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SPECIAL INVITED PAPER
THE CRITICAL CONTACT PROCESS DIES OUT

By CAROL BEZUIDENHOUT ! AND GEOFFREY GRIMMETT

University of Wisconsin-Madison and University of Bristol

By producing a finite-box criterion for survival in a slab, we show that
the critical contact process dies out and that, in two and more dimensions,
the critical parameter value coincides with the limit of slab thresholds.
Using the techniques developed in this paper, one may obtain the complete
convergence and shape theorems for contact processes in all dimensions
and for all infection rates. Our results apply also to the discrete-time
analogue of the contact process, viz., oriented percolation.

1. Introduction. This paper is concerned with the contact process in all
dimensions; our results apply also to oriented percolation, which is the dis-
crete-time analogue of the contact process. )

The contact process was introduced by Harris (1974). It is a Markov process
whose state space is the set of all subsets of Z¢, and it may be thought of as a
model for the spread of infection in a d-dimensional orchard. Here is a
heuristic description. At each instant of (continuous) time, each site on the
d-dimensional lattice Z¢ is in one of two states: infected or healthy. (Some-
times the terms occupied and vacant are used, depending on the physical
interpretation of the model.) Infected sites recover (become healthy) at rate 1
and a healthy site becomes infected at a rate proportional to the number of its
infected neighbours on the lattice. The model is parametrized by the propor-
tionality constant, usually denoted by A.

We shall discuss briefly the history of the problems solved in this paper.
Since there are several accessible expositions on the subject of contact pro-
cesses, we shall discuss only those aspects of the subject which are relevant
here. For more general surveys of the theory we refer the reader to the papers
by Durrett (1984) and Griffeath (1981) and to the books of Durrett (1988) and
Liggett (1985).

In a sense, the contact process is a variant of a continuous-time branching
process. Let ¢, be the number of individuals alive at time ¢ in such a
branching process in which the offspring distribution has mass function
f(0)=1/(1 + 2dA) and f(2) = 2dA/(1 + 2dA). Since the mean of this off-
spring distribution is equal to 4dA /(1 + 2d ), it follows from well known (and
easily established) results that ¢, — 0 with probability 1 if and only if 4dA <
1 + 2dA, that is, if and only if A < 1/(2d). Thus in this model there is a
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critical value A, (namely A, = 1/(2d)) of A so that the system dies out with
probability 1 if A is below A, and survives with positive probability if A is
above this threshold. Moreover, in this model the system dies out when A = A,.

The contact process is similar to the model just described, except that
individuals are constrained to live on a lattice (Z¢ with d > 1). When an
individual reproduces, it gives birth onto a site chosen randomly from among
its 2d nearest neighbours on the lattice. If an individual tries to give birth
onto a site which is already occupied, the birth is disallowed. The spatial
structure thus imposed makes it harder for the system to survive. However,
the system has a certain monotonicity property which ensures that if there is a
positive probability of survival for a given value of the parameter A, then the
same is true for any larger parameter value. This monotonicity makes it
possible to define a critical value A, = A (d) such that, if A < A,, the contact
process dies out with probability 1, whereas, if A > A, there is a positive
probability of survival. A comparison with the branching process described
above shows that the critical value is strictly positive and in fact provides the
lower bound A.(d) > 1/(2d). It is harder, but nevertheless possible, to prove
that A, is finite [Harris (1974), Griffeath (1981), et al.]. However, these crude
arguments give no information about the behaviour of the system at its
critical value and indeed the question of the survival or nonsurvival of the
critical contact process has remained unanswered until now. The main result
of this paper is a proof that, as generally believed, the d-dimensional contact
process dies out when A = A (d), for all values of d.

Nobody has yet established rigorously the numerical value of A,. Some
rigorous upper and lower bounds have been established and heuristic argu-
ments suggest that for the case d = 1, A, is about 1.65. Holley and Liggett
(1978) proved that P,(¢° survives) > 3 when A = 2 and d = 1; it then follows
from the main result of the present paper that A, (1) < 2, a result established
earlier by Durrett but unpublished. For the best known upper and lower
bounds on A (d), see Durrett (1988) and Liggett (1985).

In his 1978 paper, Harris introduced the so-called graphical representation
of the contact process. This representation, which we discuss at more length in
Section 3, enables one to think of the contact process as a type of percolation
process. This observation has been exploited fruitfully by many authors; see
Durrett (1988), Griffeath (1979) and Liggett (1985) for more details. In this
paper, we make heavy use of Harris’s graphical representation. By such
means, we are able to adapt proofs of similar results for (unoriented, discrete)
percolation to the setting of the contact process (oriented with continuous
time). Such adaptations to oriented percolation are somewhat easier, since one
does not have to worry about the fact that the time parameter is continuously
varying.

Suppose for the moment that d > 2. In proving results about a contact
process with A > A, it has been customary and convenient to assume the
extra hypothesis that A > A¥ for some K, where AK is the critical value of A
for the process when restricted to the two-dimensional space-time slab
[-K,K]*"! X Z x [0,) (here and later, the component [—-K,K]?"!x Z
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(c 7%) refers to the space in which the process lives and [0,) to the time
variable). For example, Durrett and Griffeath (1982) assume that A > A2
(= A1), and Durrett and Schonmann (1987) assume effectively that A > A7
(= limg _,, AK); actually the latter authors assume the corresponding hypothe-
sis for oriented percolation. Our second main result is that, as expected,
A, = X2, which is to say that, whenever the contact process survives with
positive probability in the whole of Z¢ X [0,), then it does so also in a
sufficiently deep slab (see Theorem 2). The analogous result for unoriented
percolation has recently been proved by Barsky, Grimmett and Newman
(1989) and Grimmett and Marstrand (1989). Our technique is an adaptation to
the directed setting of that of the first of these two papers.

The contact process is attractive, which is to say that the presence of extra
particles (infected sites) makes it no harder for the process to survive, i.e., for
infection to persist forever. It follows easily from this fact that the Markov
property that, if the initial state of the process is Z¢ (all sites infected), the
process converges weakly to a certain measure v on the state space, called the
upper invariant measure. )

The contact process has a property of reversibility (sometimes called self-
duality) in that, if time is run backwards and all arrows, representing
infections of one site by another, are reversed, then the new graphical repre-
sentation has the same law as the original. It is an easy consequence of this
fact that v is nontrivial (i.e., v # &, the point mass on the empty set) if and
only if the contact process with a single initial infected site survives forever
with positive probability. It is known [Durrett (1980)] that, for d = 1, if the
system is started with the infection on a subset A of Z9, then it converges
weakly to a convex combination of v and §,, the weight assigned to v being
the probability of survival starting from A. This result is known as complete
convergence. The analogous result for d > 2 was proved for A > A? by Durrett
and Griffeath (1982) (it is clearly true for A below A.) and by Durrett and
Schonmann (1987) for A > A% (actually the latter result was proved for the
discrete-time process). The construction given in this paper may be combined
with the techniques of those two papers to prove complete convergence for all
values of A. We give a rigorous statement of this in (4).

In one dimension, Harris’s graphical representation provides a coupling of
the contact process started with a single infected site and the process started
with all sites infected in which the two systems always agree on the interval
between the extreme infected sites in the former system. (This is a simple
consequence of the fact that infection can move only one space unit at a time,
together with certain two-dimensional geometric constraints.) In his 1980
paper, Durrett showed by means of a subadditive ergodic theorem which has
been generalized and appears in Liggett [(1985), page 277] that, conditioned on
survival, this interval grows linearly almost surely. The analogue of this
statement in higher dimensions is that the two systems may be coupled in
such a way that, conditioned on the survival of the former system, almost
surely they agree on a region which is asymptotically convex and whose
diameter increases approximately linearly in time. This result is known as the
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shape theorem and was proved in the same papers and under the same
restrictions as the complete convergence theorem. Again, our construction may
be combined with the techniques of those papers to yield the shape theorem
for all values of A and in all dimensions strictly greater than 1. See (5) for a
precise statement.

Our basic strategy is to adapt the arguments of Barsky, Grimmett and
Newman (1989) to the contact process. Under the hypothesis that the process
survives with positive probability from a single initial infected site, we shall
show the existence of a large bounded region of space-time which contains,
with large probability, many chains of infection of certain sorts. By a certain
progressive positioning of copies of this region, we shall build unbounded
chains of infection within a sufficiently deep slab of space-time. Thus our
argument is a type of dynamic block technique.

More primitive but similar techniques have been used successfully in the
past. For example, Russo (1978, 1981), Seymour and Welsh (1978) and Kesten
(1981) used related approaches in studying ordinary percolation; in using
path-intersection arguments, their constructions were often two-dimensional
and in addition were static rather than dynamic in the sense that the blocks or
regions were fixed in advance in space rather than having their positions
determined by the (random) past history of the construction. Such arguments
inspired Durrett and Griffeath (1983) in their work on the one-dimensional
contact process. It is largely the dynamic aspect of our approach which enables
us to obtain results in higher dimensions. Whereas in two-dimensional space-
time one may use path-intersection properties of the plane, such properties are
not so readily available in higher dimensions.

2. Statement of results. In this section we give a formal statement of
our results. We outline the proofs in Section 3 and give details in Section 4.

We study the contact process in d (> 1) dimensions with infection rate A.
Our results apply equally to oriented percolation, the discrete-time analogue of
the contact process; for this process, the proofs are essentially the same, but
slightly easier. Our principal observation is that, if the process continues
forever having started from a single infected site, then there exists within it an
infinite discrete-time process growing in a slab of sufficiently large depth. As
consequences of this observation one obtains resolutions of four of the main
problems of the area: (i) if A = A(d), the critical infection rate, then the
process dies out, (ii) A, equals the limit of the critical values of slabs, (iii) the
complete convergence theorem is valid for all values of A and (iv) the shape
result is valid for all values of A.

Let ¢ denote the contact process on Z¢ X [0, ). The first component Z¢ is
the spatial component of the process and [0, «) is the time component; some-
times we shall suppress reference to the time component, referring to the
contact process on Z%. Thus ¢/ is the set of sites infected at time ¢ when the
infection is initially on A (c Z9). Let P, denote the associated measure when
the total rate of infection emanating from each site is 2d A, and the death rate
is 1. We say that ¢4 survives if ¢2 # @ for all ¢ and ¢4 dies out otherwise.
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Let A, denote the critical infection rate: A, = inf{A > 0: P(¢° survives) > 0}.
If KeN (= {1, 2 ..}, define slab thresholds AE as follows. Consider the
contact process “¢ on the two-dimensional slab [-K,K]¥ 1 X Z X [0,»)
with free boundary conditions, i.e., if x is in the boundary of the slab,
attempts by x to infect sites outside the slab are overlooked. Let AX =
inf{A > 0: (K 0 survives) > 0}. As K increases, AX decreases. Define A =
limg )t Our main results are:

(1) Tueorem. Ford > 1, P)‘c(f0 survives) = 0
(2) THEOREM. Ford > 2, X, = A,.

We prove these results at one stroke by showing that if P,(¢° survives) > 0,
then there exist a finite disc D (c Z¢), a number 8 > 0 and an integer L such
that

(3) P,_5(£P survives in [-2L,2L]*"" x Z X [0,%)) > 0

It is not difficult to see why this suffices. It implies that A — 6 > A2f, and
hence A > A2l > )2 > A, whenever P,(¢° survives) > 0. Therefore P, (§° sur-
vives) = 0 and o= A,

Our principal observation, referred to above, is obtained by an adaptation of
the argument of Barsky, Grimmett and Newman (1989) [see also Grimmett
and Marstrand (1989)] who have proved similar results for percolation. The
full limitations of the technique are not yet clear; certainly it may be adapted
to a certain class of attractive spin systems including all additive systems
[Bezuidenhout and Gray (1990)].

The argument of this paper may be used without substantial difﬁculty to
settle two related matters. First, let v denote the upper invariant measure, i.e.,
the weak limit of the distribution of §t as t — o, and let 8, be the probablhty
measure which puts mass one on the empty set.

(4) COMPLETE CONVERGENCE THEOREM. Let A c Z%. Then
¢A = v P,(¢4 survives) + 8, - P\(¢4 dies out),

where = refers to weak convergence as t — .

Next we turn to the question of shape. For x € Z¢, we write #(x) = inf{t:
x € §t°} for the first infection time of x and

Ht={yEIRd:EleZdwithIIx—ylls%andt(x)st},

where || - || denotes the L norm on R¢. We may couple together contact
processes with all possible starting sets and measures in the usual way, so that
£ c ¢7° for all t. We write K, for the coupled region of R?,

K,={yeR?%3x ez with lx — yl < § and £)(x) = tzd(x)}.
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(5) SHAPE THEOREM. There exists a convex subset U of R such that, for
any € > 0,

1
(1-¢)Uc 7Ht Cc(1+ &)U eventually,
almost surely on the event that £° survives. Furthermore,
1
(1-¢)Uc 7(Ht NK,) c(1+4+¢e)U eventually,
almost surely on the event that £° survives.

We prove Theorems 1 and 2 in Section 4. Some of the geometrical complica-
tions in the proofs may be avoided if d = 1, using path-intersection properties
of two-dimensional space-time; we do not go into this here. We omit formal
proofs of Theorems 4 and 5, since these are very close to those of Durrett and
Griffeath (1982) and Durrett and Schonmann (1987); instead we make some
remarks in Section 5.

In a companion paper [Bezuidenhout and Grimmett (1989)] we study the
subcritical phase (A < A,) of the contact process, showing exponential-decay
theorems for the size of the region infected from a single initial site.

3. Outline of proof. We shall make abundant use of the graphical
representation of the contact process due to Harris (1978); see the introduc-
tion for references. Thus we think of the process as being imbedded in
space-time. Along each ‘time-line’ x X [0,) are positioned ‘deaths’ at the
points of a Poisson process with intensity 1 and between each ordered pair
x, X [0, ), x4 X [0, ) of adjacent time-lines are positioned edges directed from
the first to the second having centres forming a Poisson process of intensity A
on the set 3(x, + x,) X [0,). These Poisson processes are taken to be inde-
pendent of one another. The random graph obtained from Z¢ X [0,») by
deleting all points at which a death occurs and adding in all directed edges can
be used as a percolation superstructure on which a realization of the contact
process is built. We shall make free use of the language of percolation. For
example, for A, B c 79 X [0, ), we say that A is joined to B if there exist
a €A and b € B such that there exists a path from a to b traversing
time-lines in the direction of increasing time (but crossing no death) and
directed edges between such lines; for C < Z¢ X [0, ), we say that A is joined
to B in C if such a path exists using segments of time-lines lying entirely in C.
Suppose A c 79, If we define £/ to be the set of x in Z¢ for which A X {0} is
joined to (x,t), then {¢2: ¢ > 0} is a realization of the contact process with
initial state A. Notice that this construction gives a coupling of the process
with all possible initial states.

Suppose that A is such that P,(¢° survives) > 0. We first find a finite disc D
(c Z?) such that P,(¢P survives) is close to 1. Next we show that, for any large
integer N, there exists a box B =[—L, L]? X [0, ¢] in space-time such that,
with large probability, some point of D X 0 is joined within B to at least N
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FiG. 1. With large probability, the disc D, at the centre of the bottom of the box B4z(L) X [0,T], is
Jjoined to many points on the top and sides of the box; furthermore, the number of such points
lying in any specified orthant of any side is large.

points on each of the other 2d + 1 faces of B. The number N is chosen to be
large compared with P,(¢ 2 D)~ ! for a given fixed positive k; this is in order
that the probability that at least one of N independent attempts to grow an
infected copy of the disc D in time h, starting from a single infected point, be
close to 1. With this choice of N and hence of the box B, we know that there is
a large probability that, on each of the top and sides of B, there exists some
point [say (x,t) € Z? X [0, )] which is (i) infected from D X 0 and (ii) infects
the entire region (x,¢) + (D X h) = D, ,, say. This completes the basic step of
the proof; see Figure 1. Certain complications arise in making rigorous the
argument so far, largely arising from the fact that N given points on a side of
B may lie arbitrarily close to each other in time. We note that, in the proof
proper, we shall define D, , slightly differently.

Having found the disc D, ,, we may use it to restart the process: consider
the box (x,¢ + h) + B and especially the points on its top and sides which are
infected from D, ,. We may restart the process again from one of these new
points, if they exist, and so on; see Figure 2. At any stage in the repetition of
this process, there is a small but positive probability that the construction
fails.

At each stage in the iteration of this process, the active point (x, ¢) may be
chosen from either the top or the sides of the copy of B in question. This
freedom of choice allows us some control over the shape of the infected region
which we build. Further control is obtained from the fact that, by an argument
using symmetry and the FKG inequality, we may assume that there are large
numbers of potential active points within any specified orthant of either the
top or any of the sides of the box. It is a consequence of this latter fact that we
may build our infected region within a sufficiently deep slab of space-time.

If the block construction sketched above is linear only, then it is bound to
fail after some finite time and little of value will have been achieved. An extra
essential ingredient is that the construction may be progressively spread out in
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Fic. 2. With large probability, the disc D is joined to some point (y,L) X v such that (i)
(y, L) X 7 is joined to every point in a nearby translate of D and (ii) this translate is joined to every
point in some disc on the top of a cube based upon this translate.

such a way that it resembles a process in two dimensions rather than in one.
To achieve this, we exploit the fact that active points may be found (with large
probability) on either a given side of the box in question, or on the opposite
side.

With the aid of some rather tedious geometrical arguments, we shall deduce
that the infected region of the contact process contains a certain two-dimen-
sional discrete-time infection process not dissimilar to oriented percolation. If
the probability of success at each stage is sufficiently close to 1, then this
discrete-time process is supercritical, and therefore is unbounded with positive
probability.

This will prove that

P,(£? survivesin [—2L,2L]%"" x Z x [0,)) > 0.

That the corresponding inequality is valid with A replaced by A — & for some
6 > 0 follows from the fact that B is bounded. Any event E defined on the
interior of B is such that P,(E) is a continuous function of A. Hence, if the
P,-probability that B contains many paths of infection exceeds 1 — ¢, then so
does the corresponding P, _;-probability for some & > 0. Hence, if P(¢°
survives) > 0, then there exists 8 > 0 such that (3) is valid.

4. Proofs of (1) and (2). As outlined above, our first task will be to show
that a sufficiently large disc (called D below) is connected to many points on
various parts of the surface of a large space-time box. In order to give a precise
statement of this result, we introduce notation to specify space-time boxes and
orthants of their various faces and random variables to count the number of
points on parts of boxes to which D X 0 is connected.
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For L € N, define the following subsets of Z¢~!:
B, (L)y={xez% Y xj) <Lforl<i<d-1},
dBy_(L) = {x € B;,_{(L): Ix;| = L for some i},

and define subsets B (L) and dB,(L) of Z¢ similarly.

The space-time boxes mentioned above will be boxes of the form B,(I) X
[0, ¢] contained in Z¢ X [0,x). The top B,(I) X ¢ of such a space-time box is
itself a d-dimensional box and can therefore be partitioned into 2¢ orthants,
since each of the d spatial coordinates of a point in such a box can be either
positive or negative.

For u € {+1, — 1}¢, let & be the (open) orthant in R? determined by u.
That is,

P ={xeR%sgnx; =u},

and let & be the closure in R? of ;. We also use the notation £, and
&, later for similarly defined orthants in R?~'. Then B,(l) Xt may be
expressed as the union of the orthants [£* N B (D] X ¢.

There are 2d sides of the space-time box B (1) X [0, t], each corresponding
to the product of one of the faces of B,(!) with the time interval [0, ¢]. Writing
B = B (1), let F,*(B) be the face of B with outward normal te;, where e; is
the unit vector of Z¢ in the ith coordinate direction; that is to say

F*(B) = {x €dB: x; = +l}.

The sides of B,(l) X [0,¢] are the sets F,*(By(1)) X [0,¢]. Each side
F,=x[0,t] = F,*(B4(1)) x [0,] of B,(1) X [0,¢] may be divided into 2~ or-
thants. We require some extra notation for this. Let

O (i,1) ={xeR%:sgnx;=u;forj <i,x;=1,sgnx;=u;_, for j > i}

and write Z* (i, 1) for the closure in R? of this set. The orthants of F;*X[0, ¢]
are the sets [F,*n 4 (i, D] X [0, ¢].

We now choose the disc D; copies of D will be used to restart the process.
We write D, = {z € Z%: V i, |z;] < r} for the disc of Z? with radius r and
centre at the origin. Suppose P,(¢° survives) > 0. Fix ¢ > 0. By a standard
argument [see Liggett (1985), Theorem 1.10(d), page 267], there exists a disc
D = D, such that

(6) P,(¢P survives) > 1 — %82d+(2d)2d—1‘

Our reason for choosing the complicated exponent is simple. There is one
factor of ¢ for each of the 2¢ orthants of the top B,(l) X ¢ of the space-time
box B (1) x [0,¢] and one for each of the 2¢~* orthants of each of the 2d sides
F;£x[0, t] of the box.

We now introduce random variables to count the numbers of points on
various parts of a space-time box which are infected from D X 0. For [ € N,
t> 0 and u € {+1, — 1}¢, denote by N;(l,¢) the number of points in [£* N
B,(1)] X ¢ to which D X 0 is joined inside the interior of B (1) x [0,¢]. Note
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that N7'(1,t) counts the number of points in a certain orthant of the top of the
box B,(1) X [0, ¢]; the subscript T stands for top and is not a variable. Let

Ny(l,t) = Y NPl t).

ue{+1, —-1)¢

Note that Nyp(l,t) is a measure of the total number of points on the top
B4(1) X t of the space-time box B,(1) X [0, .

We now introduce notation to enable us to count the number of infected
points on the sides of the space-time box B (1) X [0, ¢]. Recall from the outline
of the proof that these points may be used in later attempts to generate
infected copies of D and that some fixed amount of time (A below) is required
for this. Choose h € (0,(1 +2dA)™!). For LeN, t>0, i=1,...,d, and
ue{+1, - 1}¢1 let Np+(1,t) denote the size of the maximal subset of the
orthant (F;*(B (1) N &2 (i, + 1)) X [0, t] of F,* determined by u having the
properties that (i) every pair of points in the set is separated by a distance (in
the L” norm on Z¢ X [0, »)) of at least & and (ii) D X 0 is connected inside the
interior of B (1) X [0,¢] to each point in the set (thus we count only points
which are at the endpoints of arrows from the interior of the box). Let

NFti(l’t) = Z Nﬁt(l,t)

ue{+1, —1)¢-1

and
Ng(l,t) = Zd: [ Nps(1,8) + Np-(1,1)] .
i=1

Note that Ng(l,t) is a measure of the total size of the union of certain sets of
points on the sides of the space-time box B,(I) X [0, ¢]; the S in the subscript
stands for side and is not a variable. Finally, if [ € N and ¢ > 0, let

N(1,t) = Np(1,t) + Ng(1,2).

With & in (0,(1 + 2d)A)™?) fixed, let « (> 0) be the minimum of (i) the
probability that 0 is connected inside D X [0, k] to every point in D X A and
(i) the probability that 0 is connected inside (D + re;) X [0, 2] to every point
in (D tre;))Xh. Let M be large enough to ensure that in M or more
independent trials of an experiment with success probability a, the probability
of obtaining at least one success exceeds 1 — &. Let N be large enough to
ensure that, in any subset of Z¢ or Z?~! having size N or larger, there are at
least M points all pairs of which are L*-distance at least 3r + 1 apart.

The first step in our construction will be to prove a lemma illustrated in
Figure 1. This corresponds closely to the main step of Barsky, Grimmett and
Newman (1989).

(7) LEMMA. There exist L in N and T > 0 such that, for every v in
{+1, — 1},

(8) P(NY(L,T)>N)>1-¢
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and foreach i = 1,...,d and u in {+1, — 1}¢71

(9) P(N2(L,T)2MN) 21 -¢.

Proor. Note that, for every ¢ > 0,
(10) P,(£P dies out | 12 < 2¢N) = (1 + 2dA) 2V,

It follows that P(¢P survives, |¢2] < 29N for arbitrarily large times ¢) = 0.
The justification for this is the usual one, proceeding roughly as follows.
Suppose that [£P2| < 29N for arbitrarily large values of ¢. At each random time
¢ at which |£P| drops below 29N, there is, by (10), a strictly positive probability
that ¢P dies out subsequently. By constructing an appropriate sequence of
stopping times and using the strong Markov property, one obtains that § D dies
out almost surely on the event in question. Together with (6), this implies that
there exists a positive number T'; so that

(11) P(Vt>T, Np(o,¢) > 2¢N) > 1 — 262",

From (11) it follows that, if ¢ > T, there exists /(¢) in N such that, if [ > I(2)
and s = ¢, then

(12) P(Np(1,s) = 2¢N) > 1 - &%

It is a consequence of (12) and the FKG inequality [see Harris (1960), Fortuin,
Kasteleyn, Ginibre (1971), Durrett (1988), Bezuidenhout and Grimmett (1989)
for statements and proofs of this inequality] that (8) holds for every v in
{+1, — 1}¢ when (L, T) is taken to equal (/, s). This argument is well known.
An argument of a similar type was used by Russo (1978) and Seymour and
Welsh (1978): by (12),

¢2 > P,(Np(1,s) < 2¢N)

> P,(Ny(l,s) <N forallv e {+1, - 1}¢)
(13) > I P(N7(l,s) <N)

ve{+1, —1)¢
= P(Ny(1,s) <N)*

for any fixed v € {+1, — 1}¢. This explains the term 2¢ in the exponent in (6).
Thus we have found arbitrarily large boxes so that, with large probability,
D X 0 is connected to many points in every orthant of the top of the box. We
require also that the probability that D X 0 is connected to lots of points in all
orthants of the sides be large. To achieve this, we need to work a little harder.
For [ fixed, I > I(¢), (12) cannot be true for every s > t, otherwise the contact
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process would survive forever with positive probability inside the one-dimen-
sional cylinder B (1) X [0, ). Let s(l, ) be the infimum of those values s > ¢
for which (12) fails. The left-hand side of (12) is a continuous function of s and
so, for t > T, I > I(2),

P(Np(1,s(1,8)) = 2N) =1 — £*

We note that it is only here that the discrete-time process (oriented percola-
tion) is harder to handle than the (continuous-time) contact process, since in
discrete time one cannot necessarily achieve equality in the relation above.
Instead, one finds the smallest height s for the top of the box with the
property that inequality (<) holds here, but with N replaced by KN, where K
is large enough to ensure that with large probability, at least N of the KN
points of infection on the top of the box with height s — 1 retain their
infection until the next instant of discrete time.

Construct a nested sequence of space-time boxes B, = B,(l,) X [0, s,] as
follows. Let I, = I(T)) and s; =s(l,,T,). Suppose k> 1 and suppose

“that B,,..., B, have been constructed. Choose T,,1=s,+1and [,,, >
(U,+DvV l(Tk+1) a Vb and a A b denote max{a, b} and min{a, b}, respec-
tively. Let s,,, = s(l,,, T}, ,)- Note that, for £ > 1,

(14) P(Np(ly,s,) =29N) =1 — &%
Let N, = N(l,,s;). We claim that there exists £, > 1 so that
(15) P(Vk=kg N, > 2N(dM + 1)) > 1 — g2+42°,
We defer the proof of (15) until the end of proof of the lemma. Note however
that, in spirit, (15) should be no harder to prove than was (11).
From (14), (15) and the FKG inequality, we have that if £ > %, then
e2+92° > P,(Np(ly, 8,) + Ng(1y,5,) < 2¢N(dM + 1))
> P,(Nr(ly,s,) < 22N and Ng(l,,s,) < d2°MN)
> P(Np(1,,s,) < 29N)P(Ng(ly,s,) < d2?MN)
= e2'P,(Ng(ly,s,) < d2°MN).
So, if & > &,
(16) P(Ns(l;,8,) = d2¢°MN) > 1 — 92

This is a variation on the argument given in (13). Let L = { ko and T =s; .
Then (8) and (9) follow from (14) and (16), respectively, as in (13)
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It remains to prove (15). To this end, we shall show that, for » €N, & > 1,
1 - 2dhA )

D .
(17) P,(¢? dies out | N, <v) > (————1 T odn

This, together with (6) and an argument similar to the one which one would
use to obtain (11) from (10), gives (15).

We prove (17) in essentially the same way as (10), with one major difference.
The sides of the box are unions of continuous intervals (whereas the top was a
subset of Z%), and furthermore we may count only points on the sides which
are a certain distance apart from each other.

In order to prove (17), note that infection may be prevented from leaving B,
by suitable dispositions of deaths on the sides of B, and along the time-lines
leaving B,. For any point x X s, on the top of B,, there is probability
(1 +2dA)"'> (1 — 2dhAX1 + 2dA)~?! that the earliest event on x X [s,,®) is
a death; such a death prevents the spread of infection upwards from x X s,.

, We turn next to the sides of B,. Suppose that the configuration inside
B,(,) x [0, s,], including crossings from (F;*(By(I,) F e;) X [0,s,] to
F*(By(1},) x[0,s,] for each j, has been constructed, but that deaths
on dB,(1,) X [0,s,] and arrows leading from 4B,(l;) X [0, s,] have yet to
be added; here, B denotes the interior of B. Let x € B ,(l,) and suppose for
concreteness that x € F*(B,(1,)). Let (x, py),...,(x, p,) with 0 < p; <p, <

- < p, < s, be the points on x X [0, s,] to which D X 0 is connected inside
the interior of the box B, (if there are no such points then there is nothing to
do).

We divide the points (x, p;) into groups {(x, p;), (x, Pi+1) - .o (x, pjk)} so
that (i) the distance p; — p;, between the highest and lowest point in each
group is no more than 4 and (ii) the distance p; — p; between the lowest
point of the (¢ + 1)th group and that of the kth group is larger than A (e,
each group is as big as it can be without violating (i)). In the following
estimate, we deal with the intervals between successive members of a single
group in one bite.

Let p,,,=s,and y;, =p,,, —p; fori=1,...,n. Let i; = 1. Let

J
j1=(n+1)/\min{j:ilsjsn, ZyT>h},

T=1,

where min @ = ». Suppose [ > 1 and suppose that i,,...,i; and j,...,J;
have been constructed. If j, < n, let i;,; =j, + 1 and

J
Jisr=(n+1) A min{j: L <Jj<n, Y y.> h}'

T=1l141

Otherwise, we set m = m(x) = [ and we terminate the process. The probabil-
ity that either there is no arrow leading away from x X (p;, p;,,) or that all
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such arrows are preceded by a death equals

1 2dA
+
1+2dr 1+ 2da
Therefore the probability that infection from B , 1s blocked by the line

x X [0, s,], given that the points described above are (x, p,),...,(x, p,), is at
least

—(1+2dA)y;

TT(1+2dA) 71 (1 + 2dre= A +2d0))
j=1

m Ji—1
>T1 {[ IT@@+2dr)71(1 + 2d/\e‘(1+2d")yf)](1 + 2d/\)_1}

=1 T=1;

m Ji—1
>(1+ 2d/\)_m l—[ (1 —2dA Z yT)
=1 T=1
1-2dha\"
( 1+ 2dX ) ’

since e™* > 1 —x and A < (1 + 2dA)~ L. Now, there is probability at least

1 — 2dhA \™® 1 = 2dh \ Nsrrsp)
-7 I e
xeaBd(lk)( 1+ 2dA ) - ( 1+ 2dA )

that infection cannot leak through the sides of B, to the outside world.
Inequality (17) now follows easily. This completes the proof of Lemma 7. O

The next step in the construction is to restart the process from one of the
points on the side of B, and the next lemma is the principal ingredient here; it
is illustrated in Figure 2. Note that the symbol 0 represents both the origin (in
Z and Z¢ and time) and the number zero, depending on the context.

(18) LeEmMA. Suppose P,(¢° survives) > 0 and & > 0. There exist
r>0, LeN, S>0 and 6 > 0 such that the following holds. For every
x € B;_(L) X 0, with P,_s-probability greater than 1 — ¢, there exists a
translate A + (D, X 0) of the disc D, X 0 such that

() AeB,_ (L) x[L,2L] X [8,28],
@ii) (x + D,) X 0 is connected inside B,;_,(2L) X [-L,3L] x [0,2S] to ev-
ery point in the disc A + (D, X 0).

Proor. Let r, D=D,, L and T be as in the discussion culminating in
Lemma 7 and let S = T + h, where & € (0,(1 + 2Ad) 1) is fixed as before.
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Suppose x € B,;_,(L) X 0 and choose u such that x € [B,_,(L) N & ,] X
0, where u € {+1, — 1}¢7! (if there is more than one such u, pick the one
which is maximal in some fixed ordering of {+ 1, — 1}¢~1). Then, by (9) (with u
replaced by —u and F;* chosen to be F) and translation invariance, with
probability at least 1 — ¢, (x + D) X 0 is connected inside (x + B (L)) X
[0,T] {cB,_2L) X [-L, L] X [0, T]} to at least NM points on
(x + [F}(B4(L) N (G7% X 0 + Ley)D x [0, T] any two of which are at least
distance k1 apart; such points lie on F;(B,(L)) X [0, T']. Either the projection
of this set onto x + [Fj (B4(L)) N (F;-% X 0 + Le,)] has size at least N or its
intersection with some time-line y X [0, T'] contains at least M points, any two
of which are at least distance 2 apart. In either case the choice of M and N
ensures that, with large probability, at least one of these points (y,#)
is connected in (y + re; + D) X [¢,¢ + k] to every point in (y + re; + D) X
(¢t + h). Let 7 be the smallest time ¢ for which (x + D) X 0 is connected inside
B, 2L) X[-L,L + 2r] x [0, ¢] to every point in some translate of D cen-
terd in (F; (B,4(L)) + rey) X ¢. Then, by the preceding discussion, with proba-
bility at least (1 — ¢)?, it is the case that r €[0,T + A]. If 7< », then
(x + D) X 0 is connected inside B, 2L) X[—-L,L + 2r] X [0,7] to every
point in a unique translate of D centred on (F;(B,(L)) + re;) X 7. Suppose
this translate of D is centred at (y,L + r) X r with y € &Y, n B,_(L),
where v € {+1, — 1}¥~! is maximal as before. Conditional on the o-field
generated by the process up to time 7, we have by the strong Markov property
and (8) that, with probability at least 1 — ¢, the disc [(y,L +r) + D] X 7
is connected inside [(y, L + r) + B,(L)] X [r, + T] {c B,;_,2L) X
[0,2L + r] X [0, T + 7]} to at least N points on

((w,L+71)+ [By(L) N &VY]) X (T + 1)
{cBy_(L) X[L,2L +r] X (T + 1)},

where (—v, 1) is the d-vector obtained from —v by appending 1 in the dth
coordinate.

Having found a set of N such points, we have from the definition of N that
there exists a subset S of size at least M of which each pair of members is at
least distance 3r + 1 apart. We partition S into two, S = S; U S,, depending
respectively on whether the dth coordinate of any given point is greater than
2L or not. With points z € S; we associate the cylinders (z — re; + D) X
[T+, T+ r+ h] and with points z € S, we associate (z + D) X
[T + +,T + 7 + h]. These cylinders are disjoint, and thus, with probability at
least 1 — ¢, there exists a point z € S which is joined within the correspond-
ing cylinder to every point on the top of this cylinder. On this event, D X 0 is
connected inside B,;_,(2L) X [-L,3L] X [0,2(T + k)] to every point in some
translate of D centred in B,;_(L) X [L,2L] X [T + h,2(T + h)].

The previous construction results in a point A = A, with the properties
claimed in the lemma. The construction has P,-probability at least 1 — 4¢ of
succeeding and we replace ¢ by £/5 to ensure that the probability of success
under P, is strictly greater than 1 — &. Since the event in question depends
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Fic. 3. The basic step is iterated k times. At each step the target region moves upwards and to the
right. The paths in question may lie in the outer region, but the intermediate discs are centred in
the shaded regions.

only on the configuration inside the finite space-time region B, _,(2L) X
[-L,3L] x [0,28], its probability depends continuously on A. There are only
finitely many choices for x € B;_,(L) X 0, so there exists a positive number §
so that the probability of success remains greater than 1 — & under P, _; for
every choice of x. O

The remainder of the proof consists of repeating this step many times in
order to build paths across large portions of space-time. There are various
ways of doing this, of which the following is one (see Figure 3).

(19) LEMMA.  Suppose P(¢° survives) > 0, € > 0, and assume the notation
of Lemma 18. Suppose k €N, x € B,_(L) X [-2L,2L] and t €(0,28S].
There exists, with P, _s-probability at least (1 — £)?*, a translate 11 + (D, X 0)
of the disc D, X 0 such that

() NeB,; (L)X (kL +[-2L,2L)) x (2kS + [0,2S)),
(1) (x + D,) X t is connected to every point in the disc II + (D, X 0) by
paths lying inside the region

(20) = U By_y(2L) x (JL + [~3L,4L]) x (28 + [0,481).

Jj=0

Proor. We show first that, if x € B,_,(L) X [-2L,2L] and ¢ € [0,28],
then, with P, _,-probability at least (1 — ¢)?, (x + D) X ¢ is connected to every
point of some translate of D centred in B,_,(L) X [-L,3L] X [28S,4S8] by
paths lying in B,;_(2L) X [-3L,4L] X [0,48] (see Figure 4). In doing this,



1478 C. BEZUIDENHOUT AND G. GRIMMETT

CLoLAS) : l (L3LAS)
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: Tl_\ 7 @aL2s)
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Fic. 4. Every disc centred in the lower box may be joined, with large probability, to every point in
some disc centred in the upper box.

Case (v)

Fic. 5. Illustrations of the five cases which arise in the proof of Lemma 19. The procedure to be
followed depends upon which of the heavily shaded regions contains the starting point x X t. The
lightly shaded regions are the target regions.

we shall make use of Lemma 18 and the strong Markov property. There are
five cases, depending on the position of the point x X ¢; these are illustrated in
Figure 5.

Case 1. Suppose x € B;_(L) X [-2L,L]and ¢t € [S,28S]. It follows from
Lemma 18 that, with P, _;-probability at least 1 — ¢, (x + D) X ¢ is connected
inside B,_{2L) X [-L + x4, 3L + x,;] X [¢t,2S + ¢] {c B,_2L) X
[-3L,4L] X [S,4S]} to every point in some translate of D centred in
By, (L)X [xy+L,xys+ 2L x[t+8,¢t+2S] {cB,;_(L)x[-L,3L] x
[2S,4S8].
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Case 2. Suppose x € B; (L) X [L,2L] and ¢ € [S,2S]. By Lemma 18
and symmetry, with P, _;-probability at least 1 — ¢, (x + D) X ¢ is connected
inside B, (2L) X [-8L + x4, L + x4] X [t,2S + t] {c B,_,2L) X
[-2L,3L] X [S,4S]} to every point in some translate of D centred in
By (L) X[-2L + x4 — L+ 241 x[t+8,¢t+2S] {cB,_(L)x[-L,L] X
[2S,4S8]).

Case 3. Suppose x € B;_ (L) X [-2L,0] and ¢ € [0, S]. By Lemma 18,
with P, _s-probability at least 1 — ¢, (x + D) X ¢ is connected inside
By 2L) X [-L + x4,3L + x4]1 X [¢,2S + ¢t] {c B,_,2L) x [-3L,3L] x
[0,3S]} to every point in some translate of D centred in B,_,(L) x
[xg +L,x; +2L1 X[t + S,¢t + 281 {cB,_(L) x[-L,2L] x [S,3S]). This
translate of D may lie outside the required target region. If the earliest such
translate is centred in B, (L) X [-L,2L] X [S,2S], then we repeat the
process, using whichever of cases (i) and (ii) is appropriate. The composite step
is successful with P, _,-probability at least (1 — ¢)2.

The other two cases are similar to case (iii) and the reader is referred to
Figure 5 for the geometrical details. This proves the claim made at the
beginning of the proof of the lemma.

One obtains the full result of the lemma by iterating this construction and
using the strong Markov property. O

Using the notation of Lemma 18, we define, for k € N,

RE*=By;_(2L) XV *,
where

28

Note that .7, given in (20), is contained inside the region #* and that #Z~ is
a reflection of #™.

We use the construction above to compare the original contact process with
a supercritical discrete-time process obtained from the configuration inside a
two-dimensional slab. Suppose P,(¢° survives) > 0 and n > 0; later we shall
take n to be small. Choose k2> 10 and &> 0 such that (1 — &)%* >
1 — m. With this value of ¢,let r, D =D_, L, S and T be as in the discussion
culminating in Lemmas 18 and 19. For x € B, (L) X [-2L,2L] and ¢ €
[0,28], let G*(x,¢) be the event that (x + D) X ¢ is connected inside the
region #Z* to every point in some translate of D centred in B,_(L) x
[(£k — 2)L,(+k + 2)L] X [2kS,2(k + 1)S]. By Lemma 19 and the choice of
g, uniformly for (x,¢) in B,;_(L) X [-2L,2L] x [0,28], it is the case that
P, _5(G*(x,t)) > 1 — 7. For sufficiently small values of 7, this fact alone may
be used to prove (3), as will be done in Lemma 21.

L L
Vi= {(xd,t) €EZXR:0<t<(2k+2)S, -5L + §§t5xds5Li ——t}.

(21) Lemma. If X is such that P(G*(x,t))>1—1n for every x €
B, (L) X[-2L,2L] and t €[0,2S] and 7 is sufficiently small, then

Py(£P survives inside B,_,(2L) X Z x [0,®)) > 0.



1480 C. BEZUIDENHOUT AND G. GRIMMETT

=2 —

=1 —»

=0 —»

A L S

p=4 p=-2 p=0 p=2 p=4

F16. 6. Part of the region % with the sets v, , indicated in black.

Proor. We construct a process in discrete time as follows. For p,q € Z
with ¢ > 0 and p + q even, let

Vp,q = (Ba—1(L) x [-2L,2L] x [0,2S]) + w(p, q),
where w(p, q) = pkLe,; X 2qkS and let
#Z= U {(27vz”) +w(p, )}

q=0
p+q even

The region % is illustrated in Figure 6.

We shall define random variables {E,(i) = (I,(i), P,(i)): n > 0, > 0}, where
I (i) may take the value 0 or 1 and P,(i) € Z¢ X [0, =); note that each P,(i)
will be undefined whenever the corresponding I,(i) equals 0. First we set
E,(0) = (1,0), where the second component is the origin of space-time and
I,(i) = 0 for i + 0. Having defined {E,(i): i > 0, n < N}, we define Ey_ (i) =
(In, 1), Py, (i) as follows. The random variable Iy_ (i) is the indicator
function of the event that for either j =i or j =i — 1, it is the case that
I,(j) =1 and some point in Py(j) + D is joined to every point in some
translate of D centred in v,;_y_; y.; by a path lying entirely within #. If
I, (i) =1, then Py, (i) is defined to be the centre of the earliest translate
(earliest in time) of D which is thus joined. We write 5, for the set of integers
i for which I (i) = 1. Note that if £, # & for all n, then ¢2 survives inside
B,_{2L) X Z X [0, ).

Let %, be the o-field generated by {E,: 0 < m < n}. We have, by the
strong Markov property and the hypothesis of the lemma, that

P(L,. (i) =11%) = P(I, (i) = 1/5,(), B,(i - 1)
> a(1,(i), L(i - 1),

where «(0,0) =0, a(0,1) = a(1,0) = a(1,1) = 1 — . The fact that 2 > 10
guarantees that two translates of #* or #~ by vectors w(p,,q,;) and
w(p,, q5) do not overlap whenever |p; — py| + lg; — g4l > 2. As a consequence
of this, conditional on #,, the random variables E, (i) and B, (i + k) are
dependent if and only if % equals 0 or + 1. Durrett [(1988), page 85] has used a
contour argument to show that the critical parameter value for a 1-dependent
oriented site percolation process is strictly less than 1; his argument is easily
adapted to show that I,(i) = 1 for infinitely many pairs (n, i) with positive
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probability, for all sufficiently small positive values of 1. Thus 2, # & for all
n with positive probability and the claim of the lemma follows.

The argument via 1-dependent processes may be avoided at the price of
some extra geometrical complication. In loose terms, this is achieved as
follows. When growing the discretized process from one renormalized site to
the next, we stop just short of the second site, so that we have no information
about whether or not this site may be reached from the other possible source.
We declare a renormalized site to be good if, having constructed all previous
generations, the construction may be continued through this site to translates
of D centred in designated regions close to both of the renormalized sites at
the next level. The corresponding site indicator functions are (conditionally)
independent and the result follows as before, by appealing now to standard
results for ordinary oriented site percolation. O

5. Remarks on Theorems 4 and 5. Conditions sufficient for (4) and (5)
are derived and discussed by Durrett and Griffeath (1982) and Durrett and
Schonmann (1987). Durrett and Griffeath (1982) have proved versions of (4)
and (5) by studying one-dimensional contact processes embedded in the d-
dimensional process; corresponding results for discrete-time processes have
been studied by Durrett and Schonmann (1987) using subprocesses embedded
in slabs. Their arguments are easily adapted to prove (4) and (5), but the
geometrical details are somewhat complicated to write out afresh and require
almost no new ideas. We therefore omit the proofs, confining ourselves to
making limited remarks.

To prove the complete convergence theorem, one follows Durrett and
Schonmann [(1987), page 111ff]. The principal requirement is their equation
(4) [which is the hypothesis in the lemma of Griffeath (1978)] and this may be
proved either in their way or by utilizing the following idea. The error
probability ¢ in Lemma 19 may be made sufficiently small that the intersection
of two independent copies of the discrete-time process constructed in its proof
is infinite with positive probability. Working forwards in time from the set A
and backwards in time from the set B (see the original for an explanation of
the notation), one uses the restart argument of Durrett and Schonmann
(1987) until both the corresponding discrete-time processes take off. If these
processes are defined in the correct way, then for large ¢, there is only small
probability that they do not reach many discs paired off in a natural way so
that each disc in the first process is close to the corresponding disc in the
second. With large probability, some such pair of these discs is joined and (4) of
Durrett and Schonmann (1987) follows (after some work).

To prove the shape theorem, one may follow Durrett and Griffeath [(1982),
page 545ff.], working in slabs rather than strictly one-dimensional subsets.
The only difficulty is in building chains of infection from the origin to a line of
the form x X [0, ¢] {c Z¢ X [0, »)}. One cannot be sure that infection within a
suitable thick slab will hit the line exactly, but only that it will pass the line at
a distance not exceeding the thickness of the slab. This problem may be
overcome by using the restart technique once again.
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