zlog n) }

(7) |lx|l < exp6(z log n)'/2
> exp(—mz) — &,
ifn >Ny, 0<6<(7w/120)"/2 and 9/10 < §% < 1.

Proor. By (3) and (5), for any & > 0 there exists a positive integer N, =
Ny(¢) such that

™
P{n'l/2 inf _7(0~x,p,) 5(1—6)—} <e
el <e%" 126

and

P{pn < exp(—'zi)} > exp(—mz) — ¢,



LARGEST DISC COVERED BY A RANDOM WALK 1789

if n > N,. Consequently,

n m
P{ inf 7(0 wx,exp(—)) >(1- 8)—n1/2}
||x||599‘/'7 2 126

n T n
ZP{ inf T(wa,exp(-—)) > (1-8)—n'2p, <exp(———)}
lellseoﬁ 2 120 2

2P< inf 7(0~x,p,) > (1 —8)ln1/2 p <exp(ﬁ)>
lellse"\ﬁ n 120 n 2

' T n

> P{ inf 7(0~»x,p,)>(1—-6 —n1/2} - P{pn > exp(-)}
lxll <™ ( Pa) 2 ( ) 120 z

1-e—(1—exp(—mz)) —¢

= exp(—7z) — 2e.

v

Hence, we have Theorem 4.0
Theorems B and 2 suggest the following.

CONJECTURE. There exists a < A < 120 such that

P{ (log R(n))

lim
logn

n—oo

> z} = exp(—Az2).

Acknowledgment. Somewhat weaker versions of Theorems B and 2 and
the conjecture were found by H. Kesten much earlier.
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