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SPECTRAL DECOMPOSITION FOR GENERALIZED
DOMAINS OF ATTRACTION

BY MARK M. MEERSCHAERT
Albion College

Regular variation is used to study the asymptotic behavior of norming
operators for generalized domains of attraction. This leads to a powerful
decomposition theorem. Applications include a complete, concise descrip-
tion of moment behavior, centering constants, convergence criteria and tail
behavior for generalized domains of attraction.

1. Introduction. Suppose that X, X,,... are independent random vec-
tors on R* with common distribution x and Y is a nondegenerate random
vector on R* with distribution v. If there exist linear operators A, on R* and
constants b, € R* such that

(1.1) A(X;+ - +X,)—-b,=7,

then we say that u belongs to the generalized domain of attraction of v and we
write u € GDOA(v). The class of all possible nondegenerate limit laws in (1.1)
is called the operator-stable laws.

In this paper we will apply regular variation techniques to investigate the
asymptotic behavior of the norming operators A, in (1.1). In Section 2 we set
the stage by deriving a decomposition result for the limit law » in (1.1). This is
called the spectral decomposition for operator-stable laws. We conclude Section
2 with a discussion of the open problem of characterizing operator-stable
exponents and symmetries. In Section 3 we analyze the asymptotic behavior of
(A, using regular variation. As a consequence we are able to state a result
which completely characterizes the absolute moments of any u € GDOA(v).
The spectral decomposition for operator-stable laws plays a key role in this
analysis. In Section 4 we apply the results of our regular variation analysis
from Section 3 to obtain a spectral decomposition for generalized domains of
attraction. This decomposition allows us to reduce the analysis of u € GDOA(»)
to the case where v has a particularly simple form. We say that v is spectrally
simple in reference to the results of Section 2.

In Section 5 we present several applications of the spectral decomposition
for generalized domains of attraction. A complete description of moments,
centering constants and tail behavior is obtained by combining the spectral
decomposition with previously known results. A similar approach yields a
concise set of necessary and sufficient conditions for u € GDOA(v) stated in
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876 M. M. MEERSCHAERT

terms of regular variation. Finally, in Section 6 we offer some concluding
remarks, along with suggestions for future research.

2. Operator-stable laws. Operator-stable laws were characterized by
Sharpe (1969). An operator-stable law » on a finite-dimensional real vector
space V is infinitely divisible with Lévy representation (a, @, #). Then we may
define the ¢-fold convolution product v as the infinitely divisible law with Lévy
representation (ta, tQ, t¢). For every operator-stable law » there is a linear
operator B on V called an exponent of v such that for all ¢ > 0,

(2.1) vt =tByx§(b,).

Here 8(a)is the unit massat a €V, th{dx} = v{t "B dx} and ¢ 2 = exp(B log t)
where exp(A) = (I + A + A%/2!+ ---) the exponential operator. Since v’ is a
linear translation of ¢Bv, we have tQ(x) = Q(¢8"x) and t¢{dx} = ¢ft 2 dx} by
equating the Lévy representations.

Let &(v) denote the set of exponents of v operator-stable. An operator-
stable law may have multiple exponents due to symmetry. Let .#(») denote
the symmetry group of ». A linear operator A on V belongs to ”(v) if »{A dx}
is a linear translation of v. It follows from Billingsley (1966) that .~(v) is a
compact subgroup of the group of invertible linear operators on V. (Recall from
the definition of operator-stable that v is full.) Exponents and symmetries of »
are related by

(2.2) &£(v) = B + TA(v),

where B € &(v) is arbitrary and T.#(v) is the tangent space of .#(v) at the
identity. Equation (2.2) is due to Holmes, Hudson and Mason (1982).

Choose B € &(v) and factor the minimal polynomial of B into fy(x)--
f(x) such that all roots of fi(x) have real part equal to a; and a; <a; for

i <j.Theset{a; ‘- a,} will be called the real spectrum of B Sharpe showed
that the real spectrum is contained in the interval [3,%). If we define V, =
Ker( f(B)), then V; ® --- @ V,, is a direct sum decomposition of V into

B-invariant subspaces. We wﬂl call this the spectral decomposition of V
relatlve to B. The idempotent operators P;: V — V with Im(P,) = V; satisfy
P+ - +P,=Iand P,P,=0if i #. Th1s is a special case of the primary
decomposltlon theorem of hnear algebra [see, e.g., Curtis (1974)]. Now define
v, = P,v (v; is a probability measure on V which is supported on the subspace
V) We will call (v, ..., v,,) the spectral decomposition of ». The restriction of
v; to the B-invariant subspace V. we will denote by 7;. Since (2.1) is necessary
and sufficient for v to be operator-stable, by prOJectlng onto V; we see that 7;
is also operator-stable with exponent B, obtained by restricting B, = P, B to
V The real spectrum of B, cons1sts of the single element a;. We wﬂl say that
v, is spectrally simple. If a; 1, then ¥, is normal and otherw1se (a;> 37 is
a nonnormal operator-stable law of an espec1ally simple type.
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LEmMmaA 2.1. V) --- V,, are A-invariant subspaces for every symmetry A €
L ).

Proor. The essence of the proof is that every symmetry must preserve the
tail behavior of » and the tail behavior of v is determined by the real spectrum
of B. If v is spectrally simple (m = 1), there is nothing to prove. Otherwise,
suppose that a; = 3 so that v, is normal and v, = (v,,...,7,,) has no normal
component. Since the (centered) normal and nonnormal components of in-
finitely divisible measures are uniquely determined, we get v; = Av; and
vy = Avy * 8(a) for any A € A(v). Since v, is full on V; and v, is full on
Vo=V,® - @&V, we obtain AV, =V, and AV, = V,. Hence it suffices to
prove the lemma in the case where v has no normal component.

Suppose then that » is strictly nonnormal operator-stable on V with Lévy
representation (a, 0, ¢). For x + 0, define

(2.3) g(x) = dly: Ka, | > 1).

Recall that t¢{dx} = ¢{t "2 dx}. Also since A is a symmetry of », we have
oldx} = p{A~1 dx}. It follows that tg(x) = g(¢%°x) and g(x) = g(A*x), where
* denotes the transpose. We refer the reader to Meerschaert (1990) for a
complete description of the orbit behavior of ¢2. Essentially we just write
down the real canonical form of B and compute the exponential #Z =
exp(B log ¢). Each V; in the spectral decomposition is associated with an
element a; of the real spectrum of B. Taking duals we obtain V* =
Ve - ® VY so that every x € V* can be written uniquely in the form
x=x,+ * +x,,, where x; € V;*. Define

a*(x) = min{a;: x; # 0},
B*(x) = max{a;: x; # 0}.

In Meerschaert (1990) we showed that R(¢) = [tB"x|| varies regularly with
index B*(x). Let #(r) denote the asymptotic inverse of R(¢) [cf. Seneta
(1976)], a regularly varying function with index 1/8*(x) such that R(#(r)) ~
t(R(r)) ~r as r —> ». Define 6, =#(r)?"(x/r) and note that g(x/r) =
g(0,)/t(r). Because |10,|| = R(¢(r))/r - 1 as r —» « the set {6,: r >r,} is a
relatively compact subset of V* — {0} for r, > 0 sufficiently large. Also, it is
shown in Meerschaert (1990) that g is bounded away from zero and infinity on
compact sets. Hence g(x/r) = O(1/¢(r)) so that g(x/r) - 0 as r - « at the
same rate as a regularly varying function with index —1/8*(x). Now it follows
from the fact that g(x) = g(A*x) that B*(x) = B*(A*x) for all x # 0.

Now let Sy(¢) = llt~2"x|| regularly varying with index —a*(x). Then S(¢) =
1/8,(¢) varies regularly with index a*(x). Let s denote the asymptotic inverse
of S(¢), regularly varying with index 1/a*(x). Now we have g(rx) = s(r)g(6,),
where 6, = s(r)"B’(rx) and so. g(rx) = O(s(r)), where the index of s depends
on a*(x). It follows that a*(x) = a*(A*x) for all x # 0. Since A* preserves
both a* and B*, we must have A*V* = V;* for all i = 1,..., m and this is
equivalent to AV, =V, for all i = 1,...,m. This concludes the proof of the

(2.4)
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lemma. Remark: It may be possible to simplify the above argument using a
different norm,

1
Ml = fo fs ( )ugthut-lH(dg) dt,

introduced by Jurek (1984). Here H denotes Haar measure on the symmetry
group ~(v). The advantage of using this norm is that the functions R, S are
monotone, so that we can take inverses instead of using asymptotic inverses.
The disadvantage is that we can no longer compute [|¢5"x||, which we used to
establish the regular variation of B and S. We have been unable to obtain a
similar growth condition using Jurek’s norm. O

THEOREM 2.2. Every exponent B € &(v) has the same real spectrum

{a, -+ a,,} and leads to the same spectral decomposition V=V, & -+ &V,
and v =(vq,...,v,).
Proor. Since {a, ‘- a,}and V, --- V,, characterize the tail behavior of

v (and g), they must be the same for every exponent B. In particular, «* and
B* cannot depend on B.

ProoF. Suppose Y is a random vector on V whose distribution v is
operator-stable. Apply the spectral decomposition and write Y; = P,Y, so that
Y =
Y, + -+ +Y,,. We have shown that any operator-stable random vector on V
can be written as a sum of spectrally simple components and this representa-
tion is unique. We also have the following characterization of the exponents
and symmetries of an operator-stable law. Recall that 7; is operator-stable on
V. so that &(;) and A(¥;) are collections of lmear operators on V. If
T1 - T, are linear operators onV, --- V,, respectively, we can deﬁne the
direct sumT=T,®---&T, as follows For any x € V let x; = P,x so that
x=x;+ " +x, and x; € V Now let Tx = Tyx, + -+ +T,x,, Moreover if
I, - 7, are collections of linear operators on V1 r Vm, respectively, we
will denote by 7; @ -+ & J,, the collection of all such direct sums.

COROLLARY 2.3. For v operator-stable, we have
Ew)cé(vy) ® - ®&(v,),

(2.5) A(v) c A7) & - & A(5,).

Proor. We have already shown that for every B.€ &(v), the linear opera-
tor B obtained by restricting B, = P;B to V, is an exponent of 7,. Since

V, .-+ V,, are B-invariant subspaces, we have B=B, ® --- @ B, In other
wdrds, every exponent of v can be expressed as a direct sum of exponents of
vyt . We have also shown that V, --- V,, are A-invariant subspaces for

every A e ./(V) which is to say that A commutes with each projection
operator P, --- P_. Hence Av; = AP,y = P, Av, which can differ from »; by at
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most a linear translation and so A is also a symmetry of »;. Call A; the
restriction of A; = P,A to V; and note that A; € #(y)and A=A, & -+ @
A,,. Thus every symmetry of v can be expressed as a direct sum of symmetries
of 5, -+ 7,. O

The problem of classifying the exponents and symmetries of an operator-

stable law is still open. The previous corollary allows us to restrict our

“attention to the case where v is spectrally simple, that is, the real spectrum of
B € £(v) has only one element a € [}, ©).

ExampLE 1. Suppose v is normal (¢ = 3) and let Y be a random vector on
V with distribution ». Since Y and Y — EY have the same exponents and
symmetries, we may assume without loss of generality that EY = 0. As in
Billingsley [(1979), page 336], construct a linear map P: V — V such that
X = PY has the standard normal distribution w. It is well known that .~(u) is
the orthogonal group on V and £(u) the skew-symmetric operators on V.
Since u = Pv, we have #(u) = P.”(w)P~! and &(u) = P&(v)P~!. Hence
both &(v) and #(v) are as large as possible.

Example 1 shows that the interesting cases are where v is nonnormal. If v
is nonnormal and every eigenvalue of B € &(v) has real part equal to a €
(3, ), then there exists a basis b, - - b, for V such that the matrix of B with
respect to this basis has block diagonal form. For each real eigenvalue (there
may be multiplicities) there is a block with a’s on the diagonal, 1’s along the

subdiagonal and zero entries elsewhere. To each complex conjugate pair

a + ib, there is a block with matrices (z ;b) on the diagonal, ((1) ‘1)) along the

subdiagonal and zero entries elsewhere. This is called the real canonical form
of B. See, for example, Hirsch and Smale (1974). Using the real canonical form
of B we can compute ¢,

For any invertible linear operator T, the operator-stable law Tv has
symmetry group T.”(v)T~ . If B € &(v), then tBv is a linear translation of
v' and so it has the same symmetries. Consideration of Lévy representations
shows that » and v* have the same symmetries. Therefore, .”(v) = t2./(v)t 8
for all £ > 0. The fact that .~ (») is compact means that ¢2.(v)t 2 is bounded
away from zero and infinity in the operator norm independent of ¢ > 0. This
fact can be used to compute .#(v) for certain cases of interest and then (2.2)
can be used to obtain £(v).

ExaMpLE 2. Suppose that v is nonnormal and B € &(v) has a real canoni-
cal form consisting of one block corresponding to the real eigenvalue a. In
other words, Bb, =ab, and V = (b,) the cyclic subspace containing b,.
Suppose A = (a,;) € /). Let. C = (c;;) = t?At2. Compute

i-1 k—j
(2.6) Cij = Z Z ai—p,j+q3p(_3)q/l7!q!,

p=0qg=0
where s =logt ranges over (—,»). Each c;; is a polynomial in s and
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compactness of #(v) requires that the coefficients of this polynomial with the
exception of the constant term a;; must equal zero. Considering the linear
term we see that a; ; ; —a; ;.; = 0 provided i # 1 and j +# k. This shows
that the elements down any left-to-right diagonal are all equal. Considering
the case i = 1, we obtain a; ;,; = 0 and so the matrix is lower triangular of
the form diag(a,;,as,...,a,;) With a,; down the diagonal, a,; down the
subdiagonal and so forth. Let C = (c;;) = A™. Compute cy; = nafy la,,. Since
Ab, = a,,b,, we must have |a,;| = 1 and so a, = 0. Repeat to show a5, = 0
and so forth. Then A = +1I, where I is the identity. Hence either ./ (v) = {I}
the trivial group or #(v) = {I, —I}. Since .#(v) is discrete, T”(v) is trivial
and there is only one exponent &(v) = { B}.

ExaMPLE 3. Suppose that v is nonnormal and B € &(v) has real canonical
form consisting of a single block of the second kind. A slight modification of
the argument used in Example 2 (now a,; and c;; are 2 X 2 matrices) yields
that A has repetitions of the same 2 X 2 matrix A, down the diagonal and
zeros elsewhere. The set of all such A, that is, the projection of . (») onto
the subspace V,, = Span{b,, b,}, is a compact subgroup of GL(V,). Therefore
~(v) is isomorphic to a compact subgroup of the orthogonal group on RZ. If
A (v) is discrete, then &(v) consists of the single exponent B. Otherwise .~ (v)
is isomorphic to the entire orthogonal group on R? and &(v) is one-dimen-
sional.

As far as we know, Billingsley (1966) was the first to consider the problem
of characterizing symmetry groups .#(u) for nondegenerate probability mea-
sures p on R* He pointed out that .#(u) must be conjugate to a closed
subgroup of the orthogonal group, but that not every subgroup could occur.
For example, on R? if every rotation is a symmetry, then so are reflections.

There is a body of literature on exponents and symmetries of operator-sta-
ble laws beginning with two papers by Hudson and Mason. The result on &(»)
for » normal (Example 1) appeared as Theorem 4 in Hudson and Mason
(1981a). The last assertion in Example 3 above follows from Theorem 1 and
Hudson and Mason (1981b), together with the fact that the projection of-v
onto V, is operator-stable. The paper by Holmes, Hudson and Mason (1982)
from which we obtained (2.2) also contains a complete characterization of &(v)
in the special case dimV = 3.

One final remark concerning the spectral decomposition v = (v4,...,v,,).
The following example due to J. A. Veeh (private communication) shows that
the spectrally simple components 7; --- 7, need not be independent and
furthermore the direct sum #(¥,) @ -+ & #(¥,,) may be strictly larger than
~#(v). Take B = ((1) g) on R? and let » be the operator-stable measure with

Lévy representation (0, 0, ), where for each r > 0, we have ¢{t? (i) t>r}=

1/r, p{tB (_11): t>r}=6/r, o{tB (_11): t>r}=3/r and o{t? (:i): t>r}
= 4/r. Then B is an exponent of », V; and V, are the coordinate axes and P,
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and P, are the corresponding orthogonal projections onto the axes. It is not
hard to see that .(v) consists of the identity only (since ¢ is full, v is too and
they have the same symmetry group). However 7, is symmetric stable and so
A(v,) = {1, —1}. Also v, and ¥, are not independent.

3. Moments. Suppose that u € GDOA(v) and (1.1) holds. Hudson, Veeh
and Weiner (1988) show that (1.1) implies the existence of some moments of u.
In particular there is a real constant a € (0, 2] depending only on v such that

(3.1) Sl dx}

exists for all p < @ and all u € GDOA(v). Furthermore for any p > «, there is
at least some u € GDOA(v) for which (3.1) diverges.
In this section we will consider the moments

(3.2) [, 85 u{dx)

for u € GDOA(») and 6 € R*. Of course, (3.1) exists if and only if (3.2) exists
for all 6. But it usually happens that the range of p > 0 for which (3.2) exists
depends on 0 and in this case our approach yields additional information.

Michaliéek (1972) showed that for any B € £(v) and any A > 0, we may
write A,,,A,' =A"8G,I,, where G, € #(v) and I, — I the identity in
GL(R*). Let us agree to write x,, > ./ to mean that the distance between the
point x, and the closed set . tends to zero as n — «. Then we have

(3.3) ApgAL > AT BA(v)

for all A > 0 and B € &(v). This is a regular variation condition on (A, ). By
* virtue of Corollary 2.3, we have that V, -+ V are (A 2A)-invariant sub-
spaces for all A € A~ (v).

We will also be concerned with the path behavior of the sequence ((A*)~1).
From (3.3) we obtain

(3:4) (Afa) A% = A2 ()%,

where ~(v)* = {A*: A € #(v)}. Certainly .”(v)* is also a compact subgroup
of GL(R*). Note also that V;* --- V* are (A\B’A*)-invariant subspaces for all
A >0 and all A* € A(v)*. For the remainder of this section we will be
examining the path behavior of ((A%*)~!) using the tools of multivariate
regular variation. All of our results could be restated for (A,) or any other
sequence of linear operators satisfying (3.3) and (2.5). In particular, see
Theorem 4.1 of the next section. .

THEOREM 3.1. Convergence in (3.4) is uniform on compact subsets of
A>'0.

Proor. The proof is a straightforward extension of Theorem 2.2 in Meer-
schaert (1988) using the compactness of ~(v)*. O
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Now we will state our main result in this section. Let us write A, = A;,; and
x, = (A¥) Ix.

THEOREM 3.2. For each i =1,...,n there is a subspace L* c R* such that

(@) dim(L}) = dim(Vi* ® -+ ® V*);

(b) if x € L%, then x,/|lx,|l = Vi* ® -+ & V*;
(©) ifx € LY, then x,/|lx,/l > V¥, ® --- ® V¥,
@ ifx € L%, then t*||x,/l > 0 forall p > a;
(e) if x & L%, then ¢t *|lx,/l » o forall p <a,;.,.

Proor. We will see that the subspace L¥ is in a certain sense the limit
of A¥(V¥ @ ---®V*)ast > Fix i and let V=V* & --- 0 V¥ V' =
Ve - ®V* U=RF-V. Choose p € (a;,a;,,) and let C, =¢P(A*) L,
Then

(3.5) C,Col - M7

uniformly on compact subsets of A > 0, where A = B* — pI and /= .A(v)*.

Now V, V' are A-invariant subspaces and in fact V is the direct sum of the
generalized eigenspaces of A whose eigenvalues have positive real part, while
V' is the direct sum of the generalized eigenspaces of A whose eigenvalues
have negative real part. Furthermore both V, V' are G-invariant subspaces for
every G € /.

The collection of linear operators {¢4: ¢ > 0} is simply a reparametrization of
a one-parameter subgroup of GL(R*). The path behavior of ¢4 can be obtained
easily by reference to standard results from the theory of liner differential
" equations in R* [see, e.g., Hirsch and Smale (1974)]. For example, we have that
lt4x|| = o uniformly on compact subsets of U and |[t4x|| = 0 uniformly on
compact subsets of V.

For any 0 < m < M < «, we have for any A, > 0 sufficiently large that

IA§Gxll = Mllxll, VxeV,
(3.6)
A§Gxll < mllxll, VxeV,

for all G € . Then given ¢ > 0, there exists ¢, > 0 such that V ¢ > ¢,, V
/\- € [1’ AO]’

3.7 min || C,,C;! — MGl < e.

(8 min || C, C, |

First suppose that y, € V andlet x = C; 1y, for some ¢ > ¢,. Define y, = Conex
and: write y, = r,60, + p,0,, where r,,p, € R* and 0,, 0, are unit vectors in

V, V', respectively. For n = 1,2,3,..., we have

(3.8) CuCiity, = X4G, + E,,
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where G, € . and ||E,| <e. Hence we have that y,., = A5G, (y,) +
En+1(yn) and so

rn+10n+1 = Aan+1(rn0n) + TriEn+1(yn)’

pn+10:t+1 = Aan+1(pn0;z) + W;En+1(yn)’

where m;, 7; are projections onto V, V', respectively. It follows that r,, ; >
Mr, — e(r, + p,) and p,,, < mp, + &(r, +p,). If M is large and m, ¢ are
small, then certainly r, — « which shows that |y,|| = . To show that
ICsxll > o as s — o write s = AXgz 3 A € [1, A,]. Then Cox = C),,Ciai(y,) =
MG(y,) + E(y,), where G, € / and | E || < ¢ for all large s. Hence ||C,x|| >
IAMG,y,|l — elly,ll = (d — &)lly,|l, where d = min{|[A\*Gol: 1 <A <A, G € 7,
l6ll = 1}. As long as ¢ < d, we are ensured that [|C,x|| —» © as s — .

Define V; = {r@ + p6": r/p > 8} for any 8 > 0, where as before r,p € R*
and 0, 0’ are unit vectors in V, V', respectively. Once again for M sufficiently
large and m, ¢ sufficiently small we obtain (by essentially the same argument
as before) that [|C,x|| - » as s » » whenever x = C;'(y,) for any y, € V;
and any ¢ > ¢, where ¢, =t,(8) is from (3.7). In other words, we have
IC,x]| = o as ¢ — = for all x € S, where

(3.10) s=U U (V).

8>0 £21,(5)

(3.9)

By letting M increase to infinity in (3.6), we see that C,x/||C,x|| = V for all
x € S. Furthermore, if x is any nonzero element of R* for which C,x/||C,x|| —
V, then C,x € V; for all large ¢ [in particular for ¢ > ¢,(8)] so that x € S.
Hence S is the set of all x # 0 for which C,x/|IC,x|| = V.
*  Define L¥ = R* — S. Then assertions (c) and (e) of the theorem are cer-
tainly satisfied. Next we will prove (b). Let x # 0 be in L¥ and as before write
C,x = r,0, + p,0;,. Suppose that limsup(r,/p,) > 0 as ¢ - . Then for some
6> 0 and some ¢, > », we have r, /p, > & for all n and in particular
C, x €V, for some ¢, to(ﬁ) But then x € § which is a contradiction and
this proves part (b).

By virtue of part (b), the set L¥ (including zero) is certainly a linear
subspace of R*. In order to prove part (d), all we need to do is go back to (3.9)
and use the fact that r,/p,, — 0. As for part (a) we certainly have dim(L?¥) <
dim(V") = k — dim(V) since C; 'V is contained in S for all ¢ sufficiently large.
The fact that dim(L¥) > dim(V’) will suffice to prove part (a). We will show
this by proving that for every y € V' every limit point of w, = C; 'y /IIC; 1yl
belongs to L}. Suppose not. Then for some ¢, > , we have w, — » & L} and
so w € Cy (VB) for some 8 > 0 and some ¢ > t0(6) It follows that w; €

C;%(V;) open for all large n. Since C, is linear, the convergence C,x/I||C,x|| - V
1s dutomatically uniform on compact subsets of S and hence we have
C,nw,n/IIC,"wtnll — V. This contradicts the fact that C,w,/|IC,w,l = y/llyll € V'
for all ¢£. Thus part (a) is established and we have completed the proof of
Theorem 3.2. O
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The following theorem extends the results of Hudson, Veeh and Weiner
(1988) discussed previously.

TueorREM 3.3. For any probability distribution p in the generalized do-
main of attraction of an operator-stable law v on R, there exists an zndex
function p(8) € (0, 2] defined for all  + 0 in R* such that

(3.11) [ KKz, 0> u{dx}

converges for all 0 <p < p(8) and if p(0) < 2, then (3.11) diverges for all
p > p(0).

Proor. Invoke Theorem 3.2 to obtain a nested sequence of subspaces
{0} =L%*¥c L% cL} -+ cL¥ = R* and define p(6) = 1/a; for § € LT — L}_,.
Now let Fy(r) = u{x: [{x,0)| < r} and define

U/(r,0) = [ °F,{dt),
(3.12) °
V,(r,6) =[ tPF,{dt}.

First, suppose that p(6) = 2, which means that (Y, 6) is univariate normal.
Without loss of generality, E{ X, 8) = 0 whenever it is finite. In this case an
application of the Schwarz inequality [as in Gnedenko and Kolmogorov (1968),
page 173] yields that U(r, 8)? = o(Uy(r,0)) as r — . Using the standard
convergence criteria for triangular arrays of random vectors, we obtain

- (3.13) n (x,8’u{A;'dx} > Q(8),
llcll<1
and this convergence is uniform on compact subsets of L{ — L.

For r > 0, define n(r) = max{n: [I(A%*)~1(6/r)ll < 1} so that n = n(r) - «
as r > », Let o, =(A*)"%0/r) and note that (w,) is relatively compact
where every limit point  lies in V¥ [so that @(w) > 0]. By (3.13), if w, > @
along a subsequence, then nr~2Uyr,0) » Q(w). If A >0, we also have
n(Ar)~2U,(Ar,8) - @(w/A) along the same subsequence. Since Q(w/A) =
A ~2Q(w), we conclude that

Uy(Ar,0
lim ——2( ) =1,
roo U2( r, 0)
that is, U,(r, 8) is slowly varying. As in the one variable case [see Feller (1971)]

this implies that (8.11) is finite for all p < 2.
N ow consider the case p(8) < 2 and recall that

(3.15) nu{A;" dx) > ¢{dx}

by the standard convergence criteria for triangular arrays. Define f(x) = u{y:
[{x,y> > 1} and g(x) = ¢{y: [{x,y>| > 1} and conclude from (3.15) that

(3.14)
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nf(A%*x) - g(x) uniformly on compact subsets of {x € R*: p(x) < 2}. Also
note that V(r, 8) = f(8/r). Define n(r) and o, as before. Once again, {w,) is
relatively compact but now every limit point lies in {w € R*: g(w) > 0}. If
, = o along a subsequence, then

FO/A) _ F(4A50,/0)  g(w/d)
fo/m " f(&e)  g(e)

If p(6) = 1/a;, then every limit point w lies in V;*. This and the fact that
tg(x) = g(t%°x) in general implies that for any B < p(8), we have g(w/A)/
g(w) < AP for all large A [see, for example, Meerschaert (1990)] so that we
have

(3.16)

Vo(Ar,0) -
Vo(r,0)

(3.17) B

for all A sufficiently large. It follows that (by increasing B slightly if necessary)
Vy(r,0) < r=# for all large r, all B < p(6). Now if p < p(6), integrate by parts
in (3.12) to obtain

(3.18) U(r,8) = —rVy(r,0) + forpt”_lVO(t,B) dt,

which is easily seen to remain bounded as r — « by taking B between p and
p(8) in the above inequality. Hence (8.11) converges for all 0 < p < p(6) in the
case p(0) < 2.

Finally suppose that p(8) < 2 and p > p(8). Argue as before that V(r, 8) >
r~P for large r for any B > p() and also note that for A, sufficiently large, we
have Vy(rA,, 8) < ()V,(r,0), for r sufficiently large. We wish to show that
V(r,8) = « for p > p(6). Choose r, large and let J, = [ryAG, roA5™ ). The
integral I, = [t"F,{dt} taken over J, is bounded below by (A%rq)?(3)V,(Xsr,, 6)
so by choosing B between p(0) and p, we see that %I, = « as desired.

This concludes the proof of Theorem 38.3. The index function p(8) which
appears in the statement of the theorem is related to the function B*(6)
defined in (2.4). See Section 5(b) for details. O

4. Spectral decomposition. Suppose that x € GDOA(v) and (1.1) holds.
In the presence of a large degree of symmetry in the limit, the norming
operators A, in (1.1) may exhibit wild behavior. For example suppose that u
is a mean zero finite covariance matrix probability distribution on R*. By the
central limit theorem, (1.1) holds with A, = n~'/2] and v centered Gaussian.
But (1.1) still holds for A, = n."'/2U, for any sequence of orthogonal transfor-
mations (U, ).

Convergence of types in R* was discussed in Billingsley (1966). If (1.1)
holds, we can also obtain convergence to the same limit law using the norming
operators S, A, for any sequence of symmetries S, € .#(v). Alternatively we
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can replace A, by any sequence of operators B, ~ A, (ie., B,A;' > I).
The fact that v is nondegenerate ensures that A, will be nonsingular for all
large n.

Let v = (v,,...,v,,) denote the spectral decomposition of the limit in (1.1).
Spectral decomposition for operator-stable laws was discussed in Section 2. As
before we will denote by ; the restriction of u, = P,u to V.. If P, and A,
commute in general (i.e., if V; -+ V, are A, -invariant subspaces for all n),
then u; € GDOA(,) for all i = 1,..., m. This reduces the analysis of u €
GDOA(v) to the case of a spectrally simple limit.

In general it is too much to expect that the norming sequence (A, ) in (1.1)
is as well-behaved as in the preceding paragraph. For example, suppose
T € GL(R*) and let u, = Tu. Then u, € GDOA(v) and in fact

(4.) B,y #3(b,) = v

with B, = A, T~'. We cannot decompose the sequence { B,,) as we did before.
All we can say is that there is another direct sum decomposition R* =
W, ® --- W, such that B,(W,)CV, for all i =1,...,m [take W, = T(V))].
The main theorem of this section (Theorem 4.2) says that this kind of a
decomposition result is always possible. In other words, for any u, € GDOA(v),
there is a sequence of norming operators { B,,) and a direct sum decomposition
Rt*=W,® --- @ W, such that (4.1) holds and B, (W) CV, for all i=
1,...,m. It follows that for any u, € GDOA(»), there exists T € GL(R*) such
that u = T"'u, decomposes into (uy,...,u,,), where &; € GDOA(®,) for all
i=1,...,m.

Meerschaert (1990) showed that the function R(¢) = ||t ~Bx|| varies regularly
with index (—a;) for all x € V, and furthermore that if we define a(x) =
minf{a;: P(x) # 0}, then R(¢) varies regularly with index —a(x) for all nonzero
x € R*. The regular variation condition (3.3) suggests that as ¢ — o, the linear
operators A, = A, behave like ¢~28, for some S, € #(v). Write ¢~28,x = 6,
with r, > 0 and [|6,]| = 1 (polar representation). If a(x) = a,, it is not hard to
see that 6, > V, and log(r,)/log ¢t - (—a;) as t > . In other words, ¢t 2S,x is
asymptotic to V; and tends to zero in norm faster than ¢~**° and slower than
t~%~¢ for any £ > 0.

The sequence of norming operators { A,) must indeed behave like ¢t ~2S, but
with one important difference: the set of x for which log(||A,x|)/logt — (—a;)
may not be the same. Returning to the example, grant for the moment that
logllA,xll/log t = (—a;) for x € V,. The correct norming operators for u, = T
are B, =A,T! We still have B, B;!=A, A;! > A" 5/(), but now
logl| B,xll/log ¢t = (—a;) on the set W, = T(V)). .

THEOREM 4.1. Suppose v is operator-stable on R* with real spectrum
{a, - a,} and R*=V, & --- @V, is the spectral decomposition with re-
spect to v. For any u € GDOA(v), there exists a nested sequence of linear
subspaces R* =L, >L,> -+ DL, with dim(L;,) =dim(V,® --- & V,)
such that if (A,) is any sequence of norming operators in (1.1), then for all
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xe€lL;,-L,;,,, we have
(4.2a) A x /A xll -V,
(4.2b) logllA,xll/log n = (—a,).

The proof is very similar to Theorem 3.2 and will be left to the reader.
Notice that (4.2b) is equivalent to the condition that ¢*||A,x|| - 0 for all
p <a; and t°||A,x|| = « for all p > a;. Suppose u € GDOA(v). We will say
that u is spectrally compatible with » if there is a sequence of norming
transformations (A, ) such that (1.1) holds and V; --- V,, are A, -invariant
subspaces for all n. In this case we must have g, € GDOA(7,) for all i =
1,...,m.

THEOREM 4.2 (Spectral decomposition theorem). For any u, € GDOA(v),
there exists a linear operator T such that u = T~ 'u, is spectrally compatible
with v. Equivalently, u, is spectrally compatible with Tv.

Proor. Apply Theorem 4.1 and choose T € GL(R*) so that L; =
T(V,;® ---@V,)foralli=1,...,m. Let W, = T(V,) so that V, = T-YW,). If
(A,) is a sequence of norming operators for u,, let us define B,x = P,A, x
for x € W,. Extend by linearity to define B,x for all x € R*. If x € W,, then
B,x€V, and so B, (W) cV, for all i. It follows that B,(W,) =V, and
B, (V) =W,

Now suppose x is a unit vector in V; and let y, = B} x/||B; x|. Conver-
gence in (4.2a) is uniform on compact subsets of W, and it follows that for
all i,

A0 B 6
4.8i - - " 5,
(4.3) Aol B.ol
s 4.0
011 —->
) iBol

uniformly on compact subsets of § € W,. It follows easily that A,B;'x =
A,y,/IIB,y,|ll = x for every unit vector in V;. By linearity, we have A, ~ B,
G.e., |A,B;! — I|l - 0) which shows that (B,,) is another suitable sequence
of norming operators for w,. In other words, (4.1) holds. Letting u = T~ 'u,,
we certainly have B,Tu" * 8(b,) = v. Since T(V,) = W, and B, (W;) = V;, each
of V; --- V, are (B,T)-invariant for all n. This shows that u is spectrally
compatible with v. On the other hand, TB,u} * 6(Tb,) = Tv and W, --- W,
are (TB,)-invariant. Since W, = T(V,), this must he the unique spectral de-
composition relative to T'v and so u, is spectrally compatible with T'v. O

“ We remark that in the proof of Theorem 4.2, we can arrange that W, -+ W,
are mutually orthogonal. Simply let W,, = L,, and then for each i = m, m —
1,...,2, take W;_; to be the orthogonal complement of W, in L,_;. Then the
spectral decomposition u, = (u, ..., ,,) is uniquely determined. The spectral
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decomposition for generalized domains of attraction is useful because it allows
us to reduce to the case of a spectrally simple limit in (1.1). The next section
contains several applications.

5. Applications. Suppose that u, belongs to the generalized domain of
attraction of v operator-stable on R* and that (1.1) holds. Apply the spectral
decomposition to obtain T' € GL(R*) such that u = T 'u, is spectrally com-
patible with v. Let {a; - a,) denote the real spectrum of any exponent
Be &), V,® --- @V, the spectral decomposition of R* relative to B and
P, --- P, the associated projections. Writing u; = P;u and v; = P,v, we have
w=_y...,pnn) and v = (vy,...,v,,). If m;, 7; denote the restriction of u;, v;,
respectively, to the linear subspace V;, then we have u; € GDOA(,) for all
i=1,...,m.

A. Operator-stable laws. If a; = 3, then v, is nondegenerate normal on V,
and otherwise ¥; is a nondegenerate operator-stable law on V, having no
normal component. In Meerschaert (1990) we describe the moments and tail
behavior of probability distributions which belong to the domain of normal
attraction of some operator-stable law. This is a special case of (1.1) with
A, =n"B. Since every operator-stable law belongs to its own domain of
normal attraction, we can specialize those results to the case of v; nonnormal.
The tails of 7; are of the same order as a regularly varying function with index
(—1/a,). Related to this is the fact that [|lx||’7,{dx} < » for all p < 1/a; and
[Kx,8)Pv{dx} = wforall p > 1/a; and all § # 0in V,. In terms of v, we have
that [|(x,0)’v{dx} < » if and only if either B*(6) = 3 or B*(9) > 3 and

p < 1/B*(8), where B*(0) is as in (2.4).

B. Moments. If u € GDOA(»), then without loss of generality, u is spec-
trally compatible with ». Recall that @, and a,, are, respectively, the smallest
and largest elements of the real spectrum of any B € &(v). Hudson, Veeh and
Weiner (1988) showed that [|lx(|?u{dx} <  for all p < 1/a,, and Meerschaert
(1986b) showed that in the case where » has no normal component (a; > 3)
we have [|(x, 8)/’u{dx} = « for all § + 0 and all p > 1/a,. Apply the spectral
decomposition to obtain an alternative proof of Theorem 3.3. In this case
p(0) = 1/B*(8), where B* was defined in (2.4), and LY = Vi* & --- @ V*.

C. Centering. Meerschaert (1986b) contains the following characterization
of the centering constants b, in (1.1). If @, > 1, then  we may take b, = 0 for
all n. If a@,, <1, then we may center to zero expectation. By applying these
results to &, ' ** &,,, we see that as long as a; # 1 for all 7, the only centering
required in (1.1) is to center to zero expectation for the components with
a; < 1. These are exactly the components for which the expectation exists. For
the case a; = 1, the form of the centering constant is given by Rvaceva (1962)
as the truncated mean.
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D. Convergence criteria. Hahn and Klass (1980) showed that a mean zero
probability measure u on R* belongs to the generalized domain of attraction of
a normal law if and only if the trimmed second moment M(¢, 0) = [{x, 0)2 A

2u{dx} is slowly varying uniformly on the unit sphere S = {# € R*: ||0] = 1}.
In other words, M(A¢,0,)/M(¢,0,) = 1 as ¢t = « for all A > 0 and any 6, € S.
As we pointed out in Application C, the assumption that [xu{dx} = 0 entails
no loss of generality. Meerschaert (1986a) showed that u belongs to the
generalized domain of attraction of some operator-stable law » on R* having
no normal component if and only if u satisfies the regular variation condition
nu{A;! dx} > ¢{dx} for some ||A,|| - 0, where ¢ is the Lévy measure of ».
In this case we say that u is RV(B), where B is an exponent of v.

In the general case, u belongs to some generalized domain of attraction if
and only if there exist mutually orthogonal subspaces W,, W, with R* = W, @
W, and, writing &, for the restriction of u; to W;, we have that u; belongs to
the generalized domain of attraction of some normal law on W, and &, belongs
to the generalized domain of attraction of some operator-stable law on W,
having no normal component. In other words, the trimmed second moment of
&, is slowly varying uniformly on the unit sphere in W, (after centering to zero
expectation) and i, is RV(B) for some linear operator B, whose real spectrum
is contained in the interval (3, «). The subspace W, can be characterized by the
fact that [|{x, 0)°u{dx} exists for all p < 2 if and only if § € W,. The reverse
implication that x; € GDOA(y,) for i = 1,2 implies p € GDOA(v) was con-
tained in Meerschaert (1986b). In that paper we also presented an alternative
regular variation criterion for attraction to a normal law. For » normal with
Lévy measure (a, @, 0), we have u € GDOA(v) if and only if (after centering to
zero expectation) there exists ||A,|l = 0 such that nF(A* x) — Q(x) for all x,
where F(x) = [{x,yY’I({x,y)| < Du{dy}.

E. Tails. Let U, V, denote the truncated moment functions defined in
(8.12). If u belongs to the generalized domain of attraction of a normal law,
then U,(¢,0) ~ M(¢,6) as t — « and so Uy(¢,0) is slowly varying. Here M
is the trimmed second moment of p defined in Application D. It follows
using Feller [(1971), page 283] that U(t,0)/t?"2U,(¢,0) - 0 for all p > 2
and that ¢27°V,(¢,0)/Uy(t,6) — 0 for all O < p < 2. In particular, V,(t,0) =
ulx: [{x,6) > t} — 0 at least as fast as 2.

Suppose now that u € GDOA(v), where v is purely nonnormal. Recall that
a,, a,, are, respectively, the smallest and largest elements of the real spectrum
of any B € £(v). Meerschaert (1986b) showed that for all p > 1/a,, we have
U/(t,0) R-O varying with Uy(¢,6)/t° — 0 for all 6 >p — 1/a,. For all p <
l/am, we have V (¢,6) R-O varymgw1th V(t,0)/t> > wforall 5 <p — 1/a,,.
For a discussion of R-0 variation, see Seneta (1976). Without loss of general-
ity, u is spectrally compatible with ». By applying these results to each
component in the spectral decomposition, we obtain

(5.1) log V,(t,8) /log ¢ = p — p(6)
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for all p < p(6) and
(5.2) log U(#, 6) /log ¢ > p — p(9)

for all p > p(#). In particular, we have log u{x: [{x,0)| > t}/logt — —p(6) as
¢t - «. In other words, the tails of &, tend to zero about as fast as ¢/,

F. Norming operators. Suppose that u, € GDOA(v) and apply Theorem
4.2 to obtain T € GL(R*) such that u = T~ 'u, is spectrally compatible with
v. Then u, is spectrally compatible with T'v and as we remarked at the end of
Section 4, we may choose W, - -+ W, to be mutually orthogonal. If B € &(»),
then TBT ! € &(Tv) and W, & --- & W,, is the unique spectral decomposi-
tion of R* relative to TBT !. Each W, --- W,, is TB,-invariant for all

n=1,23,..., where (B, ) is the sequence of norming operators constructed
in the proof of Theorem 4.2. Select an orthonormal basis {e;, - - e,} for R*
such that W, = Spanfe, --- e,},..., W, =Span{e, ., -** €). Naturally,

dim(W,) = &, and dim(W,) = k; — k;_, for i = 2,..., m. The matrix for TB,
with respect to {e,...e,} has a block-diagonal form with blocks of size %,
(ky — ky),...,(k,, — k,_y). Recall that (TB,) is a suitable sequence of norm-
ing operators for u, € GDOA(Tv). Also B, T = T-YTB,)T yields norming
operators for 4 € GDOA(v) and these operators have a block-diagonal matrix
form with respect to the basis {T'e, -+ T le,}. The crucial point here is
that each element in the sequence of norming operators has the same block-
diagonal form.

6. Remarks. The spectral decomposition allows us to reduce the analysis
of operator-stable laws and generalized domains of attraction to the case of a
spectrally simple limit. Spectrally simple operator-stable laws are analogous to
‘one-dimensional stable laws. They have the same moments and essentially the
same tail behavior. (The real spectrum {a} of a spectrally simple operator-sta-
ble law and the characteristic exponent a of the analogous one-dimensional
stable law are related by @ = 1/a.)

One-dimensional domains of attraction are characterized by tail behavior. If
a probability distribution u on R! is attracted to a normal law, then V(¢) = u{x:
lx| > t} = 0 faster than ¢ for any p < 2. If u is attracted to a nonnormal
stable law with characteristic exponent a € (0, 2), then V,(¢) — 0 about as fast
as t~* and in fact V|, varies regularly with index (—a).

Generalized domains of attraction are also characterized by tail behavior. If
a probability distribution x on R* belongs to some nonnormal generalized
domain of attraction, then Vi (¢, 0) = u(x: [{x, 0| > ¢t} — 0 about as fast as t™*
for some a € (0,2) and if u is attracted to a normal limit, then Vi (¢,60) — 0
faster than ¢=* for any a € (0,2). In the case of an operator-stable limit
having both normal and nonnormal components, one of these two tail condi-
tions” must hold for all 8 # 0. Unlike the one variable case, the tails of
u € GDOA(v) with v nonnormal need not vary regularly. In fact, see Meer-
schaert (1990) for an example of a nonnormal operator-stable law whose tails
do not vary regularly.
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The first set of necessary and sufficient conditions for u € GDOA(») was
given by Rvadeva around 1950, actually in the more general case of triangular
arrays. Another set of necessary and sufficient conditions appeared in Hahn
and Klass (1985) emphasizing the construction of a suitable sequence of
norming operators. Theorem 4.1 and the discussion in Application F represent
new information about these norming operators. We are currently investigat-
ing the extent to which a combination of these methods can further our
understanding of the complex behavior which the operators A, in (1.1) are
known to exhibit.

Beyond the results of Section 3 concerning moments of u € GDOA(») lies
the question of existence and convergence of the so-called pseudomoments

(6.1) [ ulw: 167272l = 1) de
0

introduced in Weiner (1987). Existence and convergence results for u in the
domain of normal attraction of v [A, = n™2 in (1.1)] were established in that
paper. We are also investigating the application of the spectral decomposition
to pseudomoments.

Finally, we remark that, in the course of research into generalized domains
of attraction on R*, we are seeing the emergence of a new multivariable
analogue to the theory of regular variation [see, e.g., Meerschaert (1988)]. The
one variable theory of regular variation was used by Feller (1971) to obtain an
elegant treatment of domains of attraction and subsequently found numerous
applications both in probability theory and elsewhere. It is not hard to imagine
that our multivariate regular variation techniques will find applications in
other contexts as well.
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