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GENERATING A RANDOM LINEAR EXTENSION
OF A PARTIAL ORDER!

By PETER MATTHEWS

University of Maryland Baltimore County

Given a partial order of N items, a linear extension that is almost
uniformly distributed, in the sense of variation distance, is generated. The
algorithm runs in polynomial time. The technique used is a coupling for a
random walk on a polygonal subset of the unit sphere in RY. Included is a
discussion of how accurately the steps of the random walk must be com-
puted.

1. Introduction. Consider the following artificial situation. A tennis
tournament, in which a stronger player will always beat a weaker player, is in
progress. The tournament will continue until the players are completely
ranked. At the start of the tournament it was fair to say that all N! rankings
of the players were equally likely. Given the results from matches already
played, all rankings consistent with these results are equally likely. We may
ask questions like: What is the probability that player A will end up ranked 1?
What is the probability that players A, B and C will end up among the top 5?
What is the probability of a particular final ranking? (Or equivalently: What is
the number of possible rankings remaining?) Or any number of other similar
questions. These questions are, in general, too difficult to answer analytically.
One must resort then to Monte Carlo methods. If one could sample nearly
uniformly from the set of possible final rankings consistent with the current
information, then one could estimate any of the above quantities accurately. If
the sampling was not too slow, then this could be accomplished much faster
than a computation based on a complete enumeration of all the possible final
rankings. Note that such an enumeration could require an amount of compu-
tation growing exponentially in N. With Monte Carlo methods it is possible to
reduce the calculations to an amount growing polynomially in N, as explained
below. :

The subject of this paper is the generation of random linear extensions of a
partial order. The tennis example above informally defines a partial order.
More formally, a partial order on a set {x,...,xy} of N items is a set of
consistent pairwise restrictions x;, < x; for some collection of pairs
(4, J1)s .-, (g, jg)- The set of linear extensions of the partial order, or the set
of all total orderings satisfying all the restrictions, will be denoted &#. Though
the example above is frivolous, the structure of &# for general partial orders is
a serious question. For examples see the collections Pouzet and Richards
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(1984) and Rival (1982). For an application to learning see Goldman, Rivest
and Schapire (1989).

Variation distance will be used as a measure of the uniformity of a probabil-
ity distribution on #. If % is the uniform distribution on #, Z(A) =
|Al/|H#| for A C #, and u is any other probability distribution on &7, then

i~ Il = max lu(4) - %(A).

Given 6 > 0, we wish to generate an ~#valued random variable L with
l-Z(L) — || < 8, where (L) denotes the distribution of L.

To generate such a random ordering L, we first replace # by a more
manageable space. Let Sy_, denote the unit sphere in RV, Sy,_, = {x € R":
L Nx? = 1}. For convenience, N > 6 will always be assumed Except on a set of
measure 0, the coordinates of x € S,,_; are distinct. Each such point deter-
mines an ordering of {1,2,..., N}, by setting j < & if x; < x,. The ordering is
simply a list of the coordmate indices in order of i 1ncreasmg coordinate values.
Ignoring the set of points with two or more coordinates equal, the set of points
in Sy_; that correspond to linear extensions of a partial order can be
descrlbed as follows. If the partial order prescribes that i < j, let h;; denote
the hyperplane {x € RN: x, = x;}. Let H;; denote the half-space {x € RV
x; <x;}. Then H' = N H,;, the lntersectlon of all such half-spaces determmed
by the partial order, is a convex cone, and H =S,_; N H' is a convex
polyhedral subset of Sy _, whose faces are the intersections of the hyper-
planes h;; with Sy_;.

The problem of sampling uniformly from & can be replaced by the problem
of samphng uniformly from H. The hyperplanes &;; for i <j divide H into
|#| pieces, one for each ordering of the coordmates Each ordering of the
coordinates corresponds to a linear extension of &#. A symmetry argument
verifies that these pieces have equal volumes. Thus to sample from #, one
simply chooses a point in H and determines the ordering of its coordinates,
which is unique with probability 1 and thus specifies a point in . .

The general problem of sampling nearly uniformly from a convex polyhe-
dron is quite difficult. The problem is in some sense as hard as determining the
volume of a polyhedron. If one could approximate the volume of an arbitrary
convex polyhedron efficiently, then one could sample nearly uniformly from
one. Split the polyhedron of interest into two pieces, find the volume of each,
and flip an appropriately biased coin to choose one of the pieces to sample
from. Split this piece and iterate. This procedure can be repeated until the
remaining piece is as small as desired, leading to a point that is nearly
uniformly distributed. Going the other way, random sampling allows one to
estimate the relative volumes of two pieces of a polyhedron. This procedure
can be bootstrapped to give an estimate of the volume of a convex polyhedron
to any desired accuracy. See Dyer, Frieze and Kannan (1989) for details.

Dyer and Frieze (1988) have shown that the general problem of computing
the volume of a convex polyhedron is #P complete. So, barring any miraculous
developments in computer science, Monte Carlo methods will be useful in
approximating volumes of polyhedra. Dyer, Frieze and Kannan (1989) give a
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general algorithm for sampling nearly uniformly from a convex polyhedron in
polynomial time, with the sampling distribution close enough to uniform to
obtain accurate volume estimates in polynomial time. The essence of their
approach is to place a regular lattice of points in the polyhedron, connect
nearest neighbors to create a graph and run a random walk on this graph.
They use conductance techniques [see Sinclair and Jerrum (1989)] to bound
the second largest eigenvalue of the transition matrix, and hence the rate of
convergence to uniformity. An alternative technique is suggested here. At least
in the special case of a spherical polyhedron H determined by a partial order,
it appears theoretically to be faster.

The method discussed here, running a reflecting random walk, can be
motivated by Brownian motion. Consider a Brownian motion on H with
normal reflection at the boundaries of H. Matthews (1990) shows that such a
process converges to uniformity fairly rapidly in variation distance. Unfortu-
nately, there is no technique known to the author for efficiently simulating a
Brownian path on H or even its position at some time ¢ with a guarantee on
the accuracy of the simulation. A natural approach to try is to approximate the
Brownian path by the path of a random walk taking small steps.

The technique used here is to run a random walk X on H with normal
reflection at the boundaries. We study the rate of convergence in distribution
to uniformity of X(i), without worrying about how well it approximates a
Brownian motion. Coupling [see Section 4E of Diaconis (1988)] is used to study
the rate of convergence of _Z(X(i)) to the uniform distribution % on H. Let Y
denote a random walk on H with the same step distribution as X, but with
Y(0) ~ %. The steps of X and Y may be dependent on each other. Then
|-£(XG@)) — 2|l < P(X(@) # Y(i)). The coupling technique, then, is to con-
struct the joint process (X, Y) so that their paths meet and stick together as
soon as possible. Of course, the process Y is only used to study rates of
convergence; it is not involved in any simulations.

The random walk X used here can be described as follows. It is straightfor-
ward to find some partial order in s# and a point X(0) in the corresponding
section of H. Given a current position X(i), let C(X(i)) denote the cap of
points in S, _,; that are within a distance ¢ of X(i). Linear rather than
geodesic distance will be used here; x € C(X(?)) if |X(i) — x| <& and |x| = 1.
A point X'(i + 1) is chosen from the uniform distribution on C(X(i)). If
X'(i + 1) € H, then X(i + 1) = X’(i + 1). Otherwise, X'(i + 1) must be re-
flected back into H. This is formally described in Section 4, but intuitively the
reflection is straightforward. Imagine a ball at X(i), shot in the direction of
X'(i + 1) with just enough energy to go a distance |X’(i + 1) — X(i)|. The ball
performs reflections in the faces of H as it encounters them. The terminal
position of the ball is X(i + 1). As this random walk is reversible, it is easy to
check that its stationary distribution is uniform on H. All random walks
disc1‘1/s_sed hereafter will take steps uniformly chosen from C(X(i)) for some
e <V2.

Consider coupling such a random walk with another random walk Y with
the same transition distribution, but with Y(0) ~ %. The natural coupling,
used in Lindvall and Rogers (1986) for diffusions on manifolds and Matthews
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(1990) for Brownian motion in convex polyhedra, is as follows. Let &, denote
the hyperplane of points equidistant from X(i) and Y(i). Choose X'(i + 1)
uniformly from C(X()). If X'(G+ 1) e CY@G)), let YG+ 1) =X+ 1.
Otherwise, let Y'(i + 1) be the mirror image of X'(i + 1) in h,. This type of
joint transition will later be called a reflection step. This coupling is somewhat
difficult to study, as noncommuting reflections can force | X(i + 1) — Y(i + 1)|
to be larger than |X'(i + 1) — Y'(i + 1)|. See Figure 1 for an illustration.

Ignoring technical details, to avoid this difficulty the coupling is modified to
the following. While X and Y are far apart, if there is any risk of a bad set of
reflections pushing them further apart, they move in parallel (later called a
rotation step), attempting to preserve their distance. If there is no danger of
complicated reflections they take a reflection step. Once they are close together
they take only reflection steps. If they couple within a specified number of
steps, they are done; otherwise, they begin anew their attempt to couple. The
bulk of this paper involves showing that there is a positive probability of
coupling in one iteration of this procedure. Theorem 1 in Section 5 is a
statement of this result.

From the point of view of a person doing actual simulations, Theorem 1 is
not yet satisfactory. Simulation can only be done to a finite number of decimal
places, so the question arises: How much accuracy is enough? The notion of a
random walk of accuracy vy is discussed. Essentially it is a random walk whose
steps are simulated with an error of no more than y at each step. Section 6
discusses this problem; a sample result is Corollary 2.

COROLLARY 2. Let # be the linear extensions of a given partial order of N
items. Suppose without loss of generality that (1,2,83,..., N) € #. Let % be
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the uniform distribution on . Suppose & > 0 is given, and a random linear
extension L of # satisfying ||.£(L) — %Il < & is desired. Let ¢ = (6(log(N —
1) + 100N4) ! and K = 253[2.171og(26 Hllog(N — 1) + 10)3N8. Let

75 ( 65 )1/2 w8
I8N25(K + 1)\ N¥K+1)°) ~2/2(K+1)°N3% |

y = min(

Let Z(0) be uniformly distributed to accuracy y on the subset S; of H, where
S;={xe8Sy_1: x; <xy< -+ <xp}. If a finite precision random walk Z
with maximum step size ¢ is run for K steps, allowing at each step a maximum
error of vy in the calculation of Z(i), and L is the order of the coordinates of
Z(K), then ||-£(L) — Z|| < 6.

The amount of calculation required is polynomial in N and log(§~1).
Though only a polynomial amount of work is required, the procedure is
probably too slow for practical implementation. However, it is interesting
theoretically and has potential to become much faster. To avoid the difficulties
of complex reflections, the maximum step size ¢ was chosen very small here,
leading to a large number of steps K. It seems intuitively that complex
reflections should not delay coupling very much very often, so that it should be
possible to derive a coupling that allows for a much larger maximum step size
¢. As the number of steps depends on ¢ through &2, increasing ¢ by a factor
of N could reduce the number of steps required by a factor of N2. A few clever
ideas could reduce the number of required steps K enough to make this a
practical algorithm.

The rest of this paper is organized as follows. Sections 2, 3 and 4 give
preliminary technical results. Section 2 gives bounds on boundary crossing
probabilities for the type of random walk discussed here. Preliminary results
concerning geometric probability are in Section 3. They involve probabilities of
random points or short arcs on Sy _; approaching or crossing one or more
hyperplanes of the type bounding H. Reflection and rotation steps are defined
in Section 4, and some of their properties are derived. Section 5 gives the
coupling discussed above. Finally, Section 6 is a discussion of random walks
simulated with finite accuracy.

2. First-passage problems. In this section, the necessary results involv-
ing hitting times of Brownian motion W and random walks X on Sy _, are
given. The time taken to hit a line of latitude {(x;, ..., xy): x; = —¢} and the
time to move a short distance ¢ are studied for Brownian motion. The latter
gives the time taken to generate a step of an embedded random walk. To-
gether, the two give a bound on the distribution of the numbers of steps
required by a random walk to cross two boundaries, which are necessary
ingredients of the coupling given later. For brevity, routine computations will
generally be omitted.

We first note an elementary fact about projections of a uniformly dis-
tributed point on Sy_;.
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ProposiTION 2.1. Let X = (X, X,,..., Xy) be uniformly distributed on
Sn_1. Let h be a k-dimensional subspace of RN and let P, X be the projection
of X onto h. Then |P, X|* has a Beta(k/2,(N — k)/2) distribution. Further,
the squared distance from X to h has a Beta((N — k)/2, k/2) distribution.

Proor. Let Y,,Y,,...,Yy be iid Normal(0, 1). By spherical symmetry the
vector (LY V/%(Y,,...,Yy) is uniformly distributed on S,_,. Also, by
spherical symmetry we can take h to be the hyperplane spanned by the first £
coordinate vectors without loss of generality. Thus |P, X|* has the same
distribution as L% ,¥2/- N Y2 which is a Beta(k/2,(N — k)/2) distribu-
tion.

Since P(IX| = 1) = 1, the squared distance from X to 4 is just the squared
length of the projection of X onto the orthogonal complement of k. By the
first part of the proposition, this has a Beta((N — k)/2, k/2) distribution. O

For Brownian motion W on Sj,_;, let W, be the first coordinate of W. Let
P, and E, denote probability and expectation for W, started at x. As in Karlin
and Taylor (1981), W, is a diffusion on [—1, 1] with drift p(x) = —(N — Dx/2
and infinitesimal variance o0%(x) = 1 — x2. The diffusion W, thus has speed
measure M(x) with density m(x) = (1 — x2)¥~3/2 and scale function S(x)
with derivative s(x) = (1 — x2)~V-1/2,

Let T(x) = inf{t > 0: W(#) <x}. A slight modification of the argument
leading to (3.11) and (3.38) of Chapter 15 of Karlin and Taylor (1981) yields

(2.1) ET(x) = 2/ s(y) [ 'm(z) dzdy,
x y
(2.2) E,T*(x) = 2k [ s(y) [ m(2) E,T* () dzdy,
x y
and for 1 > w > x,
w 1
(2.3) E,T(x) = 2fx s(y)fy m(z) dzdy.

PROPOSITION 2.2. For e >0, N>6and 0 <k <e™ 1,

(2.4) BT (e) < log(N —1) + 10

N-1 ’
log(N — 1) + 10\?
(2.5) Var,T(e) < N1 ,

6¢ 2 k
(2.6) E,T(-e)< /N -1 - 62)(N—1)/2 + (1- k2€2)(N—1)/2 .

Proor. These results follow from simple manipulations and bounds on
(2.1), (2.2) and (2.3). The calculations are omitted. O
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Next consider a random walk X on S,_; taking steps of length less than or
equal to £, where £ < V2. Given X(i), X(i + 1) is chosen uniformly from the
cap C(X(i)). Let X; denote the first coordinate of X. Let F, denote the
cumulative distribution function of [X(1) — X(0)|. With X(0) = (1,0,...,0),
F(x) = P(IX(1) — X(0)| <x) = P(X(1) > 1 — x2/2). If X; were uniform on
Sy_1, X2(1) would have a Beta(1/2,(N — 1)/2) distribution by Proposition
2.1. Requiring X(1) to be in C(X(0)) is equivalent to conditioning on X(1) >
1 — £2/2. It follows that F.(x) has density function

9\ (N=3)/2
oxN-2|1 - =
{17

_ N—
J& —e2 oy V21 = y) N2 dy

Next embed the random walk X in Brownian motion W. Started at
(1,0,...,0), the process X is distributed like W, also started at (1,0,...,0), at
a sequence of randomized stopping times. Let R;, R,,... be iid with distribu-
tion F,. Let @, = 0 and :

Q; = inf{t > @;_,: IW(¢) - W(Q;_1)| = R;}.

Note that @,,Q, — @,, Q5 — @, ... are iid. By the rotational symmetry of X
and W, {W(Q,), i = 0,1,...} has the same joint distribution as the random
walk X. We wish to bound the mean of @, from below, and the variance of @;
from above. Together these will give an upper bound on the amount of time a
Brownian motion must be run in order to generate a step of an embedded
random walk. Combining these with Proposition 2.2 will give upper bounds on
right tail probabilities for hitting times for random walks.

2.7 f(x)=

for x € [0, €].

ProposITION 2.3. For Q; as above

52(1 _ 62/4)(N_3)/2
2 2
(2.9) EQ? <2 °

(N-1)(1-¢2/2)|

Proor. Start W at W(0) = (1,0,...,0). Then given R, @ is the first time
W, hits 1 — R2/2.

Using (2.1), simple calculations yield E(Q,|R;) > (N — 1)"'R2. Integrating
with respect to the density (2.7) of R; gives (2.8).

To prove (2.9), note that by (2.2), EQ? < E,T(¢) < 2(E,T(¢))?. A calcula-
tion similar to the lower bound on E(Q;|R;) gives

32

BT < N—Da-22)

which gives (2.9). O
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Define

2.10 - ‘/ 2(N +1) ]
( . ) p (N - 1)(1 — 82/2)(1 _ 32/4)(N_3)/2

By (2.8) and (2.9) p is an upper bound on the coefficient of variation of Q,.

Now consider two first-passage problems for a random walk. The first is the
time taken to come within 1.5¢ of the hyperplane {x: x; = 0} from (1,0, ..., 0);
the second is the time to cross the hyperplane {x: x; = 0} from a distance 1.5¢
away.

ProposITION 2.4. Let X(0) = (1,0,...,0) and let T,(1.5¢) = min{i: X,(i) <
1.5¢}. Let

_ (N +1)(log(N — 1) + 10)

(N = 1)e2(1 — £2/4) "%
For b > 0 let
(2.11) 1=1(b) =a(l+Vb) +pVaVd®? + b + bp?,

where p is given by (2.10). Then P(Tx(1.5¢) > 1) < 2b™ 1.

ProoF. Embed X in a Brownian motion W with W(0) = (1,0,...,0). For
any ¢ > 0, the two events {T'(0.5¢) < ¢} and {Q, > ¢} imply that W,(Q,) < 1.5¢
for some i < [/, and hence Tx(1.5¢) < I. Thus

(2.12) P(Tx(15¢) >1) < tigg[Pl(Tw(Oﬁe) >t)+P(Q, <t)].

For
log(N - 1) + 10
2T N-1
by Proposition 2.2 and Chebychev’s inequality,

log(N — 1) + 10\*

Var, Ty (0.5¢) ( N-1 )

(t — E;Tw(0.5¢))" (t _ log(N - 1) +10 )2’
N-1

(2.13) Py(Tw(0.5¢) > ¢t) <

This probability will be less than or ;equal to b7t if

(1 + vd)(log(N — 1) + 10)
t= N1 .

(2.14)

For
(N-3)/2

Ie2(1 — £2/4)
<
N+1 ’
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by Chebychev’s inequality the second term of (2.12) is no larger than
I Var @,
(IEQ, - t)*
For ¢ as in (2.14), this term will be less than or equal to 4~ if
[, 2EQ +bVarQ, + Vb%(Var Q,)? + 4tbEQ, Var @,
B 2(EQ,)” '

Proposition 2.3 and some simplification yield the value of ! quoted in the
proposition. O

Next consider the time taken by a random walk X with X,(0) = 1.5¢ to
cross {x: x; = 0}.

ProrposITION 2.5. Let X(0) = 1.5¢ and let Tx(0) = min{i: X,(i) < 0}. Let

B +
82(1 _ 82/4)(N_3)/2 ‘/N —1 (1 _ 82)(N_1)/2 (1 B (1'5)282)(1\]_1)/2

Let
(2.15) m =m(c) =c(B +pyB +p?).
Then P, 5 (Tx(0) > m) < 2¢~ ..

Proor. The proof is exactly like that of Proposition 2.4 and hence omitted.
0O

3. Preliminary calculations for a random walk. This section con-
tains some preliminary calculations for random walks on S, _, that will be
used in Sections 5 and 6. All the random walks will be started in a distribution
similar to the uniform distribution on S, _; and will have no reflections. All
the problems involve probabilities of individual positions or paths of a random
walk coming close to hyperplanes of the form &,;={x € RM: x, =x}, or
intersections of several hyperplanes of this form. These can be though of as
problems in geometric probability. A random arc is chosen on S,_; by
choosing an initial point at random and choosing a terminal point uniformly
according to a distance requirement. What is the probability that the arc
crosses several hyperplanes h,;? What is the probability that the arc comes
close to the intersection of several of the hyperplanes A; ;7 Again, straightfor-
ward calculations are omitted.

Let P;; denote projection onto h,;. I— P, ; is then projection onto the
orthogonal complement ;. For a point (x, x,, ..., xy), its order statistics
are its coordinates sorted into nondecreasing order, (x;, < %, < - < X(ny)-
The uniform order statistics are the order statistics of a point uniformly
distributed on Sy_;. Let h;;, = {x € RN: x, = x; = x,} for i <j < k.
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ProposITION 3.1. For Z distributed on Sy_, such that its order statistics
have the same distribution as the uniform order statistics, N > 6 and 6 > 0,

3
: —p.. _N25
P(Ilng;l([ P,;)Zl <8) < —N*%

and
4 82

P( min |(I - P,;,)Zl < 3) <

i<j<k

Proor. First note that without loss of generality, Z can be taken to be
uniform on Sy_;. Let o € 3 be a uniformly distributed permutation on N
letters, independent of Z. Let Z, = (Z,), Z,@y - --» Zyn))- Then Z, is uni-
formly distributed on Sy_;. The minimum distance to any hyperplane &,; or
h;;, is unaffected by this relabeling, so it is sufficient to prove the proposition
for Z uniform.

By Proposition 2.1, for any two indices i <j, |(I — P;;)Z > has a
Beta(1/2,(N — 1)/2) distribution. Elementary bounds and summing over all

I;’ choices of indices gives the first result. The second result is proved

analogously. O

For the next problems define an interaction graph, which describes the set
of hyperplanes that a step of a random walk on S,,_; encounters. For any two
points y, z € Sy _,, define a graph G as follows. G has N vertices, correspond-
ing to the N coordinates of Sy _;. The edge jk is included in G if the geodesic
from y to z intersects h,;. If there is a path from j to k£ in G, then j and %
are said to be connected. A graph is connected if every pair of vertices in it is
connected. We say G has a component of order K if there is a set of K vertices
such that the subgraph of G consisting of these K vertices and the edges of G
between them is connected.

Consider the probability that the interaction graph G of two random points
Y and Z contains a component of order 3 or 4.

ProposITION 3.2. Given Y distributed on Sy,_, such that its order statistics
have the same distribution as uniform order statistics, Z chosen uniformly
from the cap C(Y') of points within a distance ¢ of Y, and G the interaction
graph of (Y, Z), let Cx be the event that G has a component of order K. Then

N3g2

P(Cy) < —
(G) < 18(1 — £2/2)°

and

N4g3

P(C) < —————.
(€)= 17(1 - £2/2)°
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Proor. Again Y can be taken to be uniform on S, _,. Consider the first K
coordinates of Y, (Y},Y,,..., Yy). Without loss of generality suppose Y, <
Y, < --- <Yg. Let C; be the event that the subgraph of G made up of
vertices 1,2, ..., K is connected. For example if K = 3 this is the event that
the segment from Y to Z crosses at least two of the hyperplanes 4,5, A,3 and
has. Then P(Cy) < (¥)P(Cy).

Moving Z further from Y along the geodesic connecting them can only add
edges to the interaction graph; hence it can only increase the probability of a
component of order K. Thus for simplicity assume |Y — Z| = ¢; we will obtain
an upper bound on P(Cg).

First assume K = 3. Let & be the hyperplane {x € R": x, = x, = x,}. The
squared distance from Y to A is

I(I = Pyyg) Y12 = 3((Y, - Yp)? + (Y, — Y3)* + (Y, — ¥y)?).

By Proposition 2.1 this has a Beta(1, (N — 2)/2) distribution. Since Y; < Y, <
Y, was assumed, (Y; — Y,)? + (Y, — Y;)? < (Y; — Y,)2 Thus if the distance
from Y to A is d, then (Y, — Y;)? > 3d?/2. Formally,
(Y, - Yy)*  3d?
> .
2 4

To have the subgraph (1,2,3) connected here, Z; < Z, must hold. Recall
how a point Z at a distance ¢ from Y can be generated. Let T' denote the plane
tangent to Sy _; at Y. Choose a point 7 in T uniformly from the sphere of
points of norm & =ey1 —e2/4 /(1 — 2/2). Then Z is the projection of
Y+ n onto Sy_,, or Z=(Y+ 7n)/|Y + nl|. Geometrically, Z is across hg
from Y if and only if Y+ 5 is across h;; from Y. This in turn holds if
and only if n - (P, — )Y > [(P;;— 1 )Y12. With P, denoting projection onto
T, this in turn implies that n - P(P,; — )Y > |(P,3 — I)Y]. Let © denote a
unit vector in the direction of Pp(P,3 — I)Y, © = Pp(P;3 — 1)Y/
|Pp(P;3 — I)Y]. Since 7 is uniformly distributed on the sphere of radius &' in
T, Proposition 2.1 implies that &'~ %|n - ®|> has a Beta(1/2,(N — 2)/2) distri-
bution. Further, it is independent of d? = |(I — P,,3)Y1? ~ Beta(1,(N — 2)/2).
Combining all this with (3.1) gives

P((1,2,3) is connected) < P(n - ® > |[(P;53 — I)Y1)
< P(In - O > 3d%/4)/2.

This is simply P(¢'?U > 3V/4)/2, where U is Beta(1/2,(N — 2)/2) and V is
Beta(1,(N — 2)/2) and U and V are independent.

Thus
N
F( 2 ) 4.2 3v (N-4)/2
W[,=0PUZE(1_0) dv.
M=

(3.1)  (Pygs —)YI* =d® = (P, — I)YI” =

P(Cy) <
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Changing the variable of integration to ¢ = 3v/4¢'2 and simplifying gives

4 8/2 1
3 ft=OP(U > t) dt.
This is (N — 2)¢?EU/3 < ¢'?/3, since EU = (N — 1)~L.

Multiplying by (’;’ ) gives the first result.

Next consider P(C,), the probability that the interaction graph G has a
component of order 4. Again we assume Y; <Y, <Y; <Y, and let 2 be the
hyperplane {x € R": x; = x, = x; = x,}. The squared distance from Y to A is
I(I — P,43,)Y1?, which has a Beta(3/2,(N — 3)/2) distribution by Proposition
2.1. If this squared distance from Y to 4 is d?, then (Y; — Y,)? > d2. Further,
max((Y; — Y3)2 (Y, — Y)?) > d?/2.

To have the subgraph of G with vertices (1,2, 3,4) connected, either
Z,>Z,orboth Z, > Z; and Z, > Z, must hold. Thus

(3.2) P(C)) <P(Z,2Z,) +P(Z,2 25N Z, > Z,).

P(Cy) <

The first term of (3.2) can be bounded as in the case of K = 3. It i‘s no larger
than P(¢?U > V)/2, where U and V are independent Beta(1/2, (N — 2)/2)
and Beta(3/2, (N — 3)/2) random variables, respectively. Calculation shows
1.15¢°

m

(3.3) P(Z,>2,) <

The second term is bounded in the same fashion. Suppose without loss of
generality that (Y; — Y,)? > d2/2. Proceeding as above,

d2

P(Z,>2,n2,>2,) < P(zl > Z(Y, - Y,)% > 5

(3.4)
2v2 (1.15)¢"®

< —

T

Adding (3.3) and (3.4) and multiplying by (’;’ ) gives the bound on P(C,). O

The last problem concerns how close the path from the current position to
the next comes to a hyperplane of the form {x € R": x; = x; = x,} for some
1<j<ek.

ProprosiTION 3.3. Given Y distributed on Sy _, such that its order statistics
have the same distribution as the uniform order statistics and Z chosen
uniformly C(Y), let

b =P )Y +22)
8 1$;lgll?szv e [(1-A)Y +AZ|
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Let 6 > 0 be given. Then

N&2(1 + ¢ 2NV2(1 + &?) 8¢
P(dssa)s(g’)( (2 ) (w )).

Proor. Again, without loss of generality, Y can be taken to be uniformly
distributed on Sy _;. Further

N)P( . (I = Pigg)(AY + (1 = 1) Z)| < )

P(d; <9) < (3 min

0<A=<1 [(AY + (1 = A)Z)|

Again the squared distance d? = (I — P,)Y| from Y to h ={x € R™: x, =
%, = x5} has a Beta(1, (N — 2)/2) distribution.

Consider again the tangent plane T' to Sp_, at Y. Except on a set of
probability 0 (which will be ignored hereafter) T N h is N — 3 dimensional; it
is spanned by vectors (x;,...,x,) satisfying the three equations x, = x,,
Xy = xz and x - Y = 0. T also contains a vector that is orthogonal to &, namely
(Y, - Y;,Y; - Y,,Y, - Y,,0,...,0). Let n denote a unit vector in this direc-
tion; n = (\[_d) 1(Y2 Y, Y; - Y,,Y, —Y,,0,...,0). Let m denote a unit
vector that, along with n and a basis for T' N A, gives an orthonormal basis for
T. Assume m is oriented so that m - (I — P,)Y > 0. Note that (I — P,)m is
orthogonal to n and Y, since both m and P,m are, and (I — P,)m is
orthogonal to every vector in k, so it must be a multiple of (Y; — Y55, Y, —
Y123’ Y Y123’ ) 0) - (I Ph)Y

It suﬁices to conSIder Z a distance ¢ from Y, since increasing the step
length can only increase the probability in question. Z can be generated by
choosing a random vector 1 of length & = &y/1 —2/4 /(1 — £2/2) in T, and
taking Z = (Y + 1)/|Y + nl. Let the random vector (U,V)=(n - n,n - m) A
simple generalization of Proposition 2.1 shows that &'~ 2(U 2v?y) has a bivari-
ate Beta(1/2,1/2,(N — 2)/2) distribution. Thus U2/(U2 + V?) has a
Beta(1/2, 1 /2) distribution.

Consider the geodesic arc from Y to Z. Since Y and 7 are orthogonal, this
arc can be written as (Y + An)/ V1 + A%'® for 0 <A < 1. Let d2()) be the
squared distance from a point on this arc to A in this parameterization:

I(I = P,)(Y + An)? _ (- P)Y +A(Un + V(I - Ph)m)|2
1+ A% 1 + A2e'?

d3(A) =

Also let d2 = min, (g 4 d%(A). Then P(d4 < 8) < ({;’)P(dA3 < 8). Let g denote
|(I — P,)m|, and recall d = |(I — P,)Y]. Then

(d + AVg)? + A2U2
1 + A%"2 '

d3(2) =
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To bound the minimum of d 2(A) over (0, 1) from below, note that

N 1
d2(2) > ——((d + AWVg)? + A2U2).
3(A) 142 (( g) )
The minimum value of this quadratic is obtained at
A7
A* = _22—g'_2’
Vig“+ U
with minimizing value
d*U?
(1+¢&?) (Vg2 +U?)’
If X* < 0, then the minimum value in the interval [0, 1] is d 2(0). Note also that

d; cannot be less than or equal to & if d > & + «.
Thus

P(dy <6) < P(d? < %) + P([(8 +e)? = d? > 62| N [Vgd < 0]

d2U?
N < 8?]].
[(1 + &%) (V22 + U?) ])
Note that since g is independent of U and V, this probability will not be
decreased if g is set to its maximum value 1. Therefore let g = 1. Since the

sign of V is independent of V2, d and U, 1/2 = P(V < 0lg, d, U2, V?). Using
this along with the distributions of d2 and U2/(U? + V?2), we obtain

"(z)

N
3]
N-2 9 1
r(=) T (E)
(§+e)2 fmin((l +£%)8%/%,1) (
z=0

x=82 Vz(1 - 2)

Some manipulation and multiplication by (’;’ ) gives the result. O

P(dy <9) < [P - )™ 2 gy
0

1
+ —
2

1-— x)(N—4)/2

X dzdx.

4. Preliminary results on coupling. In this section some results on
two kinds of joint transition distributions for random walks on H are given.
The two types of joint transitions will be called reflection and rotation steps. In
a reflection step the two processes move as reflections in the hyperplane of
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points equidistant from them. This is the coupling used in Lindvall and Rogers
(1986). In the second type of step, a rotation step, the processes try to preserve
their distance. This type of joint transition will be used when the processes are
close to a corner of H, so that a reflection step could move them apart.

ProposITION 4.1. Suppose x,y € Sy _, are on opposite sides of an N — 1-
dimensional hyperplane h. Then

lx — (2P, — Iyl < lx — yI.
Note that (2P, — I)y is the reflection of y in A.
Proor. The straightforward proof is omitted. O

Next define some notation involved in generating a step of the random walk.
Given Y(i) € int H, let Y'(i + 1) be chosen uniformly from C(Y(i)). The next
position Y(i + 1) of the random walk can be computed as follows. Let g(¢) =
Y@)+¢(Y'G+ 1) —Y@W) for 0 <t <1. Let ¢, = inflt > 0: g(¢) € H}. Then
g(t,) € 0H. One can show that with probability 1, g(¢,) lies in a single face of
H, say h_,. Define g,(¢) by

g(t) for t < ¢,

t) =

&i(t) {(2Pcd ~I)g(t) fort>t,.

Then g,(#) matches the path from Y(i) to Y(i + 1) through its first reflection.
Similarly define ¢,, ... and g,, ... by ¢t; = inf{t > ¢;_;: g;_(¢) & H} and
gi—1(t) for ¢t < ¢,

(1) =
&(t) 2P,,—I)g;_,(t) fort>t¢,
f J J

if g;_(¢,) € h,;.

Note that each reflection (2P — I) amounts to a transposition of a pair of
coordinates. Thus since g(¢) does not hit U, ., . {x: x, = x, = x_} with proba-
bility 1, neither will any g;(¢). Further each g;(¢) crosses at least one less

hyperplane k,;, from the entire set of (’;’ ) possible hyperplanes than g;_;

does, and g(¢) crosses each hyperplane at most once, so for some j < (2’ ),
g,;(t) must have its terminal point inside H. This terminal point is then
Y(i@ + 1).

Recall the interaction graph G, of the step from Y(i) to Y(i + 1). Vertices j
and % are joined by an edge in G, if the segment from Y(i) to Y'(i + 1) crosses
h .

Jk

ProPoSITION 4.2. If a and b are not connected in G, then no reflection of
the transformation from Y'(i + 1) to Y(i + 1) can be in h,.

Proor. Clearly the reflection in the construction of g,¢) involves con-
nected coordinates. Now consider the interaction graph of the segment
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(g(#,), g(1). It is the graph of the segment (g,(¢,), Y'(i + 1)), except that two
coordinates in one connected component have switched labels, and at least one
edge has disappeared. Thus a and b cannot be connected in the graph of
(g4(¢,), g(1)) unless they were connected in G;. The reflection in the construc-
tion of g, will involve coordinates that are connected. Continuing inductively,
every reflection will involve only connected coordinates. O

Consider now a reflection step. Given X(i) and Y(i) in S, _;, let & be the
hyperplane {z € RY: |z — X(i)| = |z — Y(i)|} of points equidistant from X(i)
and Y(i). Each step Y(i) —» Y'(i + 1) is defined in terms of the step X(i) —
X'(: +1) as follows. If X'(G + 1) € C(X(E)) Nn C(Y(7)), then Y'(i+ 1) =
X'(i + 1). Otherwise, Y'(i + 1) = (2P, — ) X'(i + 1), the reflection of X'(i +
1) in h. Clearly Y'(i + 1) is uniformly distributed in C(Y(i)).

ProposiTiON 4.3. If a reflection step is taken by random walks X and Y on
H from X(i) and Y(i) and if the interaction graph G, of (X(i), X'(i + 1))
contains no connected component of order 3 or more, then

IX(i +1) — Y(i + 1) < IX'(i + 1) = Y'(i + 1).

Proor. By assumption G; is composed of isolated singletons and doublets.
Since the reflections involved in transforming X'(i + 1) to X(i + 1) are simply
interchanges of coordinates, the reflections in disjoint components of G;
commute. Thus the reflections in transforming X'(i + 1) to X(i + 1) can be
done in any order. Denote this list of reflections by R.

We give a sequential procedure for calculating X(i + 1) and Y(i + 1) from
X'(i + 1) and Y'(G + 1) with the property that, at each step of the sequence,
the distance between the points cannot increase. Let X,(i + 1) = X'(i + 1).
Begin performing the reflections involved in transforming Y'(i + 1)to Y(i + 1)
in the proper order. Suppose at step j, having performed j — 1 reflections
already, we have Y;_,(i + 1) and X;_,(i + 1), and suppose the next reflection
Y is to perform is in the hyperplane h,,. Define Y,(i + 1) =(2P,, —I)
Y,_i+1) and

X(i+1)=X;, (i+1) if2P,,-1¢R
and
X;(i+1)=(2P,, - I)X;_ (i +1) if2P,,-I€R.

Delete 2P,, — I from R if it is in R, and proceed to the step j + 1. Eventually
Y,(i + 1) will be in H. At this time, perform all the remaining reflections in R.

Proposition 4.1 guarantees that each step of this process only brings the
points closer together. If at step j, both X; (i + 1) and Y,_,(i + 1) are
reflected in h,,, then certainly |X; i+ D-Y,_Gi+Dl=IXGC+1-
Y;(i + DI. If at step j, only Y;_,(i + 1) is reflected in h,,, then X; (i + 1
must be on the same side of k,, as H, while Y;,_,(i + 1) must be on the
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opposite side. Thus by Proposition 4.1,
IX;(i+1) =Y+ <IX;_((i+1)-Y_,(i+1)

Thus the distance is nondecreasing until Y(i + 1) € H is obtained. Any
further reflections involving X(i + 1) are in hyperplanes separating it from H.
Thus again by Proposition 4.1, the distance cannot be increased by these
reflections. O

ProrosiTiION 4.4. Suppose W, X, Y and Z are random walks on H.
Suppose |W(i) — X(i)| < |Y(Q) — Z(@)|. Suppose each of the pairs (W, X) and
(Y, Z) takes a reflection step. Then there is a joint distribution for the four
steps such that (W' (i + 1) -X'G+ D <|YG+1)-2Z'(G + 1).

Proor. Let hy and hy denote, respectively, the hyperplanes of points
equidistant from W(i) and X(i), and Y(i) and Z(i). Consider the one-
dimensional orthogonal subspaces A and Ay, and unit vectors ey and ey in
each. Assume ey, and ey are chosen so that Y(i) - ey > W(i) - ey, > 0. Let Fy,
and Fy denote, respectively, the cumulative distribution functions of
W'(i + 1) ey and Y'(i + 1) - ey. Elementary geometry shows that Fy, is
stochastically smaller than Fy. Further, P((W'(i + 1) — X'(i + 1)| < 2x) =
Fy(x) + Fyy(—x) for x > 0. It follows that |[W'(i + 1) — X'(i + 1)| has a dis-
tribution that is stochastically smaller than that of |Y'(i + 1) — Z'(i + 1)|.
Thus a joint distribution satisfying |[W'(Gi + 1) -X'G+ D <|Y'G+ 1) —
Z'(i + 1)| can easily be constructed. O

Now define a rotation step. We are given X(i), Y(i), and assume X(i) # Y(i).
Generate X'(i + 1) uniformly from C(X(i)). Y'(i + 1) will be constructed
next. With probability 1 there is an N — 2-dimensional subspace h of points
equidistant from X(i), Y(i) and X'(i + 1); h ={x € RM: |x — X()| = |x —
Y()| = |x — X'(G + D|}. There is a unique rotation R fixing h satisfying
RX(i) =X'(i + 1). Let Y’ + 1) = RY(Q).

To check that Y'(i + 1) is uniformly distributed in C(Y(i)), note that the
probability distribution of Y'(i + 1) is determined by the joint probability
distribution of 2 and R. It is easy to check that picking a point Y*(i + 1)
uniformly from C(Y(i)), letting A* = {x € RY: |x — X(@)| = |x — Y(@)| = |x —
Y*(i + DI}, and letting R* fix h* and satisfy R*Y(i) = Y*(i + 1) gives a pair
h*, R* with the same joint distribution as 2, R. Thus Y'(i + 1) has the proper
distribution.

The following proposition shows that in a rotation step, as long as X(i) and
Y(i) are not close together, they cannot both cross from one side of a
hyperplane to the other.

PROPOSITION 4.5. Let h be any (N — 1)-dimensional hyperplane and sup-
pose X(i) and Y(i) are on the same side of h. Also assume |X(i) — Y(i)| > &.
Suppose X'(i + 1) is chosen uniformly from C(X(i)) and Y'(i + 1) is chosen
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by a rotation step. If X(i) and X'(i + 1) are on opposite sides of h, then Y(i)
and Y'(i + 1) are on the same side of k.

Proor. Consider the affine plane @ spanned by X(i), X'(i + 1) and Y(i).
R as defined above acts as a rotation on @, fixing the point in it that is
equidistant from X(i), X'(i + 1) and Y(i). Assume without loss of generality
that the angle of rotation of R is no larger than 7. R cannot move Y(i) as far
as X(i), since their distance is larger than &. Geometrically, it is clear that for
Y(i) to be rotated across @ N h, it must first pass through X(i), which is
impossible. O

PropOsITION 4.6. Given random walks X and Y on H, suppose |X(i) —
Y(i)| > ¢, a rotation step is taken, and the interaction graph GX of (X(i),
X'(i + 1)) has no connected component of order 4 or more. Then |X(i + 1) —
YG + Dl < IXE) - YOI

Proor. By Proposition 4.5 any edge that is present in GX cannot be
present in GY. By assumptlon all the connected components of GX are of the
four types (A AL, l, ). As in Proposition 4.3, in transforming X'(z + 1) to
X(@ + 1), the reﬂections in disjoint components can be done in any order.
Again, we give a sequential procedure for performing the reflections trans-
forming X' + 1),Y'(i + 1) to X(i + 1), Y(i + 1) such that at each step, the
distance between the points is not increased. Begin by performing all the
X-reflections corresponding to connected components of types A and |, that is,
complete subgraphs. By Proposition 4.5 none of the edges in which reflections
are performed may be present in GY. By Proposition 4.1 each of these
reflections can only decrease the distance between the current values of
X;(i + 1) and Y'(i + 1). Next for each component of the form A, perform the
first required reflection, and a second reflection if it is required and does not
involve an edge present in G;. Again each of these reflections can only bring
X;(i + 1) closer to Y'(i + 1).

After this is complete the remaining edges of G* have no connected
component of order 3 or more. An argument exactly like that of the proof of
Proposition 4.3 completes the proof. O

Next consider the behavior of two random walks taking rotation steps when
their current positions are very close together. The following pair of proposi-
tions concludes by showing that, unless both random walks come very close to
the intersection of two hyperplanes of the form {x € RY: x; = x;}, their final
positions will be at least as close as their initial positions.

Suppose X(i), Z(i) € Sy_, satisfy |X(i) — Z(i)| < 5. Suppose R is the
rotation fixing vectors orthogonal to the span of X(i), Z(i) and X'(i + 1) that
satisfies RX(i) = X'(i + 1) and RZ(i) = Z'(i + 1). From previous discussion
R fixes an N — 2-dimensional subspace of R¥, and rotates the orthogonal
complement of this subspace by an angle 6 with |6] < 7. For 0 <t < 1let R,
be the rotation of angle t6 in the same plane as R. We will say a hyperplane
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separates two points x and z if they are on opposite sides of it or if at least one
of them lies on the hyperplane.

ProrosITION 4.7. Suppose 0 <t <1 and |X(i) — Z(@i)| <6. Let h,, h,
denote hyperplanes of the form {x € RV: x = x;}. Suppose also that

hr:li:l}}bl(I - Phaﬂhb)RtX(i)l > 8.
Then at most one hyperplane h, separates R,X(i) and R,Z(i).

Proor. Fix h, # h,, and suppose both h, and h, separate R,X(i) and
R,Z(i). Let h be the plane spanned by the normals to k2, and h,, that is, the
plane orthogonal to &, N h,. Then the projections of A, and A, onto h are
lines, and both lines separate P,R,X(i) and P,R,Z(i). Also, since |(I —
P, )R X()| > 8, |P,R,X(i)| > 8. The angle between P,h, and P, h, is
the same as the angle between the normals to &, and &,, either 7/3 or 7 /2.
In either case it is elementary geometry to check that if both lines separate
P, R,X(i) and P, R,Z(i) and |P, R, X(i)| > §, then |P,R,X(i) — P,R,Z(i)| >
8. This implies |R,X(i) — R,Z(i)| > §, which is a contradiction, proving the
proposition. O

ProOPOSITION 4.8. Suppose X(i) and Z(i) satisfy |X(i) — Z(i)| < & and take
a rotation step. Let h,, h, denote hyperplanes of the form {x € R": x =X}
Suppose also that

min min |[(I — P, R, X(i) > 8.
Ostslha;ehbl( hanhb) X ()

Then | X(i + 1) — Z(G + )| < 1X(@) — Z(G)I.

Proor. By Proposition 4.7, X(i) and Z(i) are separated by at most one
hyperplane k. Let hy, h,,..., h, denote the sequence of hyperplanes crossed
by the path from X(i) to X'(i + 1). Then if A, # h,, by Proposition 4.7 the
path from Z(i) to Z'(i + 1) must cross h,, h,,..., h,_; in that order. It may
also cross h, and one additional hyperplane A, ;. If h; = h,, then the path
from Z(i) to Z'(i + 1) must cross h,,..., h,_; in that order, plus possibly A,
and then some 4, ;. In any of these situations, the sequences of reflections
used to transform X'(i + 1) to X(i + 1) and Z'(i + 1) to Z(i + 1) are essen-
tially the same, with the only possibilities for differences being one first
crossing a hyperplane inside H, which would not cause a reflection, and one
crossing a final hyperplane that the other does not. In any case, the common
initial sequence of reflections will preserve their distance, while by Proposition
4.1 a final reflection by one process can only decrease the distance. O

5. The coupling. In this section a coupling for a random walk on H C
Sy_; is given. The random walk starting in the uniform (stationary) distribu-
tion will be denoted Y. The random walk whose rate of convergence to
uniformity is of interest will be denoted X. X(0) can have any probability
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distribution on H; often point masses are considered. In the next section, on
finite precision calculations, it will be convenient for X(0) to be uniform on a
subset of H.

Before giving the final coupling result, we give a proposition that contains
the main substance of the result.

ProposITION 5.1. Given H C Sy_,, the points in Sy_, satisfying a given
partial order 7, and x and y arbitrary points in H, let X and Y be random
walks on H started at x and y. Let k; = (1 — aN*2/12)711(b) and k, = m(c),
with 1(b) and m(c) given by (2.11) and (2.15). Let k = k, + k,. Suppose ¢ is
small enough to satisfy

(5.1) k N*d
: —— <py,
17(1 - e2/2)°

k2N382
(5.2) <P

18(1 — £2/2)"
Then there is a coupling for X and Y such that
(5.3) P(X(k)=Y(k))=p=1-(a'+4b"'+4c™ ' +p, + py).

ProoF. Define a third random walk W with the same marginal transitions
as X and Y, but with W(0) uniform on H. If both X and Y couple with W in
k steps, then they also couple with one another. The steps of X and Y will be
defined by the steps of W as follows.

The definition will change at time %,; first consider the paths up to time &,.
If i <k, and W(i) is within a distance ¢ of any hyperplane of the form
{x € RN: x,=x,, =x,} for | <m < n, then both X and Y take rotation steps
based on the step W(i) » W'(i + ). If |X(i) — W(i)| < 3¢, then X takes a
rotation step based on W. Similarly if |Y(i) — W(i)| < 3¢, then Y takes a
rotation step based on W. If X (or Y) has not been required to take a rotation
step above, then it takes a reflection step based on W(i) » W’'(i + 1). It will be
shown that, with probability at least 1 — (a™! + 46~ + p,), both X(k,) and
Y(%,) are within 3¢ of W(%),).

First consider the number of reflection steps generated by W in its first k&,
steps. Since W(i) is always uniformly distributed, by Proposition 3.1 at each
time point it has probability at most N*e2/12 of being within & of any
hyperplane of the form {x € R": x, = x,, = x,} for I < m < n, so the expected
number of rotation steps among the first k, is at most k,N%2/12. By
Markov’s inequality with probability at least 1 — a~!, there are at least
k(1 — aN*e2/12) reflection steps among the first %, steps. This can be
restated as

(5.4)  P(atleast I(b) reflection steps among first ;) > 1 —a™ 1.
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Let &7 denote the event that no component of order 4 arises in the
interaction graph of (W(i — 1), W'(i)) for all i < k,. W(i) is uniformly dis-
tributed for each i, and Proposition 3.2 gives the probability of a component of
order 4 or more at each step, so by assumption (5.1),

k N*3

(5.5) P(,Q/)Zl—m=l

— Pi-

Now we can show that with high probability both X(k,) and Y(%,) are
within 3¢ of W(k,). First consider X(%,). Define a counting random variable
N(j) for j > 0 to be the number of potential reflection steps generated by W
in its walk from W(0) to W(j); N(j + 1) = N(j) if W(j) is within ¢ of
a hyperplane of the form {x € RM:. x,=x,==x,} for I <m <n, and
N(j + 1) = N(j) + 1 otherwise. For j > 1let N~1(j) be the time W generates
its jth reflection step; N~1(1) is the first time i > 0 that W(i) is not within &
of a hyperplane of the form {x € RM: x, = x,, =x,} for | <m <n, and for
J = 2, N"(j) is the first time i after N~%(j — 1) that W(;) is not within ¢ of a
hyperplane of the form {x € R: x, =x,, =x,} for l <m < n.

Define two new random walks W* and X* on S,_; (nonreflecting) as
follows. Let W*(0) = W(0) and X*(0) = X(0). Now define W*(i) and X*(i)
for ¢ < N(k,). Given W*(j — 1) and X*(j — 1), consider the pairs
{(WNIGD,W/(N~Y()) + 1)} and {X(N~Xj)), X'(N~Xj) + 1)}. These pairs
are part of the construction of a reflection step involving W and X. If
[W(N-1(j) - X(N“Yj)| < [W*(j — 1) — X*(j — 1)|, then by Proposition 4.4
there is a conditional distribution for W*(j) and X*(j) given
W(N-1(G),W/(N-(j) + 1), X(N~Yj)) and X'(N~(j) + 1) involving a re-
flection step such that |X'(N~}(j)+ 1) — W' (N - 1(j) + 1| < |X*(j) -
W*(j)I. In this case, generate X*(j) and W*(j) accordingly. Otherwise,
generate X*(j) and W*(j) independently with the proper marginal distribu-
tions.

Note that on &/, for 0 <i <k,;, IX(I) — W(i)| < max(8e, |X*(N()) —
W*(N()))). This follows by induction. At time 0, the two distances are equal.
Suppose the inequality holds at time i. For the next step of W and X, one of
three things can happen. If [W(i) — X(i)| < 3¢, then X takes a rotation step
based on W, and by Proposition 4.6, on &7, |X(i + 1) — Y(i + 1)| < 3¢. Sec-
ond, if |[W() — X(i)| > 3¢, and W(i) is within ¢ of a hyperplane of the
form {x e RN: x,=x,, =x,} for ] <m < n, then N is not incremented, so
X*(NG + 1)) = X*(N()) and W*(NG + 1)) = WH*(N(Z)). W and X take a
rotation step, and by Proposition 4.6, on &7, their distance is not increased.
Thus the assertion holds here as well. In the third case, |W(i) — X(i)| > 3¢
and W(i) generates a reflection step, incrementing N. By induction and the
construction of W*(N(i + 1)) and X*(N(@G + 1)) above, |X'(i + 1) —
W' + 1| < [W*(NG + 1)) — X*(N(G + 1))|. However, by Proposition 4.3,
IXG@ + 1) - WG + D] <1X'(G+ 1) — W + 1), so the claim is proved.

On &7, X(k,) and W(k,) will be within 3¢ of each other if X* and W* come
within 3¢ of each other before the random time N(k,). By (5.4), P(N(k,) >
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1(b)) = a~!. Combining this with Proposition 2.4 and (5.5) shows that
P(X(ky) —W(k) <8)>1—-p, —a ' —-2b"1.

The exact same argument can be made for Y(%,) and W(%,) being within 3¢
of each other except on a set of probability at most 1 — p; —a~! — 2571, Since
the two sets where X(%,) and Y(%,) may not be close to W(k,) both contain
&Z° and the set where W generated less than /() potential reflection steps,

P(IX(k,) — W(ky)| < 38 N |Y(ky) — W(k,)l < 3¢)
21-(p,+a t+4b71).

Now let X and Y take reflection steps based on W for the next k, steps. If
both are already close to W, they will both couple to W with high probability.

Let & denote the set of sample paths where the interaction graphs of
(W(i — 1), W'(i)) contain no components of order 3 or more for k; + 1 < i < k.
Since each of W(i), k, < i <k, is uniformly distributed on H, by Proposition
3.2 and assumption (5.2),

(5.7) P(#) > 1-p,.

To show X and W couple with high probability by time k, again define two
random walks X’ and W' on S,_; with |X'(0) — W'(0)| = 8e. X' and W’
always take reflection steps. As above X’ and W’ can be defined so that on
#N{IX(k) — W(k)| <3¢} for 0<i<k, IXG-WG3EI=I|X(k,+i)-
W(k, +i)l. X' and W’ will certainly couple by time % if W’ crosses the
hyperplane of points equidistant from W’(0) and X'(0) between times 1 and
k4. By Proposition 2.5 this has probability at least 1 — 2¢~ 1. As in the previous
construction involving a pair W* and X*, one can show that on & a coupling
for X’ and W’ by time k, implies a coupling for X and W by time £,
assuming X(%,) and W(k,) were within 3¢ of each other. A similar argument
can be made for Y coupling with W. Again note that #° is part of the two sets
of sample points where X and Y may not couple with W.

Tying it all together, X and Y will couple by time % unless one of the
following events occurs.

(5.6)

1. The sample path is not in 7. This has probability at most p,.

2. W does not generate 1(b) potential reflection steps by time %,. This has
probability at most a~!.

|X*(1(b)) — W*(I(b))] > 3e. This has probability at most 25~ 1.
[Y*(1(b)) — W*(I(b))| > 3e. This has probability at most 2571

The sample path is not in #. This has probability at most p,.

X’ and W' do not couple by time k,. This has probability at most 2¢ 1.
Y’ and W’ do not couple by time k,. This has probability at most 2¢ 1.

ook

Subtracting all these probabilities from one gives the result. O

THEOREM 1. Let H C Sy,_, be the points in Sy_, satisfying a given partial
order #. Let X(0) have an arbitrary probability distribution on H. Let 6 > 0
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be given. Assume a step size ¢ and a number of steps k have been chosen in
Proposition 5.1, giving a coupling probability p. Assume K satisfies

log & ]
log(1 - p)

Let X take steps uniformly chosen from a cap of radius €. Recall that %
denotes the uniform distribution on H. Then

I£(X(K)) - 2l < 5.

sz[

Proor. By an easy extension of Lemmas 4 and 5 of Chapter 4E of Diaconis
(1988), for any coupling of X and Y with Y(0) uniform, || . A(X(K)) — | <
P(X(K) # Y(K)). Therefore it suffices to show that X and Y can be coupled
by time K with probability at least 1 — 6.

Let j =[log 8 /log(1 — p)l. Run the coupling used in Proposition 5.1 j
times, each time for £ steps. Each time, independently of the past, there is
probability at least p of coupling. Therefore the probability of not being
coupled after j attempts is at most (1 — p)/. By the definition of j, this is at
most 6. O

To avoid vacuousness, we must exhibit some choice of ¢ and k for which
the probability of coupling (5.3) is positive. This is implicit in the following
example of the allocation of error probabilities to obtain a specific step size and
number of steps.

CoroLLARY 1. Suppose N > 6, and a random walk X on H C Sy_, taking
steps of maximum size € = (6 N*(log(N — 1) + 10))~! starting with an arbi-
trary initial distribution is run for K = 253[2.17 log(6 ~1)](log(N — 1) + 10)3N?8
steps. Then

I.£(X(K)) - %I < 6.

Proor. Set a = 1000, b = 16 and ¢ = 16, and apply Theorem 1. Then
k, < 252(log(N — 1) + 10)°N&,
so p; < 0.07. Also
ky < 27(log(N — 1) + 10) N*5,

50 p, < 0.059. Thus & = k, + k, < 253(log(N — 1) + 10)3N. In each attempt
at coupling, the failure probability is at most 0.63. Straightforward calculation
gives the result. O

A better leading constant can be obtained by a more careful analysis,
particularly if the assumption N > 6 is changed to a larger lower bound. The
factor log(N — 1) + 10 can also be improved. However, the factor log(6 1) N8
appears to be intrinsic to this technique; some new ideas will be required to
reduce it to a more practical value.
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6. Finite precision calculations. The calculations thus far have as-
sumed that the random walk X on H was generated with perfect accuracy.
For actually simulating X(0),..., X(K), this is not realistic. Intuitively, if
enough digits of X were generated at each step, the final position X(K) would
be close to uniform anyhow. The natural question is: How many digits are
enough? This section gives a rigorous answer.

Think of an “infinite precision” random walk X and a ‘““finite precision”
random walk Z. Z starts off close to X and tries to stay close by taking
rotation steps. It may get separated for two reasons. The first is the gradual
accumulation of roundoff errors. The second is more subtle. Once X and Z are
slightly separated, if they cross several hyperplanes in a different order and if
the reflections in these hyperplanes do not commute, then they may be pushed
apart a distance on the order of magnitude of the step size. Many of these
could push them very far apart. This section discusses the allowable roundoff
error at each step such that the roundoff error alone does not separate X(K)
and Z(K) too much, and that X(i) and Z(i) are never far enough apart so
that a separation from noncommuting reflections is very likely.

Define a finite precision random walk Z of accuracy y on H as follows.
Given any probability distribution # on H, say Y has distribution 7 to
accuracy v if there exists a bivariate random variable (X', Y’), where X’ has
distribution 7, Y’ has the same distribution as Y, and P(|]Y’ — X'| > y) = 0.
Given a planned initial distribution, this specifies a class of possible distribu-
tions for Z(0), all of which match it to accuracy y. The steps of Z are defined
similarly. Given Z(i), Z'(i + 1) must be chosen from a distribution which, to
accuracy v, is the uniform distribution on C(Z(i)). The choice of the distribu-
tion approximating the uniform may depend on Z(i); it need not be the same
at every step. Again this does not uniquely specify a random walk; any Markov
process satisfying these requirements will do. Simulating a random walk of
accuracy vy > 0 is possible with finite precision normal number random num-
bers.

Let X be an infinite precision random walk on H, the type discussed in the
previous sections. To obtain results easily, it is necessary to make an assump-
tion about the distribution of X(0). Let S; c H be the set of points in Sy_;
satisfying a particular linear extension in ~#. Assume X(0) is uniformly
distributed on S;. By relabeling coordinates if necessary, S; can be taken to be
{x € Sy_1:x; <x3 < +-+ <ay). In theory X(0) could be generated by taking
Y., Y,,..., Yy iid N(O, 1), normalizing them to have sum of squares equal to 1,
then sorting the normalized values.

Now define a finite precision approximation Z to X. Let Z(0) € H be such
that P(|Z(0) — X(0)| < y) = 1. Given Z(i) and X(i), define Z(i + 1) and
X(@ + 1) as follows. Let X'(i + 1) be chosen uniformly from C(X(i)). Choose
Z"(i + 1) by the rotation step method. Let Z'(i + 1) be any point satisfying
P(Z'GG+1) - Z2"G + 1| < y) = 1. Now construct X(i + 1) and Z(i + 1) by
performing reflections as usual. By using random number generators and a
finite amount of computation, the random walk Z can be simulated. Of course,
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Z can and in practice should be simulated without consideration of X;
marginally Z is just a random walk of accuracy y.

THEOREM 2. Let # be the linear extensions of a given partial order of N
items. Suppose without loss of generality that (1,2,3,..., N) € #. Let % be
the uniform distribution on . Suppose & > 0 is given, and a random linear
extension L of # satisfying ||.£(L) — %Il < & is desired. Suppose ¢ and K
have been chosen so that for an infinite precision random walk, |- (X(K)) —
%\ < 68/2. Let

, 75 ( 66 )1/ 2 w8
Y = min 25 ) 3 ) 2 .
18N?*(K+ 1)\ N3(K + 1) 2V2 (K + 1)®N3
Let Z(0) be uniformly distributed to accuracy y on the subset S; of H, where
S;={xeSy_y: x,<xy< - <xy}. If a finite precision random walk Z
with maximum step size ¢ is run for K steps, allowing at each step a maximum

error of v in the calculation of Z(i), and L is the order of the coordinates of
Z(K), then ||-£(L) — |l < é.

Proor. Consider an infinite precision random walk X with X(0) uniform
on S; and |X(0) — Z(0)| < y. Attempt to couple X with an infinite precision
random walk Y started with Y(0) uniform on H. By Proposition 1 and the
assumptions, P(X(K) = Y(K)) > 1 — §/2. We will consider the probability
that the coordinates of Z(K) have the same ordering as those of Y(K).

First consider P(|Z(K) — X(K)| > (K + 1)y). Let R,, h, and h, be as in
Proposition 4.8. Let &/ be the set of sample paths where

min min min |[(I - P R.X(i)| = (K + 1)y.
OstSIOSisKhaséhbl( haring) B X (D)) 2 ( )y

By Proposition 3.3,

N)(N(K +1)%y%(1 + &%) .\ 2NV2(1 + &%) (K + 1)ye
3 2 T ’

P() sK(

where ¢’ = £y/1 — ¢2/4 /(1 — ¢2/2). For y, K and ¢ above, this simplifies to
P(&) < §/3. Also, by Proposition 3.1, the probability that X(K) is within
(K + 1)y of any hyperplane %, is less than or equal to /6.

Thus, except on a set of probability at most 8(3 + 3 + %), X is coupled with
Y at time K, |1X(K) — Z(K)| < (K + 1)y and min, _ ;|(I — P;)) X(K)| > (K +
1)y. Thus, except on a set of probability 8, the coordinates of Z(K) and Y(K)
have the same order. It follows that if L is the ordering of the coordinates of
Z(K), then | -Z(L) — | <é. O

COROLLARY 2. Let S be the linear extensions of a given partial order of N
items. Suppose without loss of generality that (1,2,8,..., N) € . Let % be
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the uniform distribution on #. Suppose & > 0 is given, and a random linear
extension L of # satisfying |- (L) — %|| < 8 is desired. Let ¢ = (6(log(N —
1) + 100N~ and K = 253[2.171og(26 ~Hl(log(N — 1) + 10)3N8. Let

78 65 2 w8
I8N*¥(K+ 1)\ N3(K+1)°) ’~2/2(K+1)°N%
Let Z(0) be uniformly distributed to accuracy y on the subset S; of H, where
S;={xeSy_1: %, <xy, < - <xy}. If a finite precision random walk Z
with maximum step size ¢ is run for K steps, allowing at each step a maximum

error of vy in the calculation of Z(i), and L is the order of the coordinates of
Z(K), then ||.2(L) — %] <.

v = min

Proor. This is Theorem 2 applied to the case of Corollary 1. O

The accuracy y requires simulation of each coordinate of Z to about
log,o(N/y) decimal places. This is logarithmic in N and 6%, and for reason-
able N and 6 is not much worse than double precision arithmetic.
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