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a-CONGRUENCE FOR MARKOV PROCESSES!

By KARI ELORANTA

Stanford University

We prove infinite-time extensions of invariance principles for certain
random walks with essentially compact state spaces. The extensions are
uniform-like in time since they use the d-metric of the Bernoulli theory
and imply the classical results. These are then generalized to couplings
involving an isomorphism between the processes. In general a Doeblin-type
condition is needed to hold for the walks but relaxation of this is indicated.

Introduction. In this paper we consider the stability /approximation
properties of certain Markov processes in the light of a new notion, the
a-congruence. The first results are essentially extensions of (finite-time) invari-
ance principles for these processes to infinite-time versions. The extensions are
uniform in time in the sense that the future separation of paths is not
discounted. The results are all of the following type: If we have a random walk
converging weakly to a diffusion process then under certain ergodicity condi-
tions the walks in fact converge in the d-metric of the Bernoulli theory.
Intuitively this means that almost all of the paths of the two processes can be
coupled together for all positive times except on a set of times of very small
density. Under mild extra assumptions this extends to a-congruence, which in
addition to this closeness also incorporates an isomorphism between the
processes. A theorem of our type implies the invariance principle. Moreover
the notion is applicable to various deterministic dynamical systems that
exhibit chaotic behavior. Hence it can be viewed as a unifying concept in the
studies of random and pseudorandom phenomena (see [11], where the concept
of a-congruence is introduced, and [4] for application to certain deterministic
systems).

1. Outline of the results. Invariance principles or functional limit theo-
rems in their basic form describe the weak convergence of measures on certain
function spaces. These spaces accommodate the paths of random walks and the
limit measure is concentrated on the paths of a diffusion process. The topology
is usually either that of uniform convergence or the Skorokhod topology. In
this paper we choose the former and define our random variables to have
continuous paths. From now on let C; = C([0,T], M), where M is separable
space with metric d and {P"}, P € #(C,), the space of probability measures
defined on C,. Given T < =, let {P}} and P, denote the restrictions of these
measures to Cj.

The basic form of an invariance principle is that of Donsker’s theorem.
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1584 K. ELORANTA

1.1 THEOREM. Let ¢; be R-valued i.i.d. random variables with mean 0
and variance o2 € (0,»). Let

1 1
X" = ms[nt] + (nt - [nt]);ﬁ—g[nt]+l

have law P". Then P} = P, the law of the standard Brownian motion. Or
equivalently if u" is a coupling measure with marginals P} and P then

infinf{a > OI,U,"({(wl, wy)l sup 1X"(w;) — B(wy)l = 8}) < s} - 0.
e tel0,T]

The theorem cannot be extended to uniform couplings for all times. Given
any a,d > 0, we have for almost every o,

sup |B,,(w) — B,(w)| > a.

s<[0,8]

teR,
Hence a random walk cannot possibly shadow the Brownian motion for all ¢.
This holds in general for nondegenerate diffusions. To accommodate infinite-
time intervals certain extensions have been considered, notably that of Stone
(see [5]) which involves an exponential discount factor on the future separation
of the coupled paths. This does not seem to be the right uniform-like infinite-
time extension and in this work we establish an alternative.

1.2. In the theory of Bernoulli processes it is useful to consider a variation
of the Prohorov metric. Let {X/, P*}, i = 1,2, be processes with paths in C.
Let

- 1 .7

dp(P!, P?) = infinf{e > 0l {(Xl, X2)|Tf d(X}, X?)dt > a} < s},
I 0

where u has the marginals P. (of course u is defined on the underlying
measure space (' X Q? but to simplify the notation we drop the w*’s). This
can be shown to be a metric on #(Cy) and we call it the d,-metric. Clearly
d (P, P?) < p(P!, P?), where the metric p has been defined analogously but
using the sup-norm. If the processes are defined for all times let

d(Pt, P?) = supd, (P!, P?) = lim d (P!, P?).

T=0 Tow

Here uniform closeness of paths is replaced by closeness except on a set of
times of small density. Once the processes under consideration have sufficient
mixing properties this turns out to be the ‘“‘correct” uniform-like infinite-time
strengthening of the mode of convergence in invariance principles which also
subsumes earlier infinite-time extensions.

Obviously, weak convergence implies d-convergence but the converse is in
general false. Here we will prove that for some processes weak convergence
implies even d-convergence. To show that this is a genuine strengthening of
the mode of convergence, we have the following result.
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1.3 THEOREM. If {P}} is tight then d(P", P) — 0 implies that P} = Py.

Proor. Let {X/"} and X, denote the processes. Fix T > ¢ > 0 such that
eT < 1. Define the modulus of continuity as usual:
w,(8) = sup |x(¢t) —x(s)l.

O0<s<t<T
[t—s|<8

From the tightness of {P}} one concludes (see, e.g., [3]) that 3 § € (0, ¢T) and
n, such that
Pplx e Cplw,(3) > =) < =
o > =} < —
T{xe wa( —3}—37
Since a single probability measure is tight, this holds for P, as well. Let
G,G" c Cy be the collections of ¢/3-regular paths in this sense.
If d(P", P) < 82/9T? for n > n, then d(P", P) < 62/9T? for these n.
Hence 3 u% on C; X Cp and E™ C Cp X Cp such that on it
2

1 .1 5
Tfo d(X!, X,) dt < —

Vnz=n,.

9T?

and p%(E") > 1 —6%2/9T%V n > n,.
Notice that
2¢

0
,LLT(E ﬁ(G XG))21—3—T—?>1—8.

Moreover on E" N (G™ X G),

o 2¢
sup d(X(w,), X, (w3)) < — + — <&
te[O’T] t 1 t 2 3T 3
so p(P,Pr) <e Y n>n,Vn, Since M is separable so is C; and weak
convergence follows. O

To illustrate the general line of reasoning in the extensions, we present the
following simple special case.

1.4 THEOREM. Let {(X;*, P")} be a sequence of symmetric random walks
with step size 1/n on R/Z. Then if (B,, P) is the Brownian motion on R/Z we
have d(P™",P) > 0 as n — .

IpEA OF THE PROOF. We make use of the well-known results that character-
ize the convergence of a transition probability P.(X, € A) to the stationary
measure. Under Doeblin or quasicompactness condition this convergence is
exponential and independent of x. If this holds uniformly over the tail
of the transition probability sequence then we can specify a time T, such that
|P/(Xr, € A;) — P(By, €A)| <em(A)) for all sets A; that are “nice” and
for all x,y and n > n,. The collection {A,;} is taken to be a regular cover of the
state space. But for any finite T, the processes with starting points on the set
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A, at time T, can be coupled e-close uniformly for [T,, T, + T,]if the diameter
of A.s is small enough (this follows immediately from Donsker’s theorem).
Hence we get a good coupling independent of the distance of x and y in the
dr-sense (T = T, + T,). These finite-time couplings can then be concatenated
using a standard ergodic theoretic argument to yield the d-convergence result.

To do this in detail, we first consider the exponential convergence results
and state the exact condition for the uniformity in that. In Section 3 the
extension argument is presented rigorously in the absolutely continuous and
discrete cases. The two invariance principles that our results are mainly aimed
to extend are those for random walks in a bounded domain in R™ by Stroock
and Varadhan ([13]) and for geodesic random walks on compact manifolds by
Jgrgensen ([8]). The reason is that our ergodicity conditions are most naturally
satisfied in these setups. Since the theorems involve rather general but still
lengthy and technical assumptions we do not reproduce their statements here
but refer the reader to the original sources. In Section 4 the d-convergence
results are coupled with the Bernoulli theory and a further strengthening in
the form of a-congruence is shown. Hence this is yet another context in which
this concept applies (for other treatments of the topic see [11] and [4]). Finally
we exemplify the extension of the results to processes with noncompact state
spaces by investigating the Ornstein-Uhlenbeck process.

2. Convergence to the invariant measure. In this section we present
theorems that characterize the convergence of a Markov transition probability
as the time parameter approaches «. These are extensions of the results in [2]
where we refer for most of the proofs.

2.1. Let M be a compact, connected metric space, m finite measure, # 0
on #(M). Let p(t, x,y) be a measurable Markov transition density function
satisfying for some ¢, > 0:

() p: (0,0) XM X M - R;

(i) [yp(t, x,y)dm(y) =1for t > 0, x € M,
(i) & = inf, ,c y P(2g, %, ) € (0,1/m(M)};
(iv) K = sup, ,ecu P(tg, %,¥) < .

DEFINITION. Let u be a bounded signed Borel measure on M. By uP,,
t > 0, we denote the measure on M with density

d(uP,
W) (9) = [ p(e,2,9) due).

{P,} is the transition semigroup (uP,,, = uP,P,, s,t > 0). In the following we
denote P,, by P,.

2.2 LEMMA. Let u be a bounded signed Borel measure on M with u(M) =
0. Then for all n > 0,

luP,ll < (1 — am(M))"llull,
where || || is the total variation norm on M.
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Lemma 2.2 implies the existence of a unique probability measure A s.t.
AP, = A, ¢t > 0. It has measurable density ¢ with respect to m and ¢ > a.

2.3 LEMMA. Let u be as in Lemma 2.2. Then forn > 1, ¢t > (n + 1)¢,

[ pa9) du()| < €1 - am(a0) Iull6(3).

Proor. Since

| p(t,x,9) du(x) = [ p(t = (n + Dto, x,y) d[(P,) P,](x)
M M

by the previous lemma we get the result. O

and
dA

o= 52 o
(x)‘—W]fMpuo,z,x) (B)(2)|

K n
< ;(1 —am(M)) |ull

2.4 THEOREM. There are constants C, B such that for t > t,, x,y € M,

Ip(t,x,5) — ¢(y)l < Ce™P'p(y);
hence

IP(X, € ) — All < CeP".

Proor. Let u =48, — A. By Lemma 2.3 we get

Ip(t,%,5) = ¢(¥) < C(1 — am (M) *|ullp(y),
which implies the result since o > 0. O

ReMARKs. 1. The original (weak) Doeblin condition for a process is: There
is a finite measure m and ¢,¢ > 0 such that P(¢,x, A) <1 — ¢ for all x € M,
A € #(M), m(A) < e. This follows from a slightly stronger condition: There
exists a finite measure m and c,¢ > 0 such that P.(X, € A)>cm(A) V
x €M, A e #(M). The latter is also called a Doeblin condition in the litera-
ture and we follow this convention. If P, < m V x € M, ¢t € R, this Doeblin
condition is equivalent to (iii).

2. In the case when we have a nondegenerate diffusion process on M the
conditions 2.1(i)-(iv) are satisfied under mild conditions on the drift field. In
fact we can choose any ¢, € R,. B is the absolute value of the largest nonzero
eigenvalue of the generator of the process ([6]).

3. If a random walk on M has an absolutely continuous transition probabil-
ity with respect to m the conditions 2.1(iii) and (iv) are satisfied for some
to > 0 under similar assumptions as in Case 2.
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2.5. We proceed to modify the results above to the case of a finite-state
aperiodic, irreducible Markov chain X,. Let M = {x;}}L, and let pJ, be a
n-step Markov transition probability, x,y € M, n € N. Let X, denote the
continuous-time extension of X, defined naturally as

Px(XO =x) = 1’
t —nh
Px Xt =th + T(X(n+1)h - th)) = 1’

Px(X(n+1)h € AI"/Znh) = Z pxy’
yEA

where h is the intertransition time and .#, is the o-field generated by X,
s €[0,t]. Hence P, is a measure on C,. We will assume that for some n, € N:

(iii) @ = min, , o P(X, =y) €(0,1/IM]];
(iv) K = max, , oy P(X, =) <.

DerFINITION. Let u be a bounded signed measure on M. Then for ¢t € R,
we define a measure on M by

wP(y) = Z w(x) P (X, =y).
xeM

We can verify the semigroup property of P, by the Chapman-Kolmogorov
equation. Again denote P, = P,,, .
Lemma 2.2 holds as it is with m being the counting measure. For the proof

we argue now as follows: Since
luPill= ¥ | w(x)PX,, =)

X

’

Yy
we have
lwll =l Pyl
=X {Z [t (%) + p ()] P(X,, =y) —| X u(x)P(X,, =y)\}
Yy x x

- T 2T w* (0)P(X,, =)} = 2a X 1l = alMl lull
y x y

Hence [lu Pl < (1 — alM)||xll and the result follows. O

Lemma 2.3 holds with the obvious changes and ¢, = n,. For the proof we
argue now as follows: Since

Z :u(x)Px(Xt =y) = E I"’Pn+1(x)Px(Xt—(n+l)no =y)
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and
1

lwP, . (x)| = e Y uP,(2)P(X,, =x)

L
$(x) (x)

K K .
< —luPll < —(1 - alMl) ||l
a a

we conclude that
K n
Y u(x)P (X, =y)|< ;(1 —alMD) " llY ¢(2) Po(X,_ns1yn, =),

which by the invariance of ¢ implies the result. O

Again this lemma immediately implies the analog of the convergence Theo-
rem 2.4 with p(¢, x, y) replaced by P (X, = y) and A(A) = L, . 4¢(x).

2.6. In the context of a family of Markov processes {X/, ¢ > 0}, ., the
convergence theorems extend as follows. Here % is essentially the intertransi-
tion time of the process which should be thought as a continuous-time
extension of a Markov chain. Let us first consider the case where X/ satisfies
the assumptions in 2.1(i) and (ii) and also for some ¢4, A, > 0:

(lll) a = infx,yEM, hE(O,ho)ph(tmx’y) > O;
(lV) K= Supx’yEM’ he(o’ho)p (tO, x,y) < o,

We call the critical condition (iii) the uniform Doeblin condition.
One can easily show that Lemmas 2.2 and 2.3 hold for the family under

consideration and conclude the existence of invariant measures A* with densi-
ties ¢”*, and we obtain the following theorem.

2.7 THEOREM. There are positive constants C and B, independent of h such
that

p"(t,2,5) — 6" ()l < Ce™P'$"(y)
and
IRk — Xt < Ce™P!
hold for all t > t,, h € (0, hy) and x,y € M.
2.8. For the uniform extension of Section 2.5 to a family of discrete-valued

Markov processes { X}, t > 0}, . , with state spaces M" we assume in addition
to 2.1(i) and (ii) that

(i) a(h) = min, , o yn PAX] = y) = a/IM*|, a > 0;
(iv) K(h) = max, , .+ P(X} = y) <K/IM"|, K < =,
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Using these and the discrete version of Lemma 2.3, we can establish immedi-
ately Theorem 2.7 with p”(t, x, y) replaced by P (X} = y) and M by M*.

REMARKS. 1. In the results above the main assumptions are the Doeblin
condition and its uniform generalization. (i) and (ii) are guaranteed for any
conservative process but since we need our processes to have richer ergodic
properties the other conditions are required. For nondegenerate diffusion
processes (iv) is almost vacuous due to well-known results on the decay of the
heat kernel and we do not discuss it subsequently.

2. Verifying the Doeblin condition requires additional information on the
processes. A necessary condition for the diffusion is that if L’ denotes the
adjoint of L with respect to m the problem L'¢p = 0, (¢ dm = 1 must have a
strictly positive solution. If the diffusion is a Brownian motion on a compact
manifold, then ¢ = constant. Even more can be said: By our assumption on
the nondegeneracy of the diffusion we can define an equivalent metric on M
using o 2. Then the generator will be in local coordinates A + b and we can
easily see that if V - & = 0 then again ¢ = constant. More general results can
be obtained using maximum principles.

3. For the random walks the uniform Doeblin condition can in some cases
be established using for example a monotonicity argument. To illustrate this,
we consider a family of walks on R with i.i.d. increments X ~ f,, f, being
the symmetric unimodal density of the nth walk. For simplicity assume that
EX" =0, E(X")? = 1/n2 V i. Denote the density of S = ©7°, X" by F,. We
know that (x ,2f,Xx) — ¢(x), the density of N(0,1). By the unimodality of
f» F(x), x > 0 is monotone decreasing. Choose n, such that F,(1/2) > 6 >
OV n>n,Then F(x)>6Vx€[-1/2,1/2),n > n,. If S is the induced
walk on R/Z then clearly F (x) > 8 V x, n > n,, where F, is the transition
density of the induced random walk.

3. The d-convergence. Let (X}, P*) be a random walk on a compact
metric state space (M"”,d). As before the parameter h is essentially the
intertransition time. We assume the existence of an invariance principle of the
form: Px’;" = P, when h, — 0 and x, - x € M (laws are for paths in C; with
initial distributions §, and §,). P is the unique law of a diffusion process X
on (M, d). It is convenient to view M"’s to be embedded in M and the metric
to have diameter 1. Both the invariance principles of [13] and that of [8] are of
this type although their proofs differ considerably. In [8] an exponentially
distributed intertransition time is also considered but since this is an easy
variant we do not include it. One reason is that for technical simplicity we
prefer the random walks to take values on Cj instead of D;. Nothing in our
approach however prevents one from extending them to, for example, birth
and death processes.

We distinguish two cases according to whether the distribution of the
random walk increments is absolutely continuous or singular with respect to
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the uniform probability measure m on M. The latter case is argued with a
slightly more complicated argument and we will indicate the variation in the
proof of Theorem 3.2.

We are now ready to state the first main result of this section.

3.1 THEOREM Let the diffusion process (X,, P,) and the random walk
family (X}, )‘h)} with absolutely continuous transition probability measure be
as above. Here A, A" are the invariant measures with densities ¢, " with
respect to m. Suppose that the condmons in Sections 2.1 and 2.6 also hold
and that ¢"* - ¢ m-a.s. Then d(P}i, P,) — 0.

Proor. Since the argument is rather long we will break it into several
steps.

Step 1: Let p(¢,x,y) and p"(¢,x,y) be the densities of the transition
probablhtles with respect to m. Fix small ¢ > 0, then by Theorems 2.4 and 2.7
'.» Bo > 0 such that

{Ip(t,x,y) - ¢(y) Ip"(t,x,y) - ¢”(y)|} L

é(y) ’ "(y) 400’

Vt>T, 0<h<h, x,y €M. By Egorov’s theorem we can find E c M,
"‘'m(E) < /200K, where K is as in Section 2 for ¢, = T, and A, < h, such
that

19"(y) —d(y)l

s(y) 400’

Consequently, we can find couplings x"%u on C%u such that

xv?,u({(Xth, Xt)lt € [O, Tu], (X(’)l, Xo) =X, X;-Lu * XTu})

VyeE°

< 2[fc+ f|ph(Tu,x1,y) _p(Tu’xmy)lm(dy)]

E
< 2[@ +2Ko500k ] < 16

VO<h<h,xeMXM.
Step 2: Choose T, > 0 such that T, /(T, + T,) < ¢/8. Let
pr(Py, Py,)

Y1’ 7 Y2

= infinf{a > 0|y
n

{(X,",X,)It e[0,T.], sup d(X! X,)= s}) < s}

s€[0,T,]

denote the Prohorov distance between the two processes on [T,, T'] starting
at y = (y1,¥9). If ¥, =y, =y then by the previous theorem and Egorov’s
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theorem we can find h, € (0, h,] and F c M, m(F) < ¢/200K such that for
0<h<h,,

(P P) ye Fe.

16’

Hence there exist ¢/16-good couplmgs ynT on C[T mVy€EF,0<h<h,
If y1 #yy Or y; €F we let ynT denote an 1ndependent couphng Clearly

1’ Y2
Step 3: Define a family of couplings {, u%} on C2 by

H5(A) = [ h(d2) Ty 1h(dW),
{z)lz€A, te[0, T, ]} {wlweA, te[T,,T],
w(T,)=2z(T,)}

V A c CZ. The coupling property is trivial since if A =A; X C; by the
coupling properties of ,ngc, xv,f,&u and the Chapman-Kolmogorov equation we
see that

Hr(A) = [ 5 (dz)
{z(t)z€A, t<[0,T]}

XPlr (Xl €A, te[T,,T], X}, = 2(T,))

{z,(1)lz,€A,, t€l0,T, ]}

XPlo (XFeA, tel[T,,T], X3, =2(T,))
=Pl(X!eA,te(0,T]).
The other marginal is identical. Let

Gx = {(Xth7Xt)|t € [O,T], (X(’;’ XO) =X

Xp =Xy €F°, sup d(Xh X,) <
se[T,,T]

®| ™
-

and
€
G(Tu)={(X;',Xt)lte[Tu,T],X% — X, €F°, sup d(X:,Xs)<—}.
“ “ selT,,T] 8
Then

x/“‘,';‘( )x T( )f z(T )nT \dw)

f(X, X)elo,T,], XT =X,

€
h
vi(dz) >1 - —.
( ) (X}, X)Itel0, T,], X} =Xz, €F) Tu 4
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Since m(F) < e/200K so the last integral exceeds 1 — ¢/16 — £/200. But
clearly

def 1 T 1 T Tu
ave T(Xh X) =m d(Xth’ ‘Xt)dtS _fde(Xth’Xt)dt+ ?

< sup d(Xth,X)+—<-
telT,,T] 4

on G,. Therefore

d (Pt P,)

xp?

inf iralf{b‘ > 01, @5 ({(X2, X,)ld o r( X*, X) > 8}) < 8}
AT

£
e VO<h<hy,y,xeMXM.

IA

Step 4: By induction we get a family of measures on C2,, N € N:

xl‘«}fVT(A) = f x/""’(lN—l)T(dz)
{z(lz€A, te[0,(N-DT]

h
X z((N—l)T)/J‘T(dw)'
w)lweA, te((N-DT, NT],
w({(N-1)T)=2z(N-1DT))}

Clearly these are again Markovian couplings. Furthermore denote the coupling
where the initial distributions are the stationary ones simply by u%; and the
limit measure by u”. Let us now consider the dynamical system (C, X C., &,
0% X 05, u"). As usual 0,’s are the shifts along paths. Moreover the shift
8% X 6, can be chosen to be ergodic with respect to u” (e.g., [9]). But then by
the ergodic theorem

1 NT N 1 N-1 A
ﬁf() d(Xt ’Xt) dt = —1\7 };0 ave, T((X X) ( iT» lT))

- f ave,T(x)/"’,;‘(dx)’ /J-Z,-a.s.

By Step 3 the last expression is bounded by & /2. Therefore
d(P}, P,) = lim dNT( P}, P) <e. O

In the discrete case the Doeblin condition again implies the existence of an
invariant measure but now the absence of densities changes the argument
slightly. The essential difference between the proofs of Theorem 3.1 and the
next one is that in the former the projections of couplings x"‘lé‘u at t=T,
concentrate on the diagonal of M X M, whereas in the following argument we
only get an approximate match of paths at time T, due to the discreteness of

the state space. The notation is as in the previous proof.
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3.2 THEOREM. Let {(X}, P1)} be a family of discrete random walks with
invariant measures {\"} such that A* = A, where X is the invariant measure of
the diffusion limit (X,, P,). Then d(P}, P,) — 0.

Proor. Step 1: By the results in Sections 2.4 and 2.8 3 T,, h, > 0 such
that

IPA(X =5") ="M bt x,9) — o) _ e
" (y*) ’ o(y) 200’
Vt>T, he(,hy), x" y* € M*, x,y € M. Then choose T, > 0 such that
T,/(T,+T,)<¢e/8.

Step 2: Define

pr(y;8) = sup  pp(P, P).
z€By(y)NM

Then p;(y;8) > 0as 610V y € M. By Egorov’s theorem 3 §, > 0 such that
pr(y;8) < e/32VY 86 <8,y <€ E°, m(E) <e/200K. Let

pr(y;h,8) = max pT(Pyh,Py)—>0 ash,8l0Vy.
¢ yheB ()M ¢
Also pr(y; h, 8) = pr(y;8) as h | 0. But then
€
lor 35k, 80) = pr(y;80)l < o5
where h,; < hy and m(F) < ¢/200K. Therefore
€
pTc(y;h760)<E, VyE(EUF)c’hE((),hl)'
Let y)n-T be a 5/16-good coupling on [T, T]for y € (E U F)°, y* € B; ().
It ye EUFor y" e B 57 let the couphng be independent.
Let {B,}} be a d1s301nt cover of M with tiles that are contained in balls of

radii ,. We further assume that the tiles are P,-continuity sets. Then we can
find couplings ,»7 on C7 with error

Vh<h,,eF°

oh(((xF X))t € [0,T,], (X, Xo) = x, X}, € B;, Xy, € B, some i})
~ 2% IP,(X}, € B,) - P.(Xy, € B)
<2Y {P (X" e B,) - **(B))| + |P,( X, € B;) — A(B))|
+|/\h(Bi) - /\(Bi)l}
< 2{IP, (X} € ) = A+ IP(X7, € ) — All}

+ LI (B) ~ A(B)l= 3% + 2L WA(B) ~ A(B)I= %
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by Step 1 for small enough % for all x. Hence the coupling error is bounded by
e/16.

Step 3: Define ,u% as in Step 3 of the previous theorem and let

G (i;7) = {(X;', X )t el[r,T], (X2 X,) =x, X} €B,,

€
Xr €B,Nn(EUF)", sup d(X!X,)< —},
telT,,T] 8

where 0 <7 < T,. Then

xu':’r( LZJ Gx(i;O))

h h
vy (dz) nr.(dw)
; '/;(X,",X,)Ite[o,Tu], (X&,Xo)=x,x T fo(i;T,,)z(T") Tet

X% €B;, Xy €B;N(EUF)°)

&
> (1 - —)] vk (dw)
16 /Jqxr, xpieelo, 1,1, (X4, Xp)=x, "
X} €B;, Xp €B;N(EUF)?}

1 €
>1-—.
- 4

The rest of the proof is identical to that of Theorem 3.1. O

4. Bernoulliness and a-congruence.

4.1. In the absolutely continuous case the Doeblin condition implies that
associated with our processes there are Markov operators of kernel type, i.e.,
there are contractions T' on L(¢) such that

(4.1) Tf(x) = [ p(to, ) F(7) dy

and ET = TE = E, where E is the expectation. Let 6 be the corresponding
left shift. It is mixing iff

lim [ (T"f)(x)g(x)$(x) dx = [ f(x)d(x)dx [ g(x)$(x)dx,
n—w )N M M

V f € LY¢), g € L*. Since characteristic functions of closed sets are dense in
LY(¢) we only need to observe that by the bounded convergence theorem

Tim [ p(nto,x,9)1x(y) dy = M(E)

to establish that 6 is mixing. Therefore by the results in [10] the shift is
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isomorphic to a Bernoulli shift and consequently the continuous shifts on
these processes are Bernoulli flows.

In the discrete case the Bernoulliness of the random walks is a standard
result and can be found for example in [12].

4.2. Let (X}, PY), i = 1,2, be two stationary random processes assuming
values in the same metric space (M, d). Let Q’ be the underlying abstract
measure spaces and f° the shifts on these spaces corresponding to the
processes. If 7' is the zeroth coordinate projection from Q! to M then
X)) = m(fi(w)) for all o € O, t > 0.

DeFINITION. (@, f*, 7", P?), i = 1,2, are a-congruent if there exists an
isomorphism ¢ between (QF, f?, P%) such that d(X}w,), X2(((»,)) < a except
for a set of w, € Q' of P'-measure less than a.

We now establish the a-congruence extensions of the d-convergence results.
Let (Q, f,, P) and (Q"*, f*, P*) be the abstract dynamical systems of the
diffusion process and the random walk respectively. Let 7 and 7" denote the
corresponding projections. Let (Q*, £, P"*) be an abstract process such that
the shift f” is an infinite-entropy Bernoulli shift. By the previous section and
the isomorphism theorem of Bernoulli shifts ([9]) we know that (Q, f,, P) is
isomorphic (via some ) to (Q* X Q*, £ x f}, P* x P). The latter is realized
via 7*(x, £) = 7"(x). But then

P({w|d((77 ° ft)(“’)’ (7Th ° fth)(’“(w))) >4 8}) <e€
for small enough 4 and some ¢. This is because otherwise d(P, P*) > ¢, which
by the theorems in the previous section is impossible. Note that the d-coupling
involves already a measure preserving map between the infinite orbits and now
we just choose the process (), f;, P) so that the map extends into an invertible
one. Hence we obtain the main result.

4.3 THEOREM. The d-convergence in Theorems 3.1 and 3.2 extends to
a-congruence.

REMARK. We present this extension mainly to illustrate the applicability of
a-congruence to this class of dynamical systems as well. The abstract process
corresponding to the shift f, can be interpreted as a perturbation of a viewer

that observes the process X”. For elaboration of this see [11].

5. Unbounded state space. The Doeblin condition of Section 2.1 is
natural only for processes with compact state space. However the exponential
convergence to an invariant measure can hold outside this class of processes.
Instead of being uniformly ergodic the process is then required to be geometri-
cally ergodic. We investigate this and derive the a-congruence result in the
particular case of a diffusion on R which already exemplifies the critical parts
of the argument.
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5.1. Let us consider the Ornstein—Uhlenbeck process X/ on R with equal
infinitesimal variance and drift coefficients (this is just for computational
convenience). The process has transition density

p(t,x,y) = ! e %™/ A-eT g e (0,1).
7T(1 _ e—Zat)

Note that p%(¢, x,y) is a summability kernel as ¢]0. Consequently, the

associated semigroup (S/f)Xx) converges pointwise to f(x) on R, i.e., S is

Feller. One can easily see from the formula that the weak Doeblin condition

fails. Hence as a Harris process the quasi-compactness fails as well. The

process is ¢-recurrent but its state space is not ¢-uniform set hence the strong

ergodic theorem by Orey (e.g., [7]) does not imply exponential convergence.
The process has the generator

a d? d
Toax? Yax
which has the spectrum {—an|n € N,}. Therefore the transition density has
the representation

L

2
e 1

pa(t,X,y) = ‘/; ng() 2nn!e_antHn(x)Hn(y)’

where H, is the rzzth Hermite polynomial, ¢t € R,, x,y € R. By [1]
|H,(x)| < V2n!2"/%e*"/2 so the convergence of the representation follows
easily and we also obtain

)

1 2
Pa(t,x,y) - ﬁe_‘}ﬂ < -‘/—7_T_——e(x2_y2)/2e—¢lt Z e~ < C(a)e"z/ze_‘”,
n=0

Hence we establish a weaker form of the exponential convergence result by
restricting x to a compact set K. If we let A(dy) = (1/ V7 )e™ dy, then the
result implies

IP(Xfe ) —Al<C(a,K)e ™, Vxek.

The norm is again total variation.

5.2. Our approximating random walks are the generalized Ehrenfest pro-
cesses {X"},.;. Let the state space of the nth one be M" = {i/nli =

—n2,...,n%, the jumps at intervals of 1/n2 and the transition probability be
a i o
§(1+;L§), Jj=1i—-1,
pii"={1-a, J=1i

a l
5(1——2), J=i+l, = -n?nd
n
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By the usual extension we obtain a process with paths in C. For all a € (0, 1)

and all n, {X77:li € N} is a homogeneous, irreducible, aperiodic Markov chain.
The limit a 11 is the classical Ehrenfest chain which has period 2.

Clearly
el 5 gl 5
e L) |

uniformly on compact sets. By standard results (see, e.g., [5]) we get the
invariance principle.

LEMMA. Pg§" = P§ implies P#" = Pf for all a € (0,1] as n — .

It is easy to verify that

qr = (.2n22)2_2"z
i+n
is the stationary distribution for X*" V a € (0, 1). This is Bin(2n? + 1,1/2)
so if A” denotes the corresponding measure then by DeMoivre-Laplace theo-
rem A\* = A ~ N(0,1/2) which is the stationary distribution of the Ornstein-
Uhlenbeck process.

5.3. We now indicate the analog of the exponential convergence result in
Section 5.1 for the family {X/"}, .. Let P{" =[p{"] denote the one-step
transition matrix. We observe that

s 1 p 2a -1
an — ___pan 4

2a¢ ! 2a
is a tridiagonal stochastic matrix of the Krawtchouck type. Remarkably its
spectrum is uniformly distributed on [0, 1]: o(S*") = {j/2n2|j = 0,...,2n%.
Therefore

1

(P — {a(% - 2) f1

Hence for n > n,=ya/2(1 — a) the second largest of the moduli of the
eigenvalues is 1 — a/n?. This is called the coefficient of ergodicity of the chain
and we denote it by u,(P{ ™). Therefore we have for the time-one transition
matrix

j=0,...,2n2}.

a \n*
/.LI(P,fz’n) = (1 - -T—I,E) - e %

This uniformity for the time-one transitions of {X*"}
plies the uniformity in the exponential convergence.

immediately im-

nzng
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ProposITION. Given a € (0,1) and K € R,, we have for all n > n(a, K)
andxeM"Nn[-K, K],

i i
an,n(Xta,n — ;) _ An(;)

where C and a are independent of n. As before this implies
P& (X2 e ) — 2| < Ce™™.

Il
|
&

i
sC(a,K)e‘“(")‘)t"(—), i 2 ..., n%
n

REMARK. The ergodic properties of the chain obviously disappear as a | 0.
If @ = 1 the proposition fails due to periodicity.

The first main result of this section is the following.

5.4 THEOREM. The processes (X", P%") converge to (X2, P?) in d-metric
asn — .

Proor. Step 0: Choose Iy = [—K, I] C R such that

&
AMIg) VvV sup N (If) < —
(16) v sup (1§ < 565

for some n, > 0.

Steps 1-3 in the proof of Theorem 3.2 are modified only to restrict the
“essential” state space to be Ix. The couplings 7" and ,v7" are defined to
be independent if X,y & I, X I. In the covering argument of Step 3 the choice
of Step 0 is utilized as well as the fact that excursions of length T, from I far
outside it are rare. O

5.5. The chain {(X7;72, P»™)li € N} is a finite-state irreducible and aperi-
odic (a < 1) Markov chain hence by standard results (see [12]) isomorphic to a
Bernoulli shift. Consequently, the process (X", P%") is a Bernoulli flow.

For some fixed ¢ and a let T* be defined as in (4.1) with p*(¢, x,y) and

f € LYA). T® is a Markov operator and its shift is mixing since given any
interval [b, c] and g € L™(R) we have

1 2
fR fR P(t,%,9) s oi(3)8(x) 7= " dudy
c 1 2
(5.5) = [" [t 5 y)8(x) e dy

c 1,
+ e(t, x, —e *dydx,
[y e P58 () e dy

where M is such that

1 e £
‘/—;‘f[_M’M]|g(x)|e dx — lIgllLiay| < 3
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Since
C
fp"(t,x,y)dysl, VxeR,
b

the second term on the right of (5.5) cannot exceed /3. We can also choose ¢,
such that for ¢ > ¢,

fbcp"(t,x,y)dy—)t([b,c])‘< Vxe[-M,M].

€
3ligllzyay ’

Consequently,

C 1 . 1 ]
[2 [ pet 2. )8(x) e dydx = M([b,e]) 7= [ g(x)e~ dx’

<

C 1 .
f_ﬂ;fb [pe(t,x,y) — A([b,c])]g(x)‘/_;_e_x dydx‘

2¢

— [ gl d
+ — x)le ™ dx<
v [—M,M]cg 3

and the left-hand side of (5.5) converges to A([b, c])/gd A. But then by [10] the
shift is Bernoulli and the process (X7, P) is a Bernoulli flow. These results
together with Theorem 5.4 yield the a-congruence. The argument is identical
to that of Section 4 and we do not repeat it here.

6. Conclusion. In the foregoing analysis we have covered a large portion
of processes for which an invariance principle is known. For both the
Bernoulliness and the d-coupling argument we need the processes to have
good enough mixing properties and a unique stationary distribution. Uniform
ergodicity (which in our context is equivalent to the Doeblin condition) or some
mechanism in the process that essentially compactifies the state space (i.e.,
makes excursions outside a compact set rare) seems necessary to guarantee
these. In some cases geometric ergodicity suffices although the uniformity is
then harder to formulate. We note that the exponential convergence to the
invariant measure is not necessary per se—in the arguments the uniformity of
the convergence rate over the family of random walks is the key ingredient.
Verification of the uniform Doeblin condition has to be performed in the
special case at hand using typically spatial homogeneity and symmetry proper-
ties that the processes might have. For families of translation-invariant ran-
dom walks on compact manifolds this should be fairly easy. We also point out
that the d-convergence results are genuine strengthenings of the known weak
convergence results as indicated in Theorem 1.4. It is also worth noticing that
the infinite-time generalizations of the Skorokhod metric (see [5]) involve an
exponential discount factor for the distance between the paths in the future
and hence is not time homogeneous. Consequently, invariance principles using
this metric are not uniform infinite-time generalizations and are implied by
our results (if also the ergodicity assumptions are satisfied).
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Unlike in the case of billiards or geodesic flows in the context of random
processes a-congruence requires somewhat artificial introduction of a “ghost”
process to adjust the entropies. This might correspond to some kind of
intrinsic unpredictability in a viewers mechanism but its final interpretability
remains to be seen.

Finally we point out that a completely different kind of argument might
yield an extension of these d-convergence results to the case where the
processes do not have good ergodic properties. For example, in the case of a
symmetric random walk on the real line, Donsker’s theorem gives a finite-time
coupling with a Brownian motion. One could extend the definition of the
d-metric to this case but it is presently not known if an infinite-time coupling
between these processes is possible and if it is, whether the degree of tran-
sience of the process is relevant.
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