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In ‘this paper we study the transition density P,(x, y) of a nondegener-
ate diffusion process by using the stochastic control method invented by
Fleming and the idea of stochastic parallel translation. We obtain a two-
sided estimate for P(x,y) as well as some bounds for the derivatives of

log P(x, y).

1. Introduction. Let X(-) be the diffusion Markov process on R? with
the generator L:

Lf(x) = 5 © ay(x) 22 ([, + Ty D)

for fe CAR?), the space of functions on R? with compact support which is
continuous up to second-order derivatives. Here the summation is taken over
i,j=1,...,d. This convention will be used throughout the paper. In many
places we also omit ¥ if no confusion arises. Here we assume (A):

(AD) a,;(+), b,(-) are bounded.

(A2) (a (x)) is symmetric and (a;;(x)) = ¢yl  for all x € R?. ¢, is some
positive constant and 1, ixq 18 the d X d identity matrix.

(A3) a,;(+), b,(+) are of Holder B for some B, 0 <8 < 1.

The existence of a diffusion Markov process x(-) was proved in [16]. Moreover,
x(+) is strongly Markovian and has a transition density P,(x, y) (see [8]). In this
paper, we give some estimates for P,(x,y) which include a lower and upper
bound for P,(x,y) and bounds for the derivatives of log P(x, y) if a,;(-), b,(-)
are assumed to be smooth.

As we know, P,(x,y) is the fundamental solution of the parabolic equation

(1.1) ;—tf(t,x) = Lf(¢t,x), t>0,x <R,

£(0,2) = fo(x).
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In the theory of partial differential equations, the following properties of
P(x, y) were derived by using the method of parametrix under our assumption
(A):

ly —xlz)

P(x,y) SKlt_d/ZeXP(_cl ;

ly — xI?
P

(1.2) P(x,y) > Kyt=9/2 exp( —cy

ly — x|?
t b

— Kyt~ @-»/2 exp( —cg

where K, K,, K, cy, ¢y, c3 and A are positive constants.

ly — x?
(1.3) |ID]"P,(x,y)l < K, t~@*ImD/2 exp(—c1 i ,  Iml <2,
where m = (my,...,my), Im|l =m, + -+ +my, t >0, x,y € R?,
I™If(x)
m —
DEF() = st

See [8], page 229. If a, (), b,(+) are smooth, then (1.3) stil! holds for large |m)|.
On the other hand, the following result was obtained in [1] by using a quite
different argument if L has divergence form

1 7} 7 7
L=2X% a—%aij(x)a_xj + 2 bj(x)gj
and satisfies the conditions (A1) and (A2):
. e ly — «l? e ly — «l?
(1.4) Kyt 9?exp|—c, < Py(x,y) <K;t7??exp| —c, p .

See also [12], [13] and [15].

One can also use probabilistic arguments to study P(x, y). In [11], Malliavin
calculus was applied quite successfully to this problem, where an estimate of
type (1.4) was discussed even for diffusions which allow degeneracy of (a, ;(x)).
The basic idea in this approach is to consider x(¢) as a “smooth” functional of
Brownian motion (Wiener process) B(-). Since we need the smoothness of
a;;(+) and b;(-) to prove that x(-) is a smooth functional, this approach is not
applicable if we do not assume a; (), 5,(*) to be smooth.

- Here we propose another approach. The basic ingredient is the idea of
Fleming’s logarithmic transformation. That is, we consider J(x,y) =
—log P(x,y). If we fix ¥ and consider this as a function of (¢, x), we find
that J satisfies a nonlinear equation which turns out to be the dynamic
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programming equation of a stochastic control problem, that is,

ddy(x,) _ 1 32J( ,y) aJ(x y)

T =35 Z lj( ) Z b; ( ) J
(1.5) : 1 aJt(x,y) 9 (%,y)

3 L () 5 ox,
= inlgd [Lid,(x,y) + k(x,u)].
Here
9% d
Luf(x) = _E lj( )axf(ax) Z uj;gf.’

(1.6)

1
k(x,u) = 3 Y gii(x)(b(x) — u;)(b;(x) — uj),
(8:(x)) = (ai;(x)) ™
We expect that J,(x,y) is equal to
(1.7) int B[ [Th(n(0), u(2)) di + Jy(n(T), )]

Here u € % is a measurable function: [0, T'] X R? = R? such that
dn(t) = u(t,n(t))dt + o(n(t)) dB(t), n(0)=x
has a weak solution and

E[fOTIu(t)lzdt] <o, u(t) =u(t,n(?)),

o(+) = square root of (a;;(*)) = a(*).

See [6]. Then a lower and upper estimate of J5(x,y) [hence of P,(x,y)] may
be derived by choosing a suitable u € %. We observe that there is difficulty
using this approach due to the fact that J,(n, ¥) is not well behaved. See [7]. In
order to justify this approach we need to use the penalty argument. See [4]. In

[14], this idea was used to get the following result.

THEOREM A. If we assume condition (A), then there are c((-), c,(*), ky(+),

ky(+) > 0 such that

1\ A
(\/27TT ) Ydeta(y) kz(T)eXp(—cz(T)I(T, x,¥))

(1.8) < Prp(x,y)

1\ 1
= (\/27TT) Ydet a(y) — ky(T)exp(—c(T)I(T, x,y)),
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where c,(+), k,(+), i = 1,2, are bounded above and bounded below away from 0
on bounded intervals. They depend only on the bounds and Hélder constants of
a;;(+),b,(-) as well as ¢, in (A2). I(T, x, y) is given by

KT, 25) = ntl [T, (8(1)($(1) -~ b(6(2),
(1.9) .
X(8(0) = B(8(2))), dti 6(0) =3, 6(T) = ).

COROLLARY A. Let x°(-) be the diffusion process generated by L°:

*f(x) If(x)
9x; 0%, * L b(%)

We assume that condition (A) holds and (3/3x)b;(+), i,j =1,...,d, are of
Hélder B. Denote Pf(x,y) to be the transition density of x°(-). Then there are
c,(*), k;(*) as in Theorem A, such that

1 d
|| Ba(Tyesp| —eum)

1 d
< Prp(x,y) < (m) kl(T)eXP(—Cl(T)

The proof of these results was carried out in [14]. For the convenience of the
reader, we will sketch the main idea in Section 3. '

At first glance, it seems difficult to estimate D" log P(x, y) since we are
asked to estimate D"P,(x, y)/P,(x,y) instead of D*P(x,y) as was done in the
literature. However, our approach to attack the problem is quite straightfor-
ward. For example, in order to estimate (9/dx;)log P(x,y), we differentiate
(1.5), with respect to x, to get

Lf(x) = %Z a;;(x) f € C3(R).

)
axj

I(T,x,y) )

(1.10) (T, %.9)

ad 1
~D,J,(%,3) = 5 L a;;(x)D;D;D,J(#.7)

+ 2 (b(x) — a(x) V(x,)),;D;D,J(x,5)
+ H (¢, x).
Here VJ,(x, y) is the gradient of J,(x,y) as a function of x and, for fixed y,

(1.11)

(2)D; D;d (x,y)

ij

H. (t,x) = % Y D,a
(1.12) + Y. D,b;(x)D,d,(%,)

1
=5 L Daa; (%) Did(x,5) D;di(%,3).

That is, we see D, J(x,y), as a function of (¢,x), is a solution of the
inhomogeneous parabolic equation (1.11). A difficulty arises since H, depends
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on the first and the second derivatives of J,(x, y). However, quite remarkably,
this difficulty will be removed when we perform covariant differentiation along
the stochastic curve £(-) solving the SDE
dé(t) = u*(t,£(¢)) dt + a(&(t)) dB(2),

§(0) =X,

if we consider R? as a curved manifold with Riemannian metric g, ; dx;, dx;.
Here

(1.14) u*(t,x) =b(x) —a(x)Vdp_,(x,¥)

(1.13)

is the optimal control for the stochastic control problem (1.7). The process £(-)
is in fact the process x(:) conditioned by x(0) = x, x(T') = y. This argument
leads to an expression for D;J,(x, y) which is similar to the one obtained by
Bismut (see [2], Theorem 2.14). Now we state our main result whose proof is
given in Section 5.

THEOREM B. Assume (A) and a,;(-), b;(-) € C;(R?). Then we have
1 1/2
(1.15) |D; log Pr(x,y)l SCW(I(T,x,y) +1)77,

ID;" log Pr(x, )l

(1.16) Im1 /2
SC(?) (I(T,x,y) + 1)1*E&2mI=2 ) > 9,

" This implies

Iml|/2
DrPr(ey) <e(g]  (H(Tw9) + DO 2p ()

for |m| > 2 and in turn implies the classical estimation (1.3) for the deriva-
tives of Pp(x,y) from Theorem A.

We now give the notation which will be used in the rest of this paper.

Throughout the rest of this paper ¥ will be omitted unless there arises
confusion, for example, a,;u,u; means Y a,;u,u;.

C,(R%) is the space of bounded continuous functions from R to R.

C7(R?) is the space of bounded smooth functions'from R? to R whose
derivatives are in C,(R9).

For fe C, R, || fIl = sup,|f(x). If f is of Holder B, we denote || fllgz =
I+ sup, ., If(x) — f(y)l/lx — yl’. D™f(x) = D™ --- DPif(x) if m =
(my,...,mg). Here D, f(x)=/dx)f(x). Vf(x)=(D,f(x),...,D;f(x)).
Iml=m;+ - +mgzif m =(my,...,my), m;, i =1,...,d, are nonnegative
integers.
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For x € R?, o(x) = (g, ;(x)) is a positive definite matrix which is the square
root of a(x) = (a;;(x)). o(*) is of Hélder B if we assume (A) (see [9], volume 1,
page 128).

(8:;(%)) =a(x) ™,
Fil;‘(x) = %a’ks(x)(ngsi + D;g,; — D,g;;)(%).

For ¢:[0,T] - R¢ with each component being absolutely continuous, I;(¢) =
TR(o(), p() dt. I(T, x,y) = inf{I;(¢); #(0) = x, (T) = y}. Here k(-, ) is
given in (1.6).

7., = family of u: [0,T] X R? > R? being measurable
such that

dn(t) = u(t,m(t)) dt + o(n()) dB(2),
n(0) = x,
has a weak solution 7(-) which satisfies

E[j;TIu(t,n(t))Izdt <o,

with B(¢) = (B4(¢),..., B,(¢)) d-dim Brownian motion.
[Fu(s)dB(s) is the Itd integral and [Ju(s)edB(s) is the Stratonovich
integral (see [10]).

2. Logarithmic transformation. Assume (A). Then for a function f &
C,(R?) of Hélder B, the function

f(t,2) = [Px,5) f(y) dy = E,[ f(x(2))]

has the properties that D,D; f(¢,x), D;f(t, x), (3/3t) f(t,x) are continuous
and satisfy

a
Ef(t,x) = Lf(¢,x), t>0,x €R%

f(O,x) = f(x),
see [8].
Especially for a fixed y, € R?, take
fu(9)
(2.1) 1 \¢ 1 1 .
’ - (\/277'“ ) \/det a(y,) exp| — é—&gij(yO)(y = %0)i(¥y —¥0)J |-
Let

(2.2) Pe(t,x) = E,[ fu(2(2))].
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Remark that
(2.3) lin})P“(t,x) = P,(x,¥0),

J(¢, x) = —log P(¢, x) satisfies the nonlinear PDE
1
—-J"‘( x) = —a”(x)D D;J*(t,x) + b;(x)D;J*(¢, x)

Eaij(x)DiJ"‘(t,x)DjJ“(t,x), t>0,xeR?,
2.4
(2.4) d 1
J*(0,x) = —2—10g21ra + Elogdet a(yo)

1
+ E;gij(yo)(x = ¥0)i(x — o) -

By a standard argument using the It6 formula, we have the following.
(See [6].)

LEmmMmA 2.1.
JY(T,x) = ueu;rf E[fOTk(n(t),u(t)) dt +J*(0,7(T))|.

For the notation see (1.6) and (1.7). Moreover the inf can be attained at u*,
where

(2.5) u¥(t,x) =b(x) —a(x) VJ*(T — t,x).

COROLLARY 2.2. Let
JT(x’y) = _IOg PT(x’y)
Then

Jr(x,5,) = lim  inf E[[ “k(n(t), u(t)) dt + J*(0,n(T — a))|.

a->0ueFr_, ,

3. Two-sided estimates. In order to obtain a lower and upper bound for
Pr(x,,y,) stated in Theorem A, we only need to obtain a lower and upper
bound for J*(T' — a, x,) which is independent of a. We will sketch the proof
assuming a,;(+), b,() € C;(R 4). One may find the detalls of the proof for the
general case 1n [14]

First, we treat the upper bound. We pick ¢: [0, T] — R? to be absolutely
continuous, ¢(0) = x,, ¢(T') = y, such that I;(¢) = I(T, x, y). Define

(3.1) u(t,x) = 6(t) — —= "’(t)

It is easy to see u € Fy_, ,, since u(¢, x) is Lipschitz continuous in x.

0<t<T-a.

)
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Therefore
(32) JHNT —a,xy) < E[[Tuak(n(t), u(t))dt +J*(0,7(T — a))
0

by Lemma 2.1. Here
dn(t) = u(t,n(t)) dt + o(n(t)) dB(2),

(3.3) 7(0) = ,.
From (3.3),
d(n(t) — #(¢)) = - ﬁ%—_—‘f‘(ﬁdt +o(n(¢)) dB(2).
Therefore
t) — t ¢
(3.4) —"1)7_—‘?—(-3 = [ 7=5o(n(s)) dB(s).

This implies
E[m(t) - ()] <e(T-¢), 0<t<T-a,
(3.5) E[(n(t) — ¢(2))(n(t) — (8)),]

—(T - t)ZE{j:( - 1_ - )2a,.j(n(s)) ds}.

Here ¢ > 0 is some constant. .
We now use the Taylor expansion of k(7n(2), u(¢)) around (¢(2), $(2)),

k(n(t),u(t)) = k(6(2), é(2)) + D,k Ai(2) + D,k 5i(2)
(3.6) +3(D,,., k AY(2) AY(2) + 2D, , k AL(2) A3(t)

+D,,, k A3() A3(t)).
Here
Al(t) =n(t) — ¢(2),

. - 1
2(e) = u(t) by = "0 LT,

a ,
Dok = 5 k(4(1), (1))

and similarly for D, k, D, . k, D, k and D,k
. It is easy to see :

(3.7) E[fOT_a(Dxik AL(t) + D, k A¥(t)) dt] =0

545

by the martingale property of [n(¢) — ¢(¢)]/(T — t) [see (3.4)]. Now consider
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the term
e[ (T7°D. . & A2(£)A2(2) d
2E| [ Du b A5(1) K5(8) .

Since D, k = g;;(¢(¢)), this term is equal to

L nuteon](MG00) (1442 [

1 T-a t 1 2
E[L(T—) & (d(2))a,;(n(s)) dsldt [from (3.4)].

(3.8)

~2) —s
Writing
a;;(n(s)) = (aij(’?(s)) - aij(¢(s)))
+(a;;(#(s)) — a;;(#(2))) + a;;(6(t)),

and noticing (g;;(:)) = (a;;(:)~" and a,;(*) = a,,(-), we see by some calcula-
tion using (3.5),

o 1 )2
(3.8) < [OT j:(T_s)dsdt+cIIT(¢)1/2+c2

(3.9)
(log T — log @) + CIIT(¢)1/2 + cy.

NN

It is not difficult to estimate the other terms in (3.6) as follows:

E[ LT—“Dxixjk AL(2) AL(2) dt] < Ip(9) +cy,

(3.10) .

0 J

Finally,
E[J*(0,n(T - @))]

d 1

(8.11) = Slog2ma + Slogdet a(y,)
1

+ E‘;gij(yo)E[(’fl(T —a) —50);(n(T —a) — yo)j]~

Writing

(T = a) —yo = (T — a) — $(T — a) + (T — a) — $(T),
we have from (38.4), (3.5), and the Schwarz inequality,
- E[(’?(T —a) = ¥0)i(n(T - a) _yo)j]
= E[(n(T - a) = $(T - a))i(n(T — @) = &(T — a),)]
+($(T — @) = $(T))($(T - @) = $(T),)]

<ca +calp(¢).

(3.12)
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Putting (3.6)—(3.12) into (3.2), we get
d 1
J*(T — a,x) < Elogzﬁn-T + Elogdet a(yo) + co(TYI(T, x4,0) + kao(T),

with ¢,(T), k4(T') being independent of a. This also gives a lower bound for
P;(x,5o) in Theorem A, except we have to explain how one can handle the
remaining part due to the approximation of %(n(?), u(¢)) in (3.6). The differ-
ence between the two sides of (3.6) is given by

[ [ (De A1) = D () 84(8) 8502 s

+2 fo ! fo (D B(AR) = D, £(0)) AY(E) A2(D)A dA dps

1,1 .
+, J; (D e (har) = D, k(0)) 8%(t) A()A d dis.
Here, for example,
Duiujk(/\) = Duiujk(qﬁ(t) + )‘Al(t),d;(t) Y Az(t)).
Then
1,1 .
‘E[ 0 fo (Dyyu o(AR) = Dy, k(0)) K3(2) A5(2) A dA du] i
< cE[|ak(#)l 18%(¢)*]

<e(T-t) Y2

Then integrate this with respect to ¢, from 0 to T' — a to show that the error
term due to this is bounded by ¢T''/2. Similarly, we can estimate the error due
to the remaining terms.

Now we treat the lower bound for J*(T — a, x,). Let u} be as in Lemma
2.1, :

dé(t) = u(t, £(t)) dt + o(&(2)) dB(t),

£(0) = xo.
Then

(3.13) J(T — @, %) = E[[()T‘“k(g(t), u*(t)) dt +J°(0,&(T - @) .

Here u*(¢) = u*(¢, £@)).
. We define the random path ¢(-) which is the solution of
t) — Yt
(t) = M+u*(t), 0<t<T-a,
(3.14) T-¢

¥(0) = x,.



548 S.-J. SHEU

Then
£(t) —y(t)
T—¢
Similar to (3.5), this implies
E[i(s) — ()] < e(T - 2),
(3.16) E[(£(2) — ¢()):(£(t) — ¥(2)),]

=(T - t)2E[f0t( T 1_ S )2aij(§(s)) ds]~

Moreover, (3.13) implies
E[J%(0, £(T — @))] < J*(T — a, xo).

: 1
(3.15) [OT_sa(g(s))dB(s).

Therefore
(3.17) E[l6(T - a) — 3,/*] < c1ad*(T — a, %) — cyeloga.

Together with (3.16), we see that ¢(T — a) is close to y, as @ — 0, at least in
probability. Therefore, in probability, I(T, x,,y,) will be a lower bound for

T=2k(y(2), y(t)) dt as a — 0. Taking this into account, using the Taylor
expansion of k(£(2), u*(¢)) around (¢(2), ¢(¢)) as in (8.6) and estimating each
term from below in terms of Z, as before,

Z, = E[[()T_ak(tp(t),t/}(t)) dt],

. letting @ — 0, we may obtain a lower bound for J;(xg,y,). In fact, we may
rewrite the right side of (3.13) as I, + I, + I3 + I, + I5 + I, where

I - %E[ [ (6O B(H) - HO),(b(w() — (1) e,

I, E[ [T B @) 66 — 1), [3(6®) ~ b(u(®)

N £(¢) —¢(2) )

t
T-t ~d]’

I, - —;—E[ [T (6 O) (b)) = b)) (B(£®)) - bw(t)))jdt],
. ‘ 1

I, = E[[OT 8, (£(0)(b(£(1) — b(4(2)))i(€(?) ~ «/f(t))jﬁdt]’

’ 1 T-a 1 ’

Iy = 3B| [T g (€0) (&0 ~ w()i(6() - w(t)»(?_—t) )

Is = E[J*(0,&(T - a))].
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It is easy to get

I, >cZ,,
I;>0,
d a dT-a
I5 = ——2—ln? - ET‘ - CT1/2(1 +Zi/2)

by using an idea similar to that of proving 3.9).
The term I, causes the main difficulty. This is due to the fact that (3.8) is
no longer true. This term can be rewritten as L, + Ly + Lg + L. Here

Ly = B[ [ a0 (b1) ~ HO)(BED) b)), |

> —cTV2Z1/?2,

T-a

. 1
L,= ELfO gij(yo)(b(‘/’(t)) - ‘/’(t))i(g(t) - ¢(t))jT—__tdt]

[ T—a 1
= ELfo 8:;(70)b:(v(8))(£(2) - ‘/’(t))j?__—tdt]
1
— 8i; () E[((T — @) = 0)(§(T —a) — ¥(T - a)),] 2

Here we use the martingale property of (¢(2) — ¢(£));,1/(T — ¢). From this and
- (3.16)—(8.17) we see L, is bounded from below by

1 1/2
—cT2% —¢ - c(;E[g,-j(yo)(f(T —a) = 50)i(§(T — @) _yo)j])
1
> —cTV2-¢ - EZE[gij(yO)(g(T —a) = 50)i(§(T — a) - %0)s]-
L,- E[ [T (8E®) =~ 2, (W) (B(HE) ~ ()

1
X(&(t) - «/i(t))jT—_—tdt]
> — T2, ‘

L,= E[fOT_a(gij(‘/’(t)) - g,-}(yo))(b(t//(t)) - ‘/’(t))z

1
X(&(t) - w(t)),-T—_—tdt].
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We now use

lg;;(¥(2)) — &:;(5o)l
8:;(¥(2)) - gij(‘/’(T -a) - j;T_ab(lﬁ(S)) ds)

<

+

£ (VT = @) = [T7b((5)) ds | - g, (50)

B
<c

w(t) — (T — a) + [tT‘“b(¢(s)) ds

B

+ec +cly(T — a) — yOIB

[tT‘“b(¢(s)) ds

\B
T-a .
SC(]; It//—b(d/(s))lds) +¢(T - t)? + cly(T — a) — y,/°,
for a B with 0 <28 <1, and (3.16) and (8.17) as well as some simple
calculation to get that
L, > —cTPZY?% — cZ1/2+@B/DTE/2,
Finally, putting them together, using ZY < 6Z, + ¢(8,v), for 0 <y <1 and
8 > 0, noticing that liminf, 4 Z, > I(T, x,, y,), we may conclude that
JIr(x9,¥0) = 3 log2mwT + 3det a(y,) + ci(T)I(T, x4,50) — ki(T).
This also gives an upper bound for P,(x,y,) as in Theorem A.

4. Stochastic parallel translation. In this section we assume (A) and
a;;(*),b,(:) € C3(R?). Let c(-): [0,T] - R? be a smooth curve in R% The
solution of

(4.1) %u"(t) + T (e(8)uk(t)él() =0
gives the matrix (E j(t)) [depending on c(+)],
u'(t) = E}(t)uj(O).

u(@) = (u'@), ..., u?)) [viewed as a vector at c(¢)] is the parallel translation
of u(0) along c(-).
We consider also the equation

d
(4.2) Zu(t) — T (e(2)va(t)€'(2) = 0,
which gives the matrix (F/(#)), 0 <¢ < T,
vi(t) = F/(£)v,(0).

u(t) = (vy(?),...,vy(2)) [viewed as a covector at c(¢)] is also called the ‘parallel
translation of v(0) along c(-). The following are several basic properties of
(E{(t)), (F}(2)). (See [3], Chapter 7.)
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LEMMA 4.1.

(@) (Eit) is the inverse of (F}(2)).
() g (e Ou’@) [a; (v (Dv;(t)] is independent of t if u(-) [v(-)] is
a solution of (4.1) [(4.2), resp.].

This implies, in particular, that
(iii) there is a constant ¢ > 0 such that for all t, |[EX®)| < c, |[F/®)| <c.

We may consider an equation which is analogous to (4.1) and (4.2) with ¢(-)
being replaced by a random curve.

LeMMma 4.2. Assume &(t) = (£X2),...,£%(t)), a stochastic process on
(Q, &, P), is such that ¢(t), i = 1,...,d, are semimartingales w.r.t. a filtra-
tion (%,), 5 o- Then for each u,v € R9, there exist unique semimartingales u'(t)
and v(t), 1 <i < d, such that

(4.3) du’ + Tj (é(t))u*(2)dél(t) =0,  u'(0) =/,

(4.4) dv; + TH(6(t))va(t) o dE(2) =0,  v;(0) = ;.
We may write

u'(t) = Ej(t)u’(0),

vi(t) = F/(t)v;(0).

For each j, E}(-)M F/(-)] satisfies (4.3) [(4.4), resp.] and

(4.6) Ei(0) = 5;, = F/(0).

(4.5)

Properties (i), (ii) and (iii) in Lemma 4.1 hold in this case.

Proor. Existence and uniqueness of the solution for equations (4.3) and
(4.4) follow from [10], Theorem 2.1, page 103 (see also the proof of the
corollary on page 106 there). The rest follows as that of Lemma 4.1 if we note
that the Stratonovich integral obeys the ordinary differential rule. O

u(t) [v(¢)] is called a stochastic parallel translation (or displacement) of ©(0)
[v(0)] along a stochastic process £(-). One can find more on the subject in [10].

5. Estimation of the derivatives. In this section, we assume condition
(A) and a,;(+), b;(-) € Cx(R?). Our main object is to prove Theorem B.
In the rest, T > 0 and x,,y,.€ R? are fixed.

J(t,x) = —log P(x,y5,),
u*(t,x) = b(x) —a(x)VJ(T - ¢, x),

J(¢, x) is the same as J,(x, y,) in Section 1. The stochastic process £(¢) solves
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SDE (1.13), that is, ‘
dé(t) = u*(t, £(¢)) dt + o(£(t)) dB(t),
£(0) = x.
E [ ---]1is the expectation w.r.t. the distribution of £(-) with £(0) = x.
We first consider D,J(T, x). We start with a lemma.

LEMMA 5.1.  £(-) exists in a weak sense in [0, T). The following holds:
1.
J(T,xy) = Exo[gj;a,—j(f(s))DiJ(T —8,£(s))D;J(T —5,£(s)) ds

(5.1)
E, [J(T -t &), t<T.

COROLLARY 5.2 (Prior estimate). There is a constant ¢ > 0 depending on T
such that

(G2 B[ [ANIT 5, ()P ds| = 1T, 50,50 + 1)

Proors. (5.2) follows easily from (5.1), condition (A) and Theorem A. For
showing (5.1), we have, by the Itd rule,

dJ(T - t,£(t)) = —3a,;(£()) D, J(T — t,£(¢)) D;J (T — ¢, £(2)) dt
+ D;J(T —t,&(¢))0;;(£(t)) dB;(¢),
for ¢t < T up to the explosion time 7 of £(-). In particular,
. E[—;— [0 (6 DT = 5, £(s)) DI(T = s, £()) ]
=J(T,xy) — Exo[J(T — tA7y, f(tATN))] ,

where 7y = inf{t < T'; |£(¢)| > N}, ¢ < T. By Theorem A, the right-hand side
of (5.3) has an upper bound which is independent of N. This implies, for each
t<T,

(5.4) [[‘A”WJ(T — 5, &(s))1? ds] <c

for some ¢ depending on ¢. Taking into account (1.13), we conclude that 7 > ¢
a.e. Therefore £(-) exists in [0, T'), and (5.4) implies

[[‘WJ(T — 5, &(s))1? ds] <c,

wh1ch further implies |£(2)| is square 1ntegrable From this, Theorem A and an
inequality I(¢, x,y,) < c((1/8)|x — ¥ol2 + 1), we may apply the dominated con-
vergence theorem when N —  to obtain (5.1). This ends the proof of Lemma
51. O
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LeMMA 5.3. For every integer m > 0, there is ¢ > 0 such that
E,|I(T- t,£(t),30)" ] < c(I(T,x0,30) + 1), t< g
ProorF. By Theorem A, there are ¢; > 0, @ > 0 such that
J(t,x) =J(T,x) — Z—log2wT +c

has the property
S(t,x) <k I(t,%,50) + Ca5

S(t,x) = k. I(,%,5,), <t<T,

E’ =
for some k,, k, and ¢, > 0. Since
df (T - t,(2)) = —3a,;(£(2))D,I(T — £, £(2)) D;J(T — ¢, £(1)) dt
+ D, J(T — t,£(£))0.5(£(2)) dBy(t) [from (1.5)],
we have

A m(m -1
afm(T - 160) - (M

2 ) a;;(£(t)) D, ID;JI ™ X(T — ¢, £(2)
(5.5) —%aij(g(t))DiJDijm—l(T 4, f(t))) dt

T
+ dM(¢), t< 37
M(-) a martingale. This implies

m T/2 pp, -
EExo[fo Jmla,;D,JD;J(T — ¢, £(2)) dt]

m(m — 1) T/2 5, _

+ (T, %) = E[J"‘(g’f(g))]

mom!

kz=:1 = (jk(T,xo) —Exo[ef”(g,g(g))]) (from Lemma 5.1)

<c(I(T, xq,50) + l)m (by the positivity of j)
By (5.5) again,
E,[/™(T - t,&1)]

A m(m—1 A
0

I

<c(I(T,%9,50) +1)".
This implies the inequality we want. O
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The following gives the required estimate for D;J(T, x) and a prior estimate
for D, ;J(¢, x) in an average form which plays a similar role as that of Corollary
5.2 to D,;J(¢, x).

LeEmMA 5.4.

1/2

1
(5.6) |D;J(T, xo)l < CW(I(T,xo,yo) +1)77,

(5.7) Exo[foT/2|D' WJ(T — 8, E()17 de| < C%(I(T’xo,yo) +1).

i1tz

Proor. By the It6 rule and (1.11),
dD,J(T —t,£(t)) = —H (T —¢t,£(¢t)) dt + dM (1),

M,(£) = [ DiD,J(T = 5,£(5)) o, (£(s)) dB,(s).

Now we perform covariant differentiation of D, J(T — ¢, £(¢)) along
the stochastic curve £(-). Here we consider R? as a curved manifold
with Riemannian metric g;; dx; dx;. That is, we consider I (¢) =
Ep ($)D(J(T — t, £(¢))), where

dEg,(t) = —Eg()T51(£(2)) > d&i(2),
EBa(O) = 5&1,
and in Itd type,
dEp,(t) = —3(Epe(t) DT5(£(2)) — Epn() T o (£(£))TE(£(E)) )api(£(2)) dt
= Eg()T51(6(2)) d&i(2).

See Lemma 4.2. We have
dlg(t) = Eg,(t)°dD,J(T — t,£(t))

= Egu()T55(6(2)) Dod (T — 8, £(2)) ° d&i(2)

= {~Epu(t) Ho(T — 8, £(2))

~Eg($)T5(£(8)) DI (T — 1, £(8)) (bu(£(2))
(5-8) —a,,(£(t)) D, J(T — t,£(t)))} dt + 3d{Eg,, D,J

—%d(EBkF,;"lDaJ, £ + dNy(2),

Ny() = [[(Egol ) D, DI (T = 5,£(5))
—Ep(5)T5(£(5)) DI (T — 5, £(5)))or;(£(s)) dB;(s),

d{Eg,, DJ )t = —Egy()Ti(£(2)) a1, (£(2)) D, DI (T — £, £(2)) dt

(5.9) = 3E(t) Dya,,(£(2))D,D,J(T — t, £(t)) dt
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and
d{Eg T3 D,J, &)
= {~Epn(OTn,(§(O)T(E(D)) DI (T — 8, £(2)) 2 ,u(£(2))
+ B (1) DTy (6(2)) D J (T — 8, £(2))apu(£(2))
(5.10) +Eg ()T (£(2)) D, D, I (T — 8, £(8)) a(£(2)) ) dt
= —Eg(t)(Th p(£(1))Ti(E(1)) — D,Tni(£(2)))
X D (T — t, £(t))ap(£(2)) dt
— 3B (t) Dya,,(£(2)) D, D, J (T — t, £(t)) dt.
Here we use
(5.11) FfzazprDaf= _%DkalprDl fs
which follows by using the definition of l"i’j» in Section 1. In fact,
e, D,D, f = 3@ om(Dr8&im + D18hm — D, gy)a;,D,D,f.
Using the fact that (g;;) is the inverse of (a,;), we have
Dkglmalp = —&imDray,,
%aakaglmalprDaf= _%aamglkaalprDaf
= right-hand side of (5.11).

And notice that the terms 3a,, D;8,,a,,D,D,f: 3@ umDy8r1a1,D,D,f are
equal to each other if we replace the indexes [ by m, m by [, p by a and a by
p in the latter term. Then we get (5.11).

Put these into (5.8) and simplify to get

dlg(t) = Ag(t) dt + dNg(2),
Ag(t) = —Eg(1){ Db, (£()) + Ta,(£(£))by(£(2))
(5.12) ~(FTA(EOTE(E®)) = DTA(E()))an(£(2)))
XD, J(T —t, £(t))
a linear combination of D,J(T — t, £(t))
with bounded coefficients.

Therefore

Dad(T, %) = E, [I,(?)] —_Exo[fotAB(s) ds]

- ;Exo[[omzﬁ(t) dt] - %Exo[j;T/ZAB(s)(g - s) ds].

(5.6) follows from this and Corollary 5.2 and Lemma 4.2(iii).
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To prove (5.7), we have from relation (5.12),
T T T/2 2
E"°[Nﬁ2(5” _E, (1,3(5) - 15(0) - [ 450 dt) ]
T 2
<cE_||I,| =
=¢ ”( 2)

X0
< c—(I(T Xg,Y0) + 1).

+ T[T, £())" dt
0

Here we use (5.6) and Lemma 5.3. This gives

E, [[T/2|Eﬁk(t)DleJ(T t, £(t)) -Epk(t)Fz?z(f(t))DaJ(T—t’g(t))'zdt]

< cT(I(T,xo,yo) + 1),

which in turn implies (5.7) if we use Corollary 5.2 and Lemma 4.2. This ends
the proof. O

In the rest, we consider n > 2. We will prove the following by induction
on n:

i1seeerin

n/2
(5.13), |ID J(T, %)l < C(T) (I(T’xo’yo) " 1)1+(3/2Xn—2),

T/2
B[y 10 (T = £ d
(5.14),, .
<C( ) (I(T xo,yo) + 1)1+3(n 19}

holds forall 1 <i, <d, k= 1,...,n + 1. Theorem B follows from these.
Before we start, we remark about the basic idea used in proving these
assertions. We will see that (5.14), follows from (5.13), together with an
expression for the semimartingale D;  ; J(T —t,&(¢)). Then (5.14), serves
follows from optimality of £(-), is the starting pomt of thls iteration procedure
We differentiate (1.5) with respect to D, ,..., D; ,
3 .
—D.
at

2T

J = iDijDy,...id + (b - aijDiJ)DjDil ..... i,d

lj ij iy, i
(5.15) + Z 1D, a;Dii..to.id +Fi

LAl sty

......
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Here D, s J means D,

Tjigy.ees Tyrevns TJigy e sbymtrluystre s i’

fi in(t’x)=%Dk ..... k ahj(x)Dz,z1 ,,,,, 1, (8 %)

with summation being taken over 2 <m <n, {k},..., k,, N A
(i, - sinh

&, . .i(t:x) =Dy, . 4bi(x)Dy, ., 1, J(tx)

with summation being taken over 1 <m <n, {ky,..., kpy liyeooslpn_pml =

(g, . in)

hi, .. i(tx)= —3Dy . 5,@:5(%)Dipy, . p I (2, x)D;, g J(tx)
with summation being taken over l <m <n,or m=0and 1 <u<n — 1,
{kl’ m’ P s Pus Q15590 } {11’ i } We note that le ..... i, gil ..... i,
are 11near combmatlons of the derlvatlves of J of order up to n.
As before, we consider E, ; ), ..., E, ; E,,®)D; i J(T — ¢, &)

dE,;(t) " E,;(t)D;, inJ(T - t, &)
—E,(8) - B i(t) - Euu()Diy, i (T — 1, £(1)) dE,,; (2)
+E,;(t) - E,;(t)dD;,
+ By (t) - Bai () Eai(8) 0 Eq (D, i I(T —8,6(2))
Xd{(E,; ,E,; )

+ Ealil(t) T Eauiu(t) e Ean,i,,(t)d<Eauiu’ Dil ..... inJ>t‘
Here (--- E,; ---) means that E, ; is deleted in the expression. We write
dE,i(t) -+ Eou(H)D;,, i, I(T — 8,£(2))
(5.16) = (Fapy.oraf(®) + Guyy o () + Hyy o (8)) dE
+ aal ,,,,, an;k(t) dBk(t)’
where
Frpyoorya() = =Eou(t) -+ Boi(8)
(t)(Eau,,<t> HED)b(£1)
+§;l7<§q’ p(t) q>t ,,,,, inJ(T_ t’f(t))
~E () Eou (8)(fiy.. i, * 8y, in)(T —t,4(1))

+Ea1i1(t) .’. ’ Eauiu(t) Tt Eauiu(t) Tt Eanin(t)Eaupl(t)
><F,i;‘ql(f(t))Eavpz(t)l";;qz(ﬂt))
qlqg(g(t))Dil ,,,,, iy (T_ t, f(t))

= a linear combination of the derivatives of J of order up to n,
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Gal a,,(t) Ollll(t) Eauiu(t) t a,, n(t) aup(t) q(g(t))

.....

Xa;,(£(t))DiID; . ;. J(T —t,&(¢))
E,i(t) - E,;(t)h;, (T —tE&®)),
H,  .(t)=—3E,(t) " E, . (t)D;a;;(§(t)) Dy, ..z, d(T —t,&(t))

~Eqi8)  Boi (1) -+ By s (D E, (1)
XT,u(£(2))agp(£(1)) Dyyy,.i J(T — ¢, £(2)),
Ty ranit(8) = —Eqi(£) -+ B, i (8) -+ E, ; () E, (1) Tia(£(1))
X (§(2)) Dy, I (T — 8, £(2))
+ Eoi(8) o Boi () Dgiy,. i J(T = 1, 6(8)) 0 (£(2)).

Using (5.11), it is not difficult to show

Gay, ... a(t) = TEayi(t) *** Eo i ()(Dy,0,;(£(8)) DDy, ¢ J(T — t,£(2))
+Dy, 1,25 (E@)) Dipy, . p Do o J(T — t,£(2))}

Withsummationoverl<m<norm=0and1$usn—1,15v5n—1

and {iy,..., i} ={ky,..., ks D1y s PusQ1r- -5 Q)
Let us first consider the case n = 2.

AE i () Boyi (8) Dy i, J (T = ¢, £(2))

5.17
( ) ( alaz(t) + alaz(t)) dt + a-alaz k(t) dBk(t)
Fpa ()l < ¢ 21D, J(T — 8, £(2))l + L ID,J(T — 8, £(2)),
5.18 2
19 |G ()] < ¢( X 1D, I (T — 1, ()| + L IDJ(T — 8, £(2))1) .
Then

D,yo (T, %0) = By [ Eoyi () Ens (£) D i, I (T — £, £(2))]

E[ f (Frpa(8) + Gaa(5)) ds]

Integrate both sides with respect to ¢ from 0 to T/2, divide by T/2, then
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apply Lemma 5.4 and Corollary 5.2 to get
1/2

1/2

alazJ(T xO)I = C(T) (T(I(T‘xO’yO) + 1))
1 1/2 1 .

+ cT1/2(5;(I(T,x0,y0) + 1)) + cE;(I(T,xO,yO) + 1)

1
< cT(I(T,xO,yO) +1).

This proves (5.13) for n = 2.
Using (5.17) again, we have
2

o2

+ ¢TE, [f /2( alaz(t)lz + Galaz(t)l )dt]

T/2
0[[ 02 k() dt] < cE,,

By (5.13) and Lemma 5.3,

T
p.(5.4(3))
By Lemma 5.4,

E, [fT/z g O dt] < c—(I(T Xg,%0) + 1).

2

E <C—(I(T %o, ¥o) t+ 1)

By (5.18) and (5.13) and Lemmas 5.3 and 5.4, we have

2 1 4
ExO[IGalaz(t)l ] < CF(I(T, X0,¥0) + 1)

Combine these to get

T/2 1 4
Exo[/o o-a21az;k(t) dt] < CF(I(T’xo’yo) +1)".

By the form of o, , . ,(*), we may deduce from the above relation that

ajag;

T/2 1
E’“"[/o 1D, (T - t’f(t))|2dt] < ez (I(T, %0, 30) + 1)".

We have thus proved (5.13) and (5.14) for n = 2.
, Assume that (5.13) and (5.14) hold for 2 < n < N — 1. We need to prove
that they are true for n» = N. Since

IG,,, .. ap() < cID,, J(T —t,é))ID,,, ... J(T -t ()l

,,,,,,,,,,,

with summation being taken over l<u<N,1<v<N u+v<N+1lor
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2 <u,v,but u +v =N + 2. Using a similar argument as above, we show

|Da1 ..... aNJ(T’ xO)l
1\ N2 [1+3(N-2)]/2
+ -
_CW(T) (I(T,xo,yo) +1)

(N-D72 1+3(N-2)]/2
+ cT1/2(51—) (I(T, x4, 50) + 1)[ +3AN=2l/

1 (u-1)/2 L+ 3— 212 1 (w-1)/2
+ C(E;) (I(T,xo,yo) + 1) (E;)
X(I(T, x5, %) + )" 222 (422, 0>2,u +v=N + 2)

12 1 (w-1/2
+ c(I(T, xq,y0) + 1) (T)

X(I(T, %9, 30) + 1) ™2 (v<N)

N/2
< c(?) (I(T, o, y,) + 1) T3N-202

This proves (5.13) for n = N.
From (5.16),

..........

2

1 N 2+3(N-2)
<c (I(T, x9,50) + 1) ,

D T T
iy iNJ(E’f(E))

1
B [IFe, ] < o 7 )(I(T 2030 + DD, 0<hg

T
2’

1 u+v
(u+v—
E,[1G, ... o8] Sc(?) (I(T, g, 3) + 1)* 73477
(x>2,v>2,u+v=N+2)

1 1+v _
+c(?) (I(T, x4, 50) + 1)3(” v (v<N)

1\ N2 T 1)1+3N-D
<c T (I( 7x07y0)+ ) *

Therefore
N

1
Exo fT/zail ..... in: () dt| <c (I(T Xg,¥0) + 1)1+3(N v
0

and (5.14) follows from this easily. This ends the proof of Theorem B.
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