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A natural exponential family % is characterized by the pair (V,Q),
called the variance function (VF), where () is the mean domain and V is
the variance of % expressed in terms of the mean. Any VF can be used to
construct an exponential dispersion model, thus providing a potential
generalized linear model. A problem of increasing interest in the literature
is the following: Given an open interval () and a function V defined on (, is
the pair (V,Q) a VF of a natural exponential family? In this paper, we
develop a complex analytic approach to this question and focus on VF’s
having meromorphic mean functions; that is, if T' is the Laplace transform
of an element of the family, then T'/T is extendable to a meromorphic
function on C. We derive properties of such VF’s and characterize a class of
VF’s (V, ), where V admits a unique analytic continuation in C, except for
isolated singularities. (Included in this class are VF’s having V’s that admit
meromorphic continuation to C.) We show that this class equals the set of
VF’s which are at most second degree polynomials. We also investigate the
class in which V has the form P + Q\/E , where P and @ are arbitrary
rational functions and R is a polynomial of at most second degree. We
characterize all VF’s in this class for which the mean function is meromor-
phic and show that P = kR for some constant % and @ is a polynomial of
at most first degree. Throughout the paper, we demonstrate the wide
applicability of our results by showing that many classes of simple-form
pairs (V, Q) can be excluded from being VF’s.

1. Introduction. A natural exponential family (NEF) % is characterized
by the pair (V,Q), called the variance function (VF), where Q (an open
interval) is the mean domain of % and V is the variance of % expressed in
terms of the mean. (Precise definitions will be given in Section 2.) This
characterization was established in the seminal work of Morris (1982). A
problem of increasing attention and interest in the literature is the following:
Given an open interval ) € R = (—, ) and a function V defined on , is the
pair (V, Q) a VF of an NEF? (Henceforth, whenever reference is made to a VF,
it will be understood that it is a VF of some NEF.) A rigorous approach to the
investigation of this problem can be found in Letac and Mora (1990) and
Jgrgensen (1986).

Any VF can be used to construct an exponential dispersion model, thus
providing a potential generalized linear model [cf. Jgrgensen (1987) and the
references cited therein]. This results in a huge class of possible models. In
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order to reduce this class to a reasonable size, it is useful to consider as a
criterion the simplicity of the variance function [Letac (1987a)]; that is, to
restrict consideration to VF’s having simple functional forms, such as polyno-
mials, rational functions, exponential functions and other elementary func-
tions.

Let &, denote the set of polynomials with degree less than or equal to n.
Morris (1982) identified all VF’s for which V € &, and identified the corre-
sponding families. Mora (1986) did the same for V € &, \ &,. [Details can be
found in Letac and Mora (1990).] Tweedie (1984), Bar-Lev and Enis (1986),
Burridge (1986), Jgrgensen (1987) and Letac (1987b) considered the case
where V is a multiple of a real power of the mean.

Bar-Lev and Bshouty (1989) considered the case where () is bounded and V
is a rational function vanishing at the endpoints of Q. They showed that, up to
an affine transformation, the only VF among such rational functions is the one
corresponding to the binomial family. Thus, their result implies that if Q is
bounded and p € &, n > 3, then (p, () is not a VF. Bar-Lev and Bshouty
(1989) noted that a referee of their paper indicated that their result can be
generalized by replacing the condition that V is rational by the less restrictive
condition that V is the quotient of two entire functions (i.e., V is meromor-
phic), vanishing at the endpoints of ). (This generalization is presented in
Example 3.1.)

For Q c R*= (0, ), Jgrgensen (1984) gave necessary and sufficient condi-
tions for (V, Q) to be a VF. These conditions, however, are frequently very
difficult to check in specific examples. Based on Jgrgensen’s result, Bar-Lev
(1987) showed that, if 0 ¢ R* and V is absolutely monotone on (2, then
(V, Q) is the VF corresponding to an infinitely divisible NEF. For example, if V
is any polynomial having nonnegative coefficients and vanishing at the origin,
then (V,R") is such a VF. Letac and Mora [(1990), Corollary 3.3] pointed out
that Bar-Lev’s (1987) result implies that if Q = (0, ), b < », and V is a power
series having nonnegative coefficients and vanishing at the origin, then (V, Q)
is the VF corresponding to an infinitely divisible family.

Let (V,Q) be a VF. Letac and Mora (1990) showed that () is the largest
open interval on which V is positive and real analytic. This implies that V is
the restriction to ) of an analytic function on some domain of the complex
plane C containing ). This fact motivates the development of the complex-
analytic methods used in this paper. Indeed, the results presented here are
entirely in the realm of complex variable theory. These results, however,
enable us to obtain conditions when a pair (V, Q) can serve as a VF. Such
conditions will exclude a host of pairs (V, 1) from being VF’s.

For an NEF & with VF (V, Q), let ® denote the interior of its canonical
parameter space and u = u(6), € 0, its mean function. Many VF’s possess a
mean p that is meromorphic (i.e., u admits a meromorphic continuation to C).
For example, VF’s whose canonical parameter space is R (such as VF’s having
bounded support and VF’s having V € &)) possess meromorphic mean func-
tions. These, however, are not the only cases. For instance, (u2, R*) is a VF
with meromorphic mean, yet its corresponding canonical parameter space is a
ray (see Remark 2.1).
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The purpose of this paper is to study the class of VF’s with meromorphic
means. There are two principal reasons for studying this class. First, as is clear
from the preceding paragraph, this class is large. Second, a well-established
theory on meromorphic functions is available which facilitates the analysis of
this case. After reviewing (in Section 2) some general analytic properties of
VF’s, we derive in Section 3 several properties concerning the complex analytic
behavior of VF’s with meromorphic means and thereby provide necessary
conditions for VF’s to have meromorphic means. These conditions are particu-
larly useful in excluding certain pairs (V, Q) from being VF’s. If the pair (V, )
was a VF with ® = R, then it must have had a meromorphic mean and thus
the above conditions are applicable. Consequently, if such a pair does not
satisfy these conditions, it is not a VF. We present here several examples of a
general nature, where each example considers a class of pairs (V, Q). For
instance, in Example 3.4, we consider the class (V, Q) = (u*(1 — w)?,(0, 1)),
a>1, B>1, and show that the only VF in this class is the one with
a = B = 1. (This VF corresponds to the binomial family.)

The results of Section 3 are used in Section 4 to characterize a class of VF’s
having meromorphic means. This characterization is given in Theorem 4.2. In
this theorem, we consider the class of VF’s (V, Q) in which the mean u admits
a meromorphic continuation to C and V admits a unique analytic continuation
to C, except for isolated singularities. It is shown that this class equals the set
of VF’s having V € &,. Essential steps toward the proof of Theorem 4.2 are
Theorem 4.1 and Corollary 4.1, in which we consider the special case where V
admits a meromorphic extension to C. In this section, we also demonstrate the
applicability of the two theorems by excluding several classes of simple-form
pairs from being VF’s. It should be noted that Theorem 4.1 extends a similar
result of Bar-Lev and Bshouty (1989), by removing their conditions that
should be bounded and that V vanish at the endpoints of (2.

Section 5 is devoted to the study of the class of VF’s (V, ) with V having
the form V = P + QVR, where P and @ are arbitrary rational functions and
R € &,. We identify all VF’s in this class for which the mean is meromorphic
in C and show that P = kR for some constant 2 and @ € &,. This identifica-
tion makes use of a suitable transformation which transforms V to a mero-
morphic function in C, thus permitting the use of Theorem 4.1. Included in
this class is one suggested by Letac (1987a) and Letac and Mora (1990), where
Pe Z, Q € &, and R € &,. This latter class includes third degree polyno-
mials as a special case and preserves the property of reciprocity [cf. Letac
(1987a)].

2. Preliminary notions and basic properties of VF’s. We first recall
some definitions and properties of NEF’s and their VF’s.

Let v be a positive Radon measure on R, which is not concentrated on one
point. The Laplace transform and effective domain of v are given, respectively,
by

(2.1) T,(0) = ]Rexp(ox)u(dx)
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and
D,={6R:T,(6) <}

Let ©, = int D, and assume that ©, is nonempty. For 6 € ©,, define

Fy(dx) = (T,(6)) " exp(6x)v(dx).

The family of probability distributions F= % ={F,: § € 0,} is called a
natural exponential family generated by v. The set D, is called the canonical
parameter space of % and the measure v is also said to be a basis of %, [Note
that NEF’s, as defined by Barndorff-Nielsen (1978), include also those F, with
6 € D, \ 0,.] A basis of ¥ is not unique [Letac and Mora (1990)]. In fact, for
any 6, € 0,, the measure defined by v*(dx) = [T,(8,)] ! exp{6,x}v(dx) is
another basis of & (i.e., & = %) for which 0 € ©,« and T,+(0) = 1; that is,
v* is a probability measure. Accordingly, without loss of generality, we assume
that » is a probability measure (i.e., 0 € ®, and T.,(0) = 1). For simplicity, we
suppress the dependence on v and write T, D and ©® for 7,, D, and O,
respectively. )
The mean function of % is the mapping defined on ® by

u(8) = [R xFy(dx),

and the mean domain of & is Q = u(®). u is a one-to-one continuously
differentiable mapping and hence () is an open interval. Denote by 6 = 6(u)
the inverse function of x and let V on () be defined by

V() = [ (x = 1) Fogu(dx).

The pair (V, ), called the VF of %, determines % uniquely within the class of
NEF’s. [For further details, see Morris (1982) and Letac and Mora (1990).]
Define pu, = u(0). The following relations among w, T, V, ® and Q hold for
0 €0 and u €Q:

(2.2) T'(0) /T (6) = u(9);
(2.3) V((6)) = 1(9);

0= /::dt/V(t);

T(0) = exp{j”tdt/V(t)}.

Accordingly, given that (V,Q) is a VF with Q = (a, b), finite or not, the
corresponding @ is the open interval determined by

(2.4) ( im [*dt/V(¢), lim f"dt/V(t)).
Hoat Yy, w=b—Ju,
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Note that the Laplace transform T, given by (2.1), is the restriction to ® of
a unique analytic function on ® X R = Sg < C. We shall use the symbol T to
denote the extended function as well. From (2.2), we conclude that u admits a
meromorphic extension to Sy with at most first order poles. This extension
will also be denoted by u.

The following lemma summarizes several basic properties of VF’s (some of
which are mentioned above), which will be used in the sequel.

LEMMa 2.1. Let (V,Q) be a VF. Then:

(1) Q is the largest open interval on which V is positive real analytic;
(ii) the differential equation

T'/T = u(2), z2=0+1in €8,

has an analytic solution T(z) in Sg having singularities at finite endpoints
of O;
(iii) the differential equation

V(p) =

admits a meromorphic solution u(z) in Sg, with at most first order poles and
has singularities at finite endpoints of ©.

Proor. (i) This was proved by Letac and Mora [(1986), Theorem 2.3].

(ii) This follows from Kawata [(1972), Theorem 8.4.1, page 299].

(iii) This is an immediate consequence of (ii). Let z, € Sq. If T'(z,) + 0,
then u(z) is analytic in a neighborhood of z,. If, on the other hand, T'(z,) = 0,
then T(2) =a,(z —29)" + a,,{(z —2))"*' + -+ near z,, and thus u(z) =
na,(z —zy) ' + ¢y + c(z — 2zy) + - -+, near z,. Therefore, u(z) is meromor-
phic in Sg with at most first order poles. Finally, since, by (ii), T(z) is singular
at finite endpoints of 0, so is u(z) = T'(z)/T(2). O

ReEMARK 2.1. If (V,Q)is a VF, then u admits a meromorphic continuation
to Sg. For ® = R, u is meromorphic in Sy = C. However, even when O is a
proper subset of R (i.e., Sg is a proper subset of C), there exist cases where u
admits a meromorphic continuation to C. For example, if (V, Q) = (u2, R"),
then ® = (—x, a) for some a € R* and u(z) = (@ — z)~! admits a meromor-
phic continuation to C.

Finally, we make the following remark which will be useful in subsequent
sections.

REMARK 2.2. Let (V, Q) be a VF with finite ) and ® = R. In this case, the
corresponding family & is regular (i.e., D = ®) and thus is steep. The
steepness of % implies that the interior of its convex support equals ) [see
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Barndorff-Nielsen (1978), Theorem 9.2, page 142]. Two conclusions now
follow:

(1) Since T is entire, u = T'/T is meromorphic in C;

(ii) T has infinitely many zeros [see Lukacs (1970), Theorem 7.2.3, page
202], and if 2, is a zero of T, then, by Lemma 2.1(iii), z, is a first order pole of
1 and a second order pole of .

3. Properties of VF’s with meromorphic means. In this section, we
provide some results concerning properties of VF’s with meromorphic means.
We then exemplify the utility and application of these properties in excluding
many pairs (V, Q) from being VF’s.

We have already noted that if (V, Q) is a VF, then u admits a meromorphic
continuation to Sg. In cases where S is a proper subset of C and u admits a
meromorphic continuation to C, it will be useful to know what can be
concluded about the behavior of V on u(C) and not only on u(Sg). Such a
conclusion is achieved as a corollary to Lemma 3.1. .

In the remainder of this paper, we use the following conventions: Let (V, )
be a VF with mean function . If u admits a meromorphic (analytic) continua-
tion to S O Sy, then we simply refer to u as meromorphic (analytic) in S.
Also, V, which is the restriction to Q of an analytic function on some domain
D5 Q of C, will be referred to as analytic on D. Hereafter, we use the
terminology of Ahlfors [(1966), Chapter 8]. In accordance with Ahlfors, the
analytic function V on D constitutes a function element denoted by (V, D).
Two function elements (V,, D,) and (V,, D,) are said to be direct continuations
of each other if D, N D, is nonempty and Vi(z) = Vy(2) in D; N D,. The
function elements (Vy, D)), (V,, D,),...,(V,, D,) form a chain if (V,, D,) is a
direct analytic continuation of (V,_;, D,_,). The elements of such a chain are
said to be analytic continuations of each other. A complete analytic function is
the collection of all function elements such that any two elements in this
collection are analytic continuations of each other. We consider the complete
analytic function of all function elements which are analytic continuations of
(V, D). By the uniqueness of the analytic continuation, there exists a function
element of such a complete analytic function which continues to satisfy the
differential equation (2.3), in any neighborhood of a point u, € u(Sg). We
shall continue to use the symbol V to denote the function in this function
element.

LemMmA 3.1. Let D be a domain, z, € D and m be a meromorphic function
on D such that, in a disk H C D around z,, m’ admits the representation

0

m'(z) = > ay(z - zo)k,

k=n

where a, # 0 and a_, = 0. Let (W, m(D)) be a function element such that
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W(m) =m' on D. If:

(1) n = 0, then W is analytic at m(z,);
(ii) n > 0, then W has an (n + 1)-fold algebraic singularity at m(z,) and
admits the representation

W(m) =cO(m—m0)"/("+l)+ s my=m(2,), co # 0;
(iii) n = —2, then W is analytic at m(zy) = © and, near infinity, admits the
representation
W(m)=c_om®>+c_ym+ -+, c_y+0;

(iv) n < —2, then W has a (—n — 1)-fold algebraic pole at m(z,) = © and
admits the representation

W(m) =c0mn/("+1)+ cee, 009&0.
Proor. We have

m(z) = mo+ ¥ a(z - 2)* "/ (k + 1),

k=n

and therefore m(z) has the form m(z) = m, + [g(2)]"*!, where g is univa-
lent in a neighborhood of z,. Hence, W(m, + [g(2)]"*1) = (n + D[g(2)]"g'(2),
g'(z,) # 0. Since n and n + 1 are relatively prime, the desired results follow
from Ahlfors [(1966), pages 289-290]. O

COROLLARY 3.1. Let (V, Q) be a VF and assume that u admits a meromor-
phic continuation to S O Sg. Then

(1) V is the restriction to Q of a function element of a finitely-sheeted
Riemann surface over u(S);

(i) if S =C, then V is the restriction to Q of a function element of a
finitely-sheeted Riemann surface over u(C), which is C (the closure of C)
except perhaps for two points.

Proor. (i) Fix z, € S. If u(2) is analytic at z,, then, by parts (i) and (ii) of
Lemma 3.1, V is either analytic or has an algebraic singularity at u(z,). If
w(z) has a pole at z,, then, by parts (iii) and (iv) of Lemma 3.1, V is either
analytic or algebraic near u(z,) = . '

(ii) This follows from part (i) and the Picard theorem [see Nevanlinna
(1970), page 1]. O

CoROLLARY 3.2. Let (V,Q) be a VF. Assume that u admits a meromorphic
continuation to C having a pole of order s at some point z, € C (i.e., u(zy) = ).
Then there exists a function element of the Riemann surface of the extension of
V over u(C) on which V ~ u®*V/% near infinity.
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Proor. This follows from parts (iii) and (iv) of Lemma 3.1. O

ReMARK 3.1. Note that by Lemma 2.1, x has at most first order poles in
Se. However, if i can be extended to C, then u may have poles of any order on
C\ Se.

LemMmA 3.2. Let (V,Q) be a VF. Assume that u admits a meromorphic
continuation to C and that V admits a meromorphic continuation to u(C).
Then V does not vanish on u(C).

Proor. Assume to the contrary that there exists a 2z, € C such that
V(u(zy)) = 0, and thus @/(zy) = V(u(zy)) = 0. Differentiating (2.3), we get

K'(20) = V'(1(20))K(2,) = 0.
By successive differentiation, we get u*)(z,) = 0, k& = 3,4,... . This implies
that u = constant in C, a contradiction. O

ExampPLE 3.1. Assume that (V, Q) is a VF such that Q = (a, b) is finite and
V admits an analytic continuation to C, with V(a) = V(4) = 0. Then, by (2.4)
and Remark 2.2, ® = R, u admits a meromorphic continuation to C and there
exists a 2, € C such that u(z,) = . Using these and Lemma 3.1(iii), it follows
that V ~ u® near infinity and therefore V € &, \ &£,.

ExampLE 3.2. For even n > 4, consider p € &, \ &,_; and assume that
p has no real roots but possesses at least three distinct zeros. Then the pair
(V, Q) = (e/P,R) is not a VF. To show this, assume that (V, Q) is a VF. It
follows from (2.4) that ® = R and thus u is meromorphic in C. By Lemma 3.1
and Corollary 3.1, V is either meromorphic or has algebraic singularities on
u(C), where w(C) is C except perhaps for two points. But V = e'/? has
essential singularities at zeros of p, hence these zeros do not belong to u(C).
This is a contradiction, since, by assumption, p has at least three distinct
Zeros.

ExamMpLE 3.3. Let Q = (a, b) be a finite interval, n > 3 a positive integer,
PEFZ NP, _,q€P,_s\P,_5 and V(u) = p(ue'/*/q(n), where p has
at least three distinct zeros, two of which are a and b, p(Q2) c R*, ¢q(Q}) c R*
and p and g are relatively prime. Then the pair (V, Q) is not a VF. To prove
this, assume that (V, Q) is a VF, then ® = R and u is meromorphic on C. By
Lemma 3.2, V does not vanish on u(C), which, by Corollary 8.1(i), is C except
possibly for two points. We get a contradiction, since, by assumption, p has at
least three distinct zeros and V vanishes at these zeros.

ExampLE 3.4. Let (V,Q) = (u*(1 — 1)?,(0, 1)), where a > 1, 8 > 1. By an
application of Corollary 3.2, we show that (V,Q)isa VFiff « = B = 1 (i.e., the
VF corresponding to the binomial family). For this, we assume that (V, Q) is a
VF. It follows from (2.4), Remark 2.2 and Lemmas 2.1 and 3.1 that ® =R, u
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is meromorphic in C with first order poles and V is a function element of a
finitely-sheeted Riemann surface over w(C). Thus, by Corollary 3.2, there
exists a function element of the Riemann surface of V over u(C) on which
V ~ u? near infinity. We shall prove that such a function element exists only if
a = = 1. Indeed, on all elements of the Riemann surface of V over u(C),
V()| ~ |w|**® near infinity. This implies that a + 8 = 2 and hence a =
B=1.

4. A characterization of a class of VF’s with meromorphic means.
The main result of this section is presented in Theorem 4.2. In this theorem,
we consider the class of VF’s (V,Q) in which 4 admits a meromorphic
continuation to C and V admits a unique analytic continuation to C, except for
isolated singularities [i.e., V is extendable to an analytic function on u(C), as a
single-sheeted Riemann surface there]. We show that this class equals the set
of VF’s with V€ &,. An essential step for establishing Theorem 4.2 is
Theorem 4.1, in which we consider the special case that V admits a meromor-
phic continuation to C. Theorem 4.1 is also used in the proof of some results in
Section 5.

The results of this section provide easily utilizable conditions for excluding
many pairs (V, ) having simple forms from being VF’s. In order to use these
conditions for a given pair (V,(Q), it is, of course, necessary to determine
whether the corresponding mean u is meromorphic in C. Such a determina-
tion might be difficult, since in most cases u = u(z) cannot be expressed
explicitly in terms of z. However, by assuming that (V, (1) is a VF, the answer
to this question is immediate, if the corresponding ®, determined by (2.4), is R,
since, in such a case, u is meromorphic in C. This latter conclusion is used in
all of the examples provided in this section.

THEOREM 4.1. Let W be a meromorphic function on C, which is not
identically zero. Then the differential equation

(4.1) W(m) =m'

admits a nonconstant meromorphic solution m(z) in C if and only if W € £,

Before presenting the proof of Theorem 4.1, we note that the differential
equation (4.1) has a long history. Rellich (1940) [see also Wittich (1968), page
63] considered the case where W is a nonconstant entire function and showed
that (4.1) has no nonconstant entire solutions unless W is affine. Accordingly,
if (V, Q) is a VF where both V and u are extendable to entire functions, then
the corresponding NEF is either normal or Poisson. Wittich [(1968), page 63],
using Nevanlinna theory, generalized the result of Rellich to higher order
differential equations. Our approach for proving Theorem 4.1 follows the idea
of Wittich.
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Proor. We first introduce some basic notation [see Hayman (1964), page
4]. Let f be a meromorphic function and for r > 0, let

m(r, f) = (2m) ™" [*"log*If (rei®)] de,

where log* x = max(0,log x), x > 0. Let n(r, f) be the number of poles of
f(2) in |z| < r, with poles of order p being counted p times. Also, let

N(r, f) = /:t‘ln(t, f) dt.

The function T'(r, f) = m(r, f) + N(r, f) is called the (Nevanlinna) charac-
teristic function of f.

Let W be meromorphic in C and m(z) be a meromorphic solution of (4.1).
Let ¢ € C be such that R(c) = {p: W(p) = ¢} # ¢. [By the Picard theorem,
there exist at most two values of ¢ for which R(c) = ¢.] Now, for m ; € R(o),
Jj=1,...,k, we have

fN L N L T(r,W o(1
2N mem, | < (W)S (rWom)+ 0l

=T(r,m) + 0(1)
<2T(r,m) +o(T(r,m)), asr — o,

where the first inequality is obvious and the second and third inequalities
follow from the first fundamental theorem of Nevanlinna [see Hayman (1964),
Theorem 1.2, page 7] and the Milloux theorem [see Hayman (1964), page 65],
respectively.

By Wittich [(1968), page 63], we have for all d € C, except for a set A of
small capacity,

limN(r,ﬁ)/T(r,m) - 1.

r—oo

Let £ > 0, then there exists r(k, €) such that for r > r(k, ¢),

1
Nlr,——|>@Q -&)T(r,m), Jj=1,...,k.
(r m_m_) L =-e)T(r,m), j

J

There are infinitely many values ¢ such that R(c) N A = ¢ and therefore
k(1 —¢)T(r,m) <2T(r,m) + o(T(r,m)), asr — .

This implies that 2 < 2. By the Picard theorem, this could happen for at most
two values of ¢, unless W is a rational function of degree 2. Therefore, W is a
rational function of degree 2. Put v = 1/m, then v' = —»2W(1/v) is a differ-
ential equation of the form (4.1) admitting a meromorphic solution. Hence,
v2W(1/v) is a rational function of degree two so that W € &,. O
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The following corollary follows immediately from Theorem 4.1 and the
results of Morris (1982).

CoroLLARY 4.1. Let (V,Q) be a VF such that both V and u admit a
meromorphic continuation to C. Then, up to an affine transformation, the
corresponding family of distributions is either normal, Poisson, binomial,
negative-binomial, gamma or generalized hyperbolic secant. O

In the following remark, we provide easily utilizable conditions for a pair
(V, Q) not to be a VF.

REMARK 4.1. Consider a pair (V, Q) such that:

(i) Q=(a,b), —» <a <b < x, is the largest open interval on which V is
positive real analytic;
(ii) V &€ &, and admits a meromorphic continuation to C; and
(iii) for m, € Q,

i o = 1l " dt/v(t) = .
Jim [ de/v(s) = lim fmo /V(t) =
Then, by (2.4) and Corollary 4.1, (V, Q) is not a VF.

There are many pairs (V, }) satisfying conditions (i) and (ii) but which
violate condition (iii). In such cases, Remark 4.1 cannot be used to conclude
that (V, Q) is not a VF. For instance, if () is unbounded and V is a polynomial
of degree > 3, then condition (iii) is not satisfied. Nevertheless, many pairs
can be excluded from being VF’s by use of Remark 4.1. The following examples
illustrate this.

ExaMpLES. Assume that (V, ) satisfies the following condition:

(iv) If —» < a, then V(a + ) = 0, otherwise V(m) = O(m), m —» —x; and
if b < o, then V(b — ) = 0, otherwise V(m) = O(m), m — .

Since (iv) = (iii) (i.e., ® = R), no pair (V, Q) satisfying (i), (ii) and (iv) can be
a VF. For instance, the following pairs are easily seen not to be VF’s:

(@) Q=(0,), V(m) = sin m.

® Q=(-nm/2,7/2), V(m) = cos m.

() O =R"*, V(m) = tanh m.

@ Q=R, pe P with p(x) = ):;Loajxj and V(m) = exp{p(m)}; for V
to satisfy condition (iv), it is necessary and sufficient that n is even and
a, <0.

(e) Q=R* pe P, with p(x) =L ,a;x/,a;<0for j=1,...,n, and
V(m) =1 — exp{p(m)}.

(f) V is a rational function, say V=p/q, with p € &, and ¢ € &,
!l < k + 1, being relatively prime polynomials and where either: (i) Q = R™,
V(R*) c R*, p(0) =0, 0 & g(R*); or (ii) Q = R, V(R) c R*, 0 & q(R).
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THEOREM 4.2. Let (V,Q) be a VF such that u admits a meromorphic
continuation to C. If V admits a unique analytic continuation to C, except for
isolated singularities, then V € &,

Proor. Let (V, Q) be a VF such that p is meromorphic in C. By Corollary
3.1(i) and by our assumption on V, V is an analytic function on u(C) satisfying
the differential equation

(4.2) w(z) =V(u(z)), ze<C.

By Corollary 3.1(ii), u#(C) is C except possibly for two points. For proving the
statement of the theorem, we act as follows. By making a suitable change of
variable in (4.2), we define in C a meromorphic function V; which satisfies a
differential equation of the same form as (4.2), and hence, by Theorem 4.1, V,
reduces to a second degree polynomial. This, in turn, will lead us to the desired
result. We consider two cases concerning the structure of u(C). In the first
case, u(C) is C except for two points and in the second case, u(C) is C except
for one point. [Note that the case u(C) = C is covered by Theorem 4.1.]

Case 1. u(©) = C \ {ug, uy), o # p,. Define
¢t = (= po)/(k—py) ifp;#+o,
B = Mo if py = .

Then #(C) = C \ {0,} and therefore there exists an entire function f such
that #(z) = ef®. Substituting for u in terms of t=e/ in (4.2), we get
' = Vi(f), where

ef/'l'l ~ Ko
Vi(f) = #o — 1 el -1
e V(e + p,) if py = o,

e~f(ef — 1)2V( ) if g # o,

is meromorphic in C. Since f is meromorphic, we conclude from Theorem 4.1
that Vi(f) = af ? + bf + c, which, by resubstituting for f in terms of u, yields

(B = o) (1 = py) alogz(”_“°)+blog(“_p’°)+c
(ko — 11) K1~ Ko M1 — Ko
if u, # oo,

(b = mo)[alog®(n — mo) +blog(p — po) +¢]  if uy = oo

V() =

But since V is analytic in C, except for isolated singularities, we must have
a = b = 0 and thus the desired result.

Case 2. u(C) = C \ {uo). If uy = », then V is meromorphic in C and the
desired result follows from Theorem 4.1. Accordingly, we assume wu, # o, By
Lemma 3.2, V does not vanish in u(C). Therefore, 1/V is analytic in C \ {u,}
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and thus admits a Laurent expansion around u, that converges in C \ {};
that is, we can express 1/V as

oo

1/V(p)= ¥ w./(w—mo)"s 1T\ {ug.

n=-—o

Now, since ® € u(C), there exists a z, € C which is a pole of u. Since V is
analytic in C \ {u,)}, it follows from Lemma 3.1(ii) and (iv) that z, is a first
order pole. Consider the positively oriented circle €, = {2: |z — 25| = &}. For
small ¢, the image of €, in the p-plane is a closed curve I, that is large
enough to encompass any finite point (say, u,) only once and has a negative

orientation. Thus, for j < 0, we have
48) @ (n—wo) dz = (w—wo) du/V(n) = —2miw;..

However, since 1/(u — u,) is analytic in C, it follows that the integral on the
left-hand side of (4.3) vanishes. Thus, we conclude that

oo

1/V(p) = E w,/(n — po)"
n=1
Let V(u) = V(1/(u — uy), then V; is meromorphic in C. Define ¢ = (1 —
Kom)/u; then ¢ is meromorphic in C and satisfies

= —(t+po) Vi(t) = Vy(2),

where V, is meromorphic in C. Thus, by Theorem 4.1, V; = constant and this
leads to V = constant, a contradiction. This concludes the proof of the theo-
rem. O

ExampLE. Let (V, Q) = (R,e'/5, Q), where R, and S, are rational func-
tions of degree n and k, respectively, Q = (a, b) is an arbitrary open interval
(finite or infinite), R, is positive on £, S, does not vanish on (! and V & &,.
(Recall that the degree of a rational function s =p/q, p€ # \ &,_,, q €
P\ P._,, where p and q are relatively prime, is max{/, r}.) For such a pair
(V, Q), assume also that the interval ® determined by (2.4) is R. Then, since V
is analytic in C, except for essential singularities at zeros of S,, Theorem 4.2
implies that (V, Q) is not a VF. Note that Examples 3.1 through 3.3 are special
cases of the present example.

5. Algebraic VF’s with meromorphic means. In Section 1, we men-
tioned that Letac (1987a) suggested the study of the class of algebraic VF’s of
the form P + QVR , where P € &;, Q € &, and R € &,. This class includes
cubic VF’s as a special case and its members possess the reciprocity property.
Letac (1990) identified several NEF’s with VF’s of this form, some of which
have meromorphic means.
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In this section, we consider a more general class with the same form that
includes the one suggested by Letac (1987a) as a special case, and we charac-
terize those members having meromorphic means. After giving a general
result (Theorem 5.1), we consider, in Corollary 5.1, VF’s of the form V=P +
QVR , where P and Q are rational functions of arbitrary degree and R € &,.
We show that such VF’s have meromorphic means if and only if P = kR for
some constant 2 and @ € ;. In Corollary 5.2, we treat a class of VF’s of the
same form, with P and @, however, being meromorphic functions. We show
that if such VF’s have entire mean functions, then, again, P = kR and
Q € #,.

The proofs of the results of this section utilize Theorem 4.1. Although the
functions V considered here are not meromorphic, by suitable transforma-
tions, we can define suitable meromorphic functions which permit the use of
Theorem 4.1.

THEOREM 5.1. Let (V, Q) be a VF such that V = P + QVR , where both P
and @ admit meromorphic extensions to C and R € #, \ P,. Let the differ-
ential equation

(5.1) W =V(u) = (P+QR)(r)

admit a meromorphic solution u(z) on C. Then, the following two conditions
are equivalent:

(1) The function
(£ —Pou)/(Qop) = (Rop)?

is meromorphic.
(ii) P = kR for some constant k and Q € Z,.

Proor. (i) = (ii): First, let R € &, \ &, giving R =a,u + b,, where
a, € R*. By substituting m = a,u + b, in (5.1), we get
(5.2) m = P*(m) + m'/2Q*(m),
where P* and @Q* are meromorphic functions. Put
x=(W—-Pop)/(Qop)=(m —P*om)/(Q">m).
Then x is meromorphic and satisfies x2 = m. From (5.2), we get
(5.3) = [P*(x?) +2Q*(2?)] /(2x).

Since the right-hand side of (5.3) is meromorphic and admits a meromorphic
solution x, it follows from Theorem 4.1 that

(5.4) x =ax?+bx +c.

Equating the right-hand sides of (5.3) and (5.4) and substituting x? = m, we
obtain

P*(m) + m'/2Q*(m) = 2bm + 2(am + c)m'/?,
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which implies that P*(m) = 2bm and @*(m) = 2(am + ¢). Hence, P(u) =
2b(a,u + b;) = 2bR and @ = 2(aa,u + ab, +¢) € &,.

Next, let R € &, \ &, and assume that R = £,a%(u — b,)% + £,¢2, where
a,;,c; € RY, b, € Rand ¢, &, € {—1, 1}. By substituting m = a,(u — b,)/c, in
(5.1), we get
(5.5) m = P*(m) + (£;m? + £)"°Q*(m),
where P* and @* are meromorphic functions. Put

12m + (m' — P*om)/(Q*°>m)

E7%a(p — b)) /ey + (W —Pop)/(c(Qon)),

where 0 < arg ¢}/2 < 7. Then x is a meromorphic function which satisfies

(5.6)

—2£2mx — €, = 0.

Solving for m, we get m = (x2 — &,)/(2£]/%x), so that m' = x'(x% +
£,)/(2¢1/%x2). By substituting these in (5.5) and using (5.6), we get

] (xZ—gz)
2 P* 1/2 + Q* 1/2

x%+ &, 2¢1/2 2x 2¢1%x

Since P* and @* are meromorphic, W is meromorphic in C \ {0}. We shall
prove that W is meromorphic in all of C. For this, we give an indirect proof.
Assume that W is not meromorphic at x = 0. Then W must have an essential
singularity there. We show that this implies that x does not attain the values
zero and infinity in C. Indeed, if x attains the value zero (infinity) at some
point z,, then the order of this zero (infinity) is necessarily finite, since x is
meromorphic. In this case, x’ = Wo x has an essential singularity at z,. But
this contradicts the fact that x’ is meromorphic at z,. Therefore, x is a

nonvanishing entire function. Accordingly, let f = log x, then f is an entire
function and

(5.7 x'=

= W(x).

f'=x'/x=W(x)/x=W(el) /el = Wi(f),

where W, is meromorphic in C. We therefore obtain, by Theorem 4.1, that
W f) = af? + bf + ¢ and therefore

W(x) = x[a(logx)2 +blogx + c].

Since W is meromorphic in C \ {0}, it follows that a = b = 0 and therefore
W(x) = cx, a contradiction to the fact that W has an essential singularity at
x = 0. This implies that W is meromorphic in C. Hence, by Theorem 4.1,
W e &£, and thus (5.7) reduces to

(5.8) x' =ax®+bx +c.
Equating the right-hand sides of (5.7) and (5.8) and using (5.5) and (5.6), we
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obtain

£mP*(m) + £12Q*(m) R*(m) + (£,mQ*(m) + £1/°P*(m))[R*(m)]
= (2a&;m® + b€ ’m + aé, + c)[R”‘(m)]l/2 + (2¢£1?m + b)R*(m),

where R*(m) = ¢£;m? + £,. This latter relation implies that

(5.9)  £mP*(m) + £/2Q*(m)R*(m) = (2a£{/*m + b)R*(m)

and

(5.10)  £/2P*(m) + £,m@*(m) = 2a¢;m? + bE/*m + aé, + c.

Relation (5.9) implies that P* divides R* and hence P*(m) = K(m)R*(m),
where K is a polynomial. Putting this in (5.9) and (5.10) and solving for K and
Q* yields

K(m) =k =a/t}/% + c/(£:£17), Q*(m) = [(agy —c)/E]m + b/EV2.

Finally, by substituting m = a,(u — b,)/c,, we obtain the desired result.
(ii) = (i): By using affinity, we can assume without loss of generality that
R=mifRe P \Pyand R=¢(m? + ¢, 6,6 €{(-1L1}Jif Re P\ &,
Let R € &, \ P, then V = km + (am + B)m'/?, where k, a and B are
constants. Put b = k/2, a = a/2 and ¢ = /2, then

V = 2bm + 2(am + c)m'/2.

Let x2 = m, then x’ = ax? + bx + c. The solutions x(2) of the latter differen-
tial equation have the forms: (a2 + B;)/(ayz + By) or (a;e”* + B;)/(aze”® +
By), where a;, ay, B;, B, and y are constants and hence x(2) is meromorphic.
Thus, m = x%(2) and (m' — P > m)/(Q - m) = x(2) are also meromorphic.

Let R € P, \ &, then V = k(¢m? + &) + (am + BXEm® + £)V2
Put b = ¢1/28 and define a and c as the solutions of the linear system: a =
(aéy — ¢)/&y B = (aé, + c)/(£17%,). For arbitrary a and B, this system
defines a and ¢ uniquely. Define x by

x? — 2612mx - £, = 0,

1/2

then x' = ax? + bx + c. Thus x is meromorphic and so is m =
(x2 — £&,)/(2¢1/%x). Hence
(m' —Pem)/(Qom) =x — £/°m

is meromorphic. O

COROLLARY 5.1. Let (V, Q) be a VF such that V(u) = (P + QVR Xu), where
P and Q are rational and R € P, \ P,. Then, the following two conditions
are equivalent:

() (V,Q) possesses a mean function u, which admits a meromorphic
extension to C.
(ii) V= kR + QVR for some constant k, where @ € Z,.
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In either case, under a suitable transformation, V has the form

2bm + 2(am + c¢)m!'/? ifRe P \ P,,
aé, + ¢ 9
(5.11) V(m) = ( 1%, )(glm te)
é — b .
+[( o )’” ’ g}/z](flmz +6) " fREPN P,
where ¢, &, € {—1,1}, and a, b,c € C. Moreover, m(z) is given by
() x%(2) ifR e P \ Z,,
m(z2) =
(x%(2) — &,)/(2¢1%x(2)) ifR € P, \ &,

where x(2) is the solution of the differential equation
x =ax?+bx +c.

Proor. (i) = (ii): Since P and @ are rational and u is meromorphic, it
follows that u', Pou, and @ u are meromorphic and, hence, so is (u —
Pou)/(Q > w). Thus, by Theorem 5.1, (ii) holds and, under affinity, V has the
form (5.11).

(ii) = (1): The proof is an immediate consequence of Theorem 5.1. O

COROLLARY 5.2. Let (V, Q) be a VF such that V(n) = (P + QVR X ), where
both P and Q admit meromorphic extensions to C and R € &, \ Z,. If (V,Q)
possesses a mean function which admits an entire extension to C, then V =
kR + QVR for some constant k and @ € .

Proor. Since P and @ are meromorphic and u is entire, it follows that
#, Pou and Qo p are meromorphic. Applying Theorem 5.1 completes the
proof. O
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