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APPROXIMATE INDEPENDENCE OF DISTRIBUTIONS ON
SPHERES AND THEIR STABILITY PROPERTIES'

By S. T. RACHEV AND L. RUSCHENDORF

University of California, Santa Barbara and University of Miinster

Let ¢ be chosen at random on the surface of the p-sphere in R”,
0, ,={xeR™ ! ,lx;/’ = n}. If p=2, then the first k¥ components
{y,...,¢; are, for k fixed, in the limit as n —  independent standard
normal. Considering the general case p > 0, the same phenomenon appears
with a distribution F, in an exponential class &. F, can be characterized
by the distribution of quotients of sums, by conditional distributions and by
a maximum entropy condition. These characterizations have some interest-
ing stability properties. Some discrete versions of this problem and some
applications to de Finetti-type theorems are discussed.

1. Introduction. In a recent paper, Diaconis and Freedman [9] proved
that the first £ components of a point uniformly distributed on the 2-sphere in
R™ are close with respect to the variation distance to £ independent standard
normal random variables, the distance being of the exact order k/n. For the
1-sphere a similar result was obtained for the exponential distribution (re-
stricting the sphere to R%).

In this paper we consider this problem for any p > 0 and a meaningful
extension to p = . Again the distribution of the first 2 components can be
approximated by the distribution of % independent random variables with a
distribution F,. The class of distributions F, arising in this way is an
exponential class of distributions connecting the exponential distribution (p =
1) with the normal distribution (p = 2) and the uniform distribution (p = ).

While for p = 1,2, » the meaning of the notion ‘“uniform distribution on
the p-sphere” is obvious from invariance considerations, this is not the case
for other p values. In this paper we call the distribution arising from a
disintegration of the Lebesgue measure \"” on the spheres the ‘uniform
distribution on the sphere.” This choice of uniform distribution is well moti-
vated by statistical mechanics. It gives the right measure in Liouville’s theo-
rem. An alternative and interesting case would be to consider the distribution
on the p-sphere corresponding to the geometric surface measure. The geomet-
ric surface measure coincides with our uniform distribution only for the cases
p = 1,2 «, Its treatment seems to need a completely different proof than the
proof for the uniform distribution given in this paper.

Our distributions F, can be characterized also in some other ways as, for
example, the maximum entropy distributions with fixed pth moment equal to
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1312 S. T. RACHEV AND L. RUSCHENDORF

one. There are some immediate applications to de Finetti-type theorems. We
consider also some discrete versions of the problem and we investigate the
stability properties of the characterizations of F, in the final section. By
the method of probability metrics we also obtain some quantitative results for
the inverse characterizations.

2. Characterizations by beta-distributions. Motivated by the paper
of Diaconis and Freedman [9] we started with the following question: Let
{1, {5, ... be a sequence of iid positive r.v.’s with d.f. F satisfying the normal-
ization E{f = 1, © > p > 0, and define

k n
(2.1) Xyonp= Z{;’/Z (P, l<k<n,neN.
Jj=1 Jj=1

Does there exist a (unique?) d.f. F = F, such that X, , , has a beta B(k/p,
(n — k)/p)-distribution for any & < n, n € N? It is well known that F; is the
standard exponential distribution and F, is the absolute value of a standard
normal r.v. (see, e.g., Cramér [4], Section 18 and Diaconis and Freedman [9)).

THEOREM 2.1. For any 0 <p < o, there exists exactly one distribution
F =F,, such that for all k<n, neN, X, ,  has a B(k/p,(n —k)/p)-
distribution. F,, has the density

pl-lp ( xP

T(1/p) exp —?), x=0.

(2.2) fo(x) =

ProoF. Let the r.v.’s ({;); . have the common density f,. Then f,»(x) =
1/pY/PT(1/p)x*/P~le~@/P) x >0, is the I'(1/p,1/p)-density and hence
Tk (P is T(1/p, k/p)-distributed. Usual calculations show that

p —B(E n—k
K(x)_ p’ p

xk/p—l

(x +1)"*’

x>0,

where k = X%_(P/¥"_, (P, which leads to the B(k/p,(n — k)/p) distribu-
tion of X, ,, ,. :

On the other hand, assuming that X;, , has a B(1/p,(n — 1)/p)-
distribution for all n € N, by the (SLLN) nX, , , - {f a.s. Furthermore, the

density of (nX, , ,)'/?, given by

F(n/p) (ﬁ)_1+1/p(1 _ x_p)(n—l)/p—l £xp_1,
T(1/p)I((n - 1)/p) | n n
converges pointwise to f,(x), since (p/n)PT(n/p)/T(n — 1)/p) > 1 as

n — o (see, e.g., Abramowitz and Stegun [1], page 257). Thus f, =f, as
required. O

0<ux,
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REMARK 2.1. We consider throughout this paper the case of nonnegative
random variables. One obvious extension is to the case that ¢}, { 5 - .. are iid
r.v.’s on the whole real line satisfying the conditions E{, = 0, E|{,P = 1. Then

k n
Xpno= 2 ISP X1
Jj=1 Jj=1
is B(k/p,(n — k)/p)-distributed iff the density f of {, satisfies f (x) +
f (=) = 2f,(Ix]). In this way, one gets for p = 2 the normal dlstrlbutlon and

for p=1 the Laplace distribution. Uniqueness can be obtained by the addi-
tional assumption of symmetry of F.

To get a meaningful result for p = », let 8 be a B(k/p,(n — k)/p)-
distributed r.v. and define v, , , = 8'/7; then v, , , has a density given by

kE n—Fk _
fyin (%) =B (; T)px’“ (1 -xP)" PP 0<x<1.

Let v, , . be the weak limit of vy, , , as p — , that is,

n—k
k .
(2.3) P(Ypno<%x)= { m— if0<x<1,
1 ifx>1.

In the sequel F, stands for the uniform distribution on [0, 1].

THEOREM 2.2. Let {,¢{5 ... be a sequence of positive iid r.v.’s and let
Xy noo k&i/V iyl (V= max (). Then X, , , and vy, , . are equally
dzstrzbuted for anyk <n,neN,if { is umformly distributed on [0, 1.

PrROOF. Assuming that {; is F_-distributed, the d.f. of X, , . has the form

P(X <x(X vV Y)), where X and Y are independent with FX(t) =tk Fy(t) =
t"~k 0 <t < 1. Therefore, for 0 <x < 1,

Fy, (%)= [P(t <x(tVY))d*
. 0

X X
[P(t<xY,Y > t)dtt + [ P(t <xt,Y <¢)dt*
0 0

I(x) + I,(x).

Now I(x) =(1 — k/n)x* for x €[0,1] and I (x) =0 for 0 <x < 1, I,(1) =
k/n. This implies that X, , .. has a distribution given by (2.3).

On the other hand, if X, ,. has the same distribution as vy, , ., then
letting n — «, the distribution of V _,¢; converges weakly to 1 and therefore,
the limit of FXM (x) is x for all x E [0,1]. O
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3. Characterization by conditional distributions and maximum en-
tropy. Let S, ,={x € R}: E}_,xf = s} denote the p-sphere of radius s
in R}, 0 <p < . Let for random variables X,Y, PX¥=* denote the regular
conditional distribution of X given Y = s and let PX denote the distribution
of X.

For p =X\%, let p, = u(-|L?_ ,xP = s) denote a disintegration w.r.t. the
p-spheres, then u = [u, X pS~»(ds), where S, (x) = Zx?. We call p, the
uniform distribution on the p-sphere of radius s (up to a norming constant)
throughout this paper. Let U = {¢ € R}~ %; ||¢]l, < 1} and let ¢: U X R, > R”,
¢(2,s) = (st, s(1 — ||£]I5)'/P). Then for any measurable function f: R? — R,,
we have

[ f(xydxn"(x) = [ f($(t,5))det Do(t,s) dtds
R? UXR,

(3.1)
= [ [ flst.s(1 = elZ)"")s= (1 — £7)P " deds,
R, YU

with D¢ the Jacobian. On the other hand, for the surface measure S, on
M, = {x € R}; |lxll, = s}, we have:

[ f(x)dS,(x) = /M f(¢, F(2))V1 + IVF ()| dt
(3.2) y .

= [ flsts(1 - I1Z) 77 )sm~ th(t) dt,

where M, = {t € R*"L; ltll, < s}, F(¢) = (sP — LtP)'/P for t € M, and h(¢) =
[1+ (Z¢2P72)1 — I£]15)2/P~2]/2, Comparing (3.1) and (3.2), we see that the
uniform distribution u, coincides with the surface measure S, only for
p = 1,2, but is generally different.

LemMma 3.1. Let {,,...,¢, be iid according to F,, where 0 <p < . Then
the regular conditional distribution for ({,,...,{,) given
i {lp =s, Ps = PG {EF-1tP =5

i=1

is uniform on the p-sphere of radius s, S, , ,.

Proor. Let u =X} be the Lebesgue measure on R} and let u, =
u(-|Exf = s) be the uniform distribution on S, , , (up to a norming constant)
and p = [u, X uS»#(ds), where S, ,(x) = Z7_,xP. For any probability mea-
sure P = fu with density f w.r.t. u the relation P = [P, X PS~r(ds) holds
similarly. From some well-known formulas for conditional distributions, one

gets

dPSn»
h(s) = 25— (5) = [F(3)ny(dy).

pSne
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Furthermore,

dPp, f(=x) f(x)
P, < p,[pSmr| and ——(x) = = ,
pal ] dn, ") " h(s) T R(S,,(®)

n, as. for x with S, ,(x) =s. Applying this to f=f, f,(x)=ce /7,
x > 0, one gets that

dPp; IT7- 1 fo(y) e /P

x) = =c"

du h(s) h(s)

s

is constant on S, ; , and therefore P is the uniform distribution on S, , ,
for almost all s w.r.t. the distribution PS~». O

The corresponding result for p = « is well known.

Lemma 3.2. If {y,...,{, are iid, F -distributed, then
Ps = P({l yyyyy {n)l V?=1{i=s

is uniformon S, , , ={x € R}: V7 x; = s} for almost all (a.a.) s €[0,1].
The converse of Lemma 3.1 can be formulated in an even stronger form.

LemMma 3.3. Let X, = (P, i=1,...,n, with ({;) iid distributed according to
F,0<p<ow IfY,,...,Y, areiid, EY; = 1 and if for somen €N, n > 2,

(3.3) PXiITisXi=s - pYiITicYi=s  fior PEXi g g s,

then Y, has the same distribution as X;.

Proor. For the proof we use Theorem 1 of Berk [3] stating: If X,Y are
independent random variables such that H(x|s) = P(X <x|X + Y =s) has a
Lebesgue density A(:|s) on an interval I c R!, then X,Y have Lebesgue
densities f, g and any other independent pair X*,Y* with the same condi-
tional distribution has densities f[*, g* such that f*(x)g*(y) =
e***ey=cf(x)g(y) a.s. for some a € I.

Consider now at first the case n = 2. Then

= = ,l/p-1,-x/p
fx(x) = fe(x) PVPT(1/p) x e , x> 0.
If prilYi+Ye=s — pXi1X1+X;=s then by Berk’s theorem, Y, has a density g
with g(x) = ce®*f(x). Therefore, g(x) = éx'/P~1e~*1/P~® x > 0, is the den-
sity of a I'(1/p,(1/p) — a)-distribution. From the normalization EY; =1
follows

’

Lol 1 1
[ TP/ -a 1-pa

that is, @ = 0, implying Lemma 3.3 for the case n = 2.
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In the case n > 2 let f~ P*: and let g ~ PX*1%Xi, Then we can argue by
Berk’s theorem as in the case n = 2. O

Lemma 3.4. If m,,...,n, areiid with support [0, 1] and if for some n € N,
nx>2,

pmlViemi=s — p&l Vf'=1§i=3, Vs,
with ({;) as in Lemma 3.2, then P™ = P4,

PROOF For the proof note that in the case n =2, PHalaVé=s -
38() + 3Ujq,s- Therefore P™ has a density f and f(x) = 1 for all x < [0, 1).
O

If (as in Remark 2.1) we consider p-spheres in R™ defined by {x € R":
L |x;[” = s}, then for real r.v’s Y; satisfying (3.3) we obtain similarly that |Y,|
has the same dlstrlbutlon as X,.

Since P¢fIZE-1¢=5 yniquely determines P%1/Z4 =5 for {; > 0, we obtain as a
corollary:

THEOREM 3.4. If 0 <p <wandif {y,...,{, are iid on R, with E{P =
for p < o and with support [0,1] if p = «, then PCv--$DIE8=3 s yniform on
Sp,s,n fora.a. siff F, = F,.
The conditional uniformity suggests the following third characterization.

THEOREM 3.5. (a) For 0 <p <, F, is the distribution on R, with maxi-
mum entropy in the class of all distributions F on R, with [x? dF(x) = 1.

(b) For p = , F, is the distribution on R, with maximum entropy and
with support in [0, 1].

Proor. (a) The minimum discrimination information theorem of Kullback
[12] (cf. also [5] and [18]) implies that necessary and sufficient conditions for
maximum entropy in the class of distributions with given pth moment are the
conditions P < \} and In(dP/d\l) = a + bx?, which by the normalization
conditions imply that P has the distribution function F,.

(b) The proof is obvious. O

4. Asymptotic independence and de Finetti’s theorem. This section
is inspired by the paper of Diaconis and Freedman [9]. In this paper the main
two continuous examples are the following: Let { be chosen at random on the
surface of the 2-sphere O, , 3 ={x €R™ Lx2=n} of radius n (resp.,
the simplex S, , ,={x € R": Y x;=n}). Then {,,...,{, are for k fixed, in
the limit as n > 1ndependent standard normals (resp., exponentials).
Diaconis and Freedman obtained a right order bound on the variation distance
between the law of ({,, ..., {,) and the law of % independent standard normals
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(resp., exponentials). We will extend Diaconis’ and Freedman’s results consid-
ering { being chosen at random on the surface of the ‘p-sphere’ 0, , , = {x €
R* X7 lx’ =n}for0<p<wand O, , ,={x € R", V_,lx;| = n} (respec-
tively, the positive part of O, ,, namely Sp nn={x€0,, ;x> 0}. From
the considerations in Sections 2 and 3, it will be sufficient in the following to
restrict to the positive p-spheres S, , ,. We start with the case p = ». Let
{y .o e ¢, beiid U(0, 1)-distributed. Then by Lemma 3.2, (¢, ...,¢,) is condi-
tionally, given V_;{; = s, uniform on S, , ,. Let P»* for o > 0 be the law
of{a{y,...,0¢,)and let Qf,“)s & be the law of(nl, . nk) where n = (n,...,1,)
is uniform on S, ,. In the next theorem we shall evaluate the devi-

ation between fo")s , and P®® in terms of the total variation distance

1Q%Y, — Pk~ = supAegkIQnsk(A) — P2=(A)|, #* being the Borel sets in R*.
THEOREM 4.1.
00 k, oo k
(4.1 1@, — Pl =

Proor. Without loss of generality, we may assume s = 1. Let Q be the law
of n; V -+ V n, determined by @,,, and P be thelawof {; V --- V {,. Then
with

k n
Yk,n,m = V {z/v {iy

Q@ = P~~~ and @ has a d.f. given by (2.3). On the other hand, P(—o, x) = x*
0<x<1 Hence @ =(n —k)/n)P + (k/n)d, is the mixture of P and
8,. Since V_,X, is sufficient for {@, P}, it follows from the well-known
sufficiency theorem (cf. Csiszar [5]) that Q% , — PPl = 1Q — Pl =
k/nll6; — Pll=k/n. O

Let C, be the class of distributions of X = (X],..., X,,) on R? which share
with the iid uniforms the property that given M := V? X, = s, the condi-
tional joint distribution of X is uniform on S,

Clearly, P»* € C,. Set P, , = [P}"u(do) for any probability u on (0, «).

o

As a consequence of Theorem 4.1, we get the finite form of the de Finetti
theorem:

COROLLARY 4.2. If P € C,, then there is a u such that for all k < n,
k
(4.2) |P, — Pl < e
where P, is the P-law of the first k-coordinates (X, ..., X}).

Proor. Define
uw=P N ?-1Xi’
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the distribution of V7 ,X;, then P, = [ Q%) ,u(ds) and, therefore,
1P, — Pl = 1 /(@ - Pk”)u(ds)ll<fl|Q,(,°Z)k—Pk°°IIu(ds)—k/n O

In particular, one gets the infinite de Finetti-type characterization of scale
mixtures of iid uniform variables (cf. Diaconis and Freedman [8], Example 2.5).

COROLLARY 4.3. Let P be a probability on R’ with P, being the P-law of the
first n coordinates. Then P is a uniform scale mixture of iid uniform variables,
iff P, € C, for every n.

Following the same idea we will now consider the case p € (0,»). Let
{1543, . .. beiid r.v.’s with d.f. F, given by Theorem 2.1. Then by Lemma 3.1,
the conditional distribution of ({;,...,¢,) given £7_,¢{F = s is Q) ,,, where
Q) , is the distribution of the first % coordlnates of a random vector
(my,...,m,) uniformly distributed on the p-sphere of radius s, S, s in RY.
Let P]»? be the law of the vector (¢{y,...,a¢{,). The next result shows that
QP) ; is close to Ph7 Jnyvp W.r.t. the total variation distance, that is, the

distribution of (n,,....7 &) is close to the distribution of

((s/n)'PLy, ... ,(s/n)l/p{k).

In comparison with the case p = ©» in Theorem 4.1, we have to use the
rescaling (s/n)/? for the approximating distribution P/? here.

THEOREM 4.4. Let 0 <p <, then forn >k +p

”Q,(,I:?g’k - P({:/pn)l/l’”

) k el/12
kp+——+( +1)p

(4.3) 2 12
kp p2 1/12 k 1 pe1/12 k 1
+|—— + 1+ — — .
(2 12 ( Zn)) k+ 24 n|n-%k-p

Proor. Obviously, 1Q), — P& 2.l = IQP), , — PEP|l, so it sufficses to
take s = n. 3
Let @, be the Q) ,-law of 7Y + --- +nf and P, be the P}P-law of

n,n,k

{P+ -+ +Lp. Then Q%) , — PFP|l=Q, — Bl as in the proof of Theorem

4.1. By Lemma 3.1, we consider Q,({’Q, ¢ as the law of ({,/R,..., {,/R), where
R? = (1/n)L7_,£P. So @, is the law of
ko g\P Tk P
Z({t) =n l—lgl’
rigf

i=1

which by Theorem 2.1 is the law of nB(k/p,(n — k)/p), that is, @, has a

R




DISTRIBUTIONS ON SPHERES 1319

density

1 I'(n/p) x \k/p-1 x \(n—k)/p-1
(44) f(x) = = (—) ( )

n T(k/p)T((n — k)/p) \n
for 0 <x <n and f(x) =0 for x > n. On the other hand, P, has a gamma
(1/p, k/p)-density

n

) A
4.5 8(x) = 57— */Px*/P~1 {500 <x < .
( ) ( ) pk/pr(k/p)
The following representation of the sup distance will be used further:
. - ® f(x)
4.6 lQ, — Pl = max(O,——l g(x)dx.
(4.6) e Pull= [ PO LR

By (4.4) and (4.5), f/g = Ah, where

(g)kfp I'(n/p)
I'((n — k) /p)

n
for x € [0,n] and h(x) = O for x > n. We have

log k() x+'(n_k 1)1 (1 x)
ogh(x) = — - 1|log(1 — —
g > . g1 -~

x \(n-k)/p)-1
and hA(x) = e"/”(l - ;) .

and (9/9x)log h(x) > 0 iff x <k + p. Hence, if & + p < n,
k +p)

(4.7) log h(x) < =P 4 (n L l)log(l _
p p

We use the following consequence of the Stirling expansion of the gamma

function (cf. Abramowitz and Stegun [1], page 257)

(4.8) T(x) = e *x*"V%(27)/%e0/12x <9<,

This implies that

n (n—-k)/p)+1/2 % /o
an 2] e
n—k ’
with
6 = eP/12(6:1/n)=63/(n=k) L op/12n_
Hence,
n (-B)/P)+1/2(n — -p ((n—k)/p)—1~
Ah < e( ) (h) 0
n—k n
n—=%, -p (n—k)/p) n ( n )1/20"
=e
n—~k n—k—-pln-=&

p \(-B/p) n 1 1z
) n—k—p(l—k/n)
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From Kumar and Pathak [13] (page 42), we use the following estimate:

x\° c 1
(49) sup |e™*— (1 - —) <— with ¢= sup xe™*=—, a>1,
0<x<a a a O<x<n e
implying that ’

n—=F% T n—-Fk’

Furthermore, we use the estimates

(n—k)/p)
e(l N ) — 1’ < P
k -1/2 . p
1-— <1+ — and @ <eP/'2"n <14+ —el/12
n 2n 12n
to obtain

1+

Ab <1+ -2 S PR
S( +n—k)n—k—p( n)

implying that Ah — 1 is bounded by the right-hand side of (4.3). O

pe1/12
12n ) '

REMARK 4.1. (a) Following the proof of Diaconis and Freedman [9], one can
get, under the assumption that p = p,/p, is rational, that is, p, € N, the
following bound:

k+p kR
TTho, f5 €N Ek+p<n,
Q) & — P& fuynll < b p
(4.10) P — , ,
k+p,+p

g p—— fork <n—-p;, —p,
which is for some cases better than the bound (4.3). Diaconis and Freedman [9]
obtain in the case p = 2 the bound (% + 3)/(n — & — 3); in the case p =1,
(k+1D/(n—k+1).

(b) Similarly to Corollaries 4.2 and 4.3, one can consider the corresponding
finite de Finetti-type theorems and the corresponding infinite characterization
of scale mixtures of iid F, distributed random variables.

There are some general results on the asymptotic independence of
P& Xp) I EP1X;
based on Edgeworth expansions but without explicit finite bounds (cf. Zabell

[22], Diaconis and Freedman [9]). Diaconis and Freedman ([9]) have a precise
result for exponential families. This implies the following theorem.
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THEOREM 4.5. Let 0 <p < « and k,n — © such that k/n — 0, then the
following holds:

k k
(A1) swl@P s ~ Bl fysl = LEIL— NI + o(;),

>0

where N, , is a standard normal random variable.

Proor. Let {,{5,... beiid r.v.’s with d.f. F, for some 0 < p < ® and let
X, = {P, which are gamma (1/p, 1/p) r.v.’s with denSIty

1/p
_ (]‘Lx(l/p)—le—x/l” x> 0.

Consider the exponential family generated by 4, that is,

. 1 (l/p)(l/P)—O
4.12) fo(x) = e®h (x) = ——————x(l/"’)‘le""«l/”)f"), x>0
12 1) = 2@ ™)~ Twe) - 0)
for 0 € (—x,1/p) = O, that is, fo is a gamma (1/p, (1/p) — 6)-distribution. If
X,, X,,... are iid according to f,, then the first moment
- 1 1
n(0) = E X, =

pl/p—-6 1-po’

implying that u(8) =s/n iff 6 = (1 — (n/s)) - 1/p. It is easy to see that the
exponential family #= (P, = f,X';0 € 0} satisfies the four regularity condi-
tions (6)—(9) of Theorem 10 of Diaconis and Freedman [9], that is:

(i) ® is maximal.
. 4
.. (X1 - ‘;1,(0))
ii supE,~———
() beo * o(0)°
(iii) Smoothness:
t
(PO 0_(0)

(iv) Integrability: sup, [le4(t/0(0))° dt < « for some v > 1.
By Theorem 10 of Diaconis and Freedman ([9]), with

X n X .=
Qn,s,k =P0(X1 ..... X1z X, s

<o where 0(8) = Vary(X,).

sup sup <1 where g,(t) = Eje'%s,

0 |{>8

we obtain

1k k
(413)  suplQ, — PEL 5%l = £ —EI1 - N3l “’( )
§>0

Now we observe that the exponential centered distributions in (4.12) have the
same conditional distributions as the noncentered distributions have (this is
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the main point of this proof):

(4.14) Q, ., = PFv - ZWIEIaXizs = pXy,. o, XpILiaX,=s
. s, .

P~
Furthermore, with 6, = (1 — (n/s))1/p we obtain that Py VX has the density
1 1/p
(4.15) fp‘/_(x) —fo(xp)pxp p((s) x),

that is, P, VR — PL?, », the law of (s/n)'/?{,, where {; ~, F,. The invari-
ance of the sup distance w.r.t. monotonlc transformations apphed to G(x) =

(‘/Z ) \/ﬁ ) using Q) , = QY , , implies the result. O

Let C, , be the set of all probability measures on (R%, #%) such that the
condltlonal distribution given L?_,x? = s is uniform for all s> 0. From
theorem (12) of Diaconis and Freedman ([9], the following corollary is im-
mediate.

CoroLLARY 4.6. Let k,n » =, k/n — 0, let for P € C, ,, P, be the distri-

bution of the first k components and let p, = PEXE gnd P,
[PEP e dp(s). Then suppec, I1Pp = Pull/ 1(k/n)Ell -Ng, -1

5. Stability of the characterization of the exponential class {Fp,
0 <p <o}, In Section 2 we have characterized F, by means of the beta-
distribution B(k/p,(n — k)/p) of the corresponding quotients X, , ,=
_1$F/L%_1{F, 0 <p <=, respectively, by the distribution of X, , =
Vi 1{ / V _,¢;. In this sectlon we want to show that this characterization
remains stable in both directions, that is, the mapping from the distribution F
of the {; to the distribution of X, , , is continuous in both directions, and we
shall give a quantitative version of this continuity. The method to prove this
stability, which is formulated in terms of the distance p [cf. (5.1)], is to prove
this uniform continuity in the first step for a different metric ¢ for which this
is easy to see. Then in the second step, we pass via some inequalities from ¢ to
p- The question of stability of the characterization of F, by X, , , is moti-
vated by the results of Sections 2 and 3, where the essential idea of the proofs
was that the uniform distribution on the p-sphere S, , is given by the
distribution of s'/P({,,...,{,)/(ZF_{PVP.

We first consider a perturbed sequence ¢, {2, ... of iid nonnegative r.v.’s
with common d.f. F close to F, in the sense that the uniform distance
(5.1) p=p({1.8) = o(F,, F,)

[here p(X,Y) = sup,|Fx(x) — Fy(x)|] is close to zero. The next theorem says
that the distribution of X, , , = X% /P/T7 [P is close to the beta
B(k/p,(n — k)/p)-distribution w.r.t. the unlform distance. In the sequel, ¢
denotes absolute constants which may be different in different places and
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c(--+) denotes quantities depending only on the arguments in the parenthe-
ses.

THEOREM 5.1. For any 0 <p < « and ({,) iid with E{P = 1 and Mg =
EL@+P < o (5 > 0), the following estimate holds:

(5.2) supp(Xk’n’p, Xk’n'p) < ¢(8, 1y, p)p?/BEE),
k,n

Proor. We start with the first claim:

CrLam 1.
. k k . n n .
p(Xk,n,,,,Xk,n,,,)Sp(sz,E:,P)+p( Y ¢ L P
i=1 =1 i=k+1  i=k+1
=< nP({p 51)
To prove (5.3), observe that

(5.3)

S
) knp = 5 o
X
where

X1=Z§;P’ X2= Z &r,

i=1 i=k+1

k . . n ~
X1=Z§;P, X2= Z &k

i i=k+1

Since ¢(t) =t/(1 +¢) is strlctly monotone and X, , , = ¢(X,/X,), we have
that p(X, , ,, X, ») = p(X,/X,, X,/X,). Choosing X} =, X,, X} indepen-

dent of X,, we obtain
xr X
P\ = =

x, %, X, Xr
Xz X, sz X

—— | +
2 X, X
“[ [y y
= sup P(— Sx) _P(T <x) dFx(y
x>0 '/(; [ X2 X2 x )
+sup| [ P(—)& <x) % <x) dFyg(y)
w0l | \y 7 y 2
e y s Y
< [0 sup P(X2 > ;) —P(X2 > ;) dFx ()

+f0°°su13IP(X1 <xy) - P(X, < xy)|dFg(»)

= p(Xl, X'l) + p(Xl, Xz)
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The second part of (5.3) follows from the smoothing inequality, p(X + Z,
Y+ Z) < p(X,Y) for Z independent of X,Y. }

In order to estimate the p-distance between the sums of {?’s and {?’s, we
use the following two-stage approach. First, choose an appropriate metric for
comparison of the sums. In our case this will be the {-metric

{(X,Y) =sup{|lEf(X) — Ef(Y)l:|f"(x)l<lae.}.
One can easily check (see, e.g., [23]) that

(5.4) ( 2 Zi 7= 2 z) <2, Z,)
for independent, identically distributed r.v.’s (Z,) and (Z,). In the second stage

of this metric approach, we compare the {-metric with the metric p. By this
comparison we obtain an estimate for p via the estimate for ¢.

Cram 2. Let n > p, E{P = E{?, 02 = Var({P), 62 = Var({P) < . Then

AEe o) s 2)

(5.5)
X{l/a(i f 7. 1 Y Z
n -1 “‘/;z=l )
where
P—1 B ’» — E{P
z, = 4, ’ Z = ¢ ¢
g g
and
(X,Y) = f_wl [ (Fx(t) - Fy(t))dt[dx
Proor. Forany n=1,2,..., we have

P(Efip,Zflp)=P( Z TEZ)
i=1 =1 -
From Baxter and Rachev [[2], (2.8)], we have
(5.6) p(X,Y) < 3M**({(X,Y))"",
where M = sup, .1 fx(x), and the density of X is assumed to exist. We have
fapmerz(®) = o/n fop p(no,x + 1),
1

n 1
_ |- - l)xn/p—2e—x/p — —x/P-lymx/p| —
p"/"l“(n/p)b[( p

frpep(x) =
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iff n/p — 1 =(1/p)x, that is, iff n — p = x. Thus for n > p, we get
p PP (n/p — 1)TPVPg=(n-p)/p
P"/7((n/p) = 1)|((r/p) = 1)™P ™ 2e=r/P+1 o |

[using T(z) > 22" V2~% 27 ].

fz§’=1§f(x) s

This implies that
Vn Vn
o,Vn fyr (%) <o, o
P et ®) S O ) ~ 0w VBTV =D

el 2

(5.6) and (5.7) together imply (5.5).

(5.7)

Cramv 3. If mg < o, then
(5.8) (2, Z,) < ¢(8, ms, p)p®/@*D.

Proor. Forr.w.’s X,Y with E(X-Y) =0,

(XY) 5 [ Il Fa(x) - Fy(x)|d

<N?%(X,Y) + lEX21 + lEY21
] 2 xi>m Ty (¥|> N)

1
2N?
Minimizing the right-hand side over N > 0, we get (5.8). Combining Claims 2

and 3 we get p(Z?_ (P, L7 1{P) < c(8,my, p)p®/C1+ if p/n < 1. From
Claim 1 we then obtain

<N%(X,Y) + (EIXI*° + E[YI**?).

n
2pP ifp = -,
2
(5.9) ¢ @/32+8) k "
: p(Xk,n,I_nXk,n,p) =< 2pp +cp lfp = E,P < 51
k n
8/(3(2+8)) if p < — < —
cp I p 9’ p 9 ’

which proves the theorem. O

ReMaRk 5.1. (a) Claim 1 of the proof of Theorem 5.1 remains also true for
the total variation metric. But p seems to be the appropriate metric for this
problem since p is related to the ideal metric { [see (5.6)] while the total
variation metric is too strong to be estimated from above by ¢.
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(b) In particular, (5.2) implies the following result on qualitative stability:

(5.10) If{,>pl;, my<wo, thenX,, -, X, . .

For the stability of the opposite direction we prove the following result.

THEOREM 5.2. For any 0 <p < and any iid sequences ({;), (£) with
E{pP = { f=1and {, {1 having continuous distribution functions we have

(511) p({ly fl) < iup p(Xk,n,p’Xk,n,p)‘
,n

~

Proor. Denote X; = {7, X, = {P. Then

supp(f ¢r Zap,Zz/é )

k,n i=1 i=1 i=1
X, X, X, X,
> = = SUu
A TLx T x| T S\ (T, (A m)n ik,

>p(X1,X1 hmsupp( (l/n))::”le X)

- lim su —_— X .
p”( s )

By the SLLN and the assumption EX, = EX, = 1,
5.12 X X %, ¢
. —_— a.s., —_—

G12) G, "% (L/mTiix,

Since X; and X, have continuous d.f.’s, the convergence in (5.12) is valid
w.r.t. the uniform distance p. Hence supy, , P( Xy 5 ps Xk np) = P(X, X)=
p(¢y, &) as required. O

REMARK 5.2. By (5.3) and (5.11), we have that

P({p 5-1) < iuP p(Xk,n,p’ Xk,n,p)’
,n

(5.13) ) .
sup p(Xk,,,,p, Xk,n,,,) <np(¢, &)

1<k=<n
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For the case p = » and Xk’n’w = Vf’=1§:;/\/?=1 /., we use the following
condition:

ConpITION 1. There exists a nondecreasing continuous function ¢(¢) =
@:(¢): [0,1] = [0, ), $(0) = 0 and such that

o(t) > sup (-—log x)_IIFg-l(x) - xl.
l-t<x<l1
Obviously, Condition 1 is satisfied for {; =, ¢, (which is uniformly dis-
tributed on [0, 1)) with ¢(¢) = t? (with any p > 0). Let ¢(¢) = (—log(1 — ¢)) -
¢(t) and let ~! be the inverse of .

TueoreM 5.3. (i) If Condition 1 holds and if F;(1) = 1, then
A= sup p(Xk n,o’ Xk n oo) =< Cyepe ‘/J l(p) where p = p({l, il)

k,n
Gi) If {, has a continuous d. f., then A > p.

Proor oF ().

Cramm 1. Foranyl <k <n,

k k n n
(5.14) p(anw,anw)<p(V{,V ) V& V li)sn
i=1  i=1 i=k+1  i=k+1
ProoOF.
1 - 1
X n,w b X n,« -~ ~ 9
k, X, VX, ks L+ X,
where
k n
X1 - V {;, X2 = v {z’
1=1 i=k+1
~ k -~ ~ n bod
4=Vi %=V &

i=k+1
Following the proof of (5.3), we may assume (X;, X,) is independent of
(X,, X,) and thus

(X o0 K oo) il % 1y 22 ,1 —X2
n,o n,wo) = =p Vv A%
P\ Ak, n, k,n, ){1 v X2 Xl v X2 X1 Xl

< X2 XZ X2 XZ + X2 X'2
%% | =P\ x X, X,’ X,

1
< P(Xz, Xz) + P(Xl’ Xl)’
the last inequality following by taking conditional expectations.
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Cram 2. Let py = p,(¢y, §)) = supg ., . (—log x)"!F,(x) — Fzg(x)|. Then
(5.15) p(i\Z/IQ, i\:/lfi) <cvpy .

ProoF. Consider the transformation f(¢) = (—log#)~'/%(0 < ¢ < 1). Then
0 5 ) A 5 {38 A5 ).

where X, = f({;), X; = f({)). Since X, has an extreme value distribution with
parameter a, so does Z,:=n"'/*V7_ X, The density of Z, is given by
fz(x) = (d/dx)e™™ " = ax™*"le™*" and thus

a+ 1)\@+D/e a+1
(5.17) C,=supf;(x) = a( ) exp{ - }
x>0 @ a
Let p, be the weighted uniform distance

(5.18) p(X,Y) = su;(: x¢|Fy(x) — Fy(x)l.

Then by de Haan and Rachev [[7], (2.38)],
(5.19) p(X,Y) < A AV/A+apl/a+a( X Y)Y,
where A, :=(1+ a)a™*® and A :=sup,., Fy(x) (the existence of one
density being assumed). Hence, by (5.16), (5.17) and (5.19),
n n
620) o Vi V&) - n(2..2,) < aczresnpen(z, 2,)
i=1 =1

where Z, = n=/*V 7, X,. The metric p, is an ideal metric of order a w.r.t.

the maxima scheme for iid r.v.’s (see Zolotarev [23)]) and in particular

n

pa(Zn’Zn) =pa(n—1/a V Xi’n—l/a \n/ Xz)
i=1 i=1

n n
(5:21) < n_lpa( VX,V Xz)
i=1  i=1

~

< Pa(Xn X1) = P*(Zn 1)'

From Condition 1, we now obtain:

Cram 3.

(5.22) px <@y Y(p).
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Proor. Forany O <t<1,

Px = max{ sup (—logx)_llF{I(x) -

O<x<l-e¢

(5.23) sup (—log x)_IIFgl(x) - xl}

l-eg<x<1
< max(( —log(1 - e))_lp,<p(e)).

Choosing & by ¢(¢) = (—log(1 — £))~"'p), that is, p = ¥(¢), one obtains the
claim.
From Claims 1, 2 and 3 we obtain

(5.24) p(Xin,ps Zan,p) < min(np,cy/oev1(p) ).

Proor oF (ii). For the proof of (ii), observe that
Fy, (%) =Ff(x) > 1

for any x with Fy(x) > 0. As in the proof of Theorem 5.2, we then obtain

su Vf i Vf lf > lim su & fl
YAV VS C\VEL VLG

&
> p(gl,gl) - hmsupp( Vg, ,{1)
—limsup p f = ,{1 =p({1,5~1),
Vz 1{

since {;, {; have continuous d.f.’s.

REMARK 5.3. In (i), the constant ¢ depends on a > 0. So, one can optimize
¢ by choosing a appropriately in (5.20).

With respect to the total variation D(X,Y) = sup,. . IP(X € A) —
P(Y € A)|, we can formulate the following stability results.

THEOREM 5.5. (a) For 0 <p < oo,

Yy X 2P

i=k+1 i=k+1

k k
(5.25) D(X,,’k’p,xn,k,p)sD(Z D) 3’)
i=1  i=1

IfE(P) = E(PP = EN/, i = 1,2, j = 1,2, for some independent normal r.v.’s
N; and if for some r > 2, the pseudomoments v, = v,({;, N;) = [lx|"|Fz(x) —
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Fy(x)ldx < a < «, then

(5.26) sup DX, p» Xy ) < A(a)n™ V2,

k<n

Proor. By a well-known representation of the total variation metric,

D(Xn,k,p1 Xn,k,p)

k n k n
= inf{P(X;e Yi;X=, ¥ {,P/Z Y=, LI l"}
1 i=1 i=1

i=1 i=
inf| P -2 uf
< .
=m X1+X2¢Y1+Y2’
k n
Xy, X, independent, X; =, }° (P, X, =, Y, (P,
i=1 i=k+1

Y,,Y, independent, Y; =, Ef{’, Y, = EQP}
<inf{P(X; #Y)) +P(X,# Y,); "}

k k
= inf{P(Xl #Y): X = LYY= ¥ {lp}
i=1

i=1

n

+ inf{P(X2 #Y,); Xo=; Y, P, Y,=, ¥ fzp}
i=k+1 i=k+1

i=1 i=k+1 i=k+1

k k n n
-o(gara)en( £ o £ o)
i=1
From the triangle inequality and smoothing inequality for D we infer
k

k
D( ¥ ) z) < kD(40 £)
i=1 1

and
D(f 7> c) sD(Z 7, ZN,-) +D(Z N, Y :P),
i=1 i=1 i=1 i=1 i=1 i=1

which is bounded above by A(a)rn~1/2 by a result of Senatov [20], Sazonov [19]
and Rachev and Yukich [16]. O
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In the case p = « one gets for the total variation distance:

THEOREM 5.6. If (0 < ¢, < 1) and if —1/log{, has a d.f. F satisfying for
some s > 1, [gx'*5|F'(x) — (1/x%)e™1/*|dx < =, then

(5.27) sup D(X,, , X’k,,,,w) =0(n'™®).

k<n

Proor.

(V£@ V£@)

<D

+D(</zi, \"/;:) -D, +D,.

i=1 i

V?=1{i ’ V?=1fi

With f(¢) = —1/logt, 0 <t <1, f({,) = X, has the extreme value distribu-
tion with density Fy(x) = e™'/*. Therefore,

D, =D((1/n) V X, (1/n) V Y,~) =D(X1,(1/n) V Y)
i=1 =1 =1

1=

where Y, = f({,). Thus we have to estimate the rate of convergence of the
normalized maxima (1/n)V '_|Y; to X, in terms of the total variation dis-
tance. Following Omey and Rachev [15] and Omey [14], one can prove that the
condition [yx'*°|F'(x) — Fx(x)ldx < ®, where F is the d.f. of Y;, implies
limsup n*~'D((1/n)V ?_,Y;,, X|) < . O

6. The discrete case. If {,,...,(, are iid geometrically distributed with
parameter 6 € (0, 1), that is, P{1(j) = (1 — )¢, j =0,1,..., then

QW, = P{u- ) Tiali=s

n,s,n

is uniform on the simplex S;,,={xeN§: X7_;x, =5} for s €N, and
Diaconis and Freedman [9] proved that

n2

n—-k—1)(n—k—-2)

(6.1) "szl,)s,k - Psk/,(1n+s)|| < 2{ ( 1},

where
P}l =P and QW, , = Pfv-WITiati=s,

We at first consider the corresponding result for p = «, that is, we assume
that {,,...,¢, are iid uniformly distributed on the finite lattice {1,2,..., m}.

Lemma 6.1. If {,...,¢, are iid uniform on {1,...,m}, then the condi-
tional distribution Q, , = Pv--wImx4=s s for 1 < s < m uniformly dis-
tributed on S, , , = {x € N*: max x, = s}.
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Proor. For any integers k,,..., k, with max,_;_, kB, =s < m we have:

P({1 =kyyeorl, =k, / max §i=s)

l<i<n

P({l =k1,...,£n =kn)
P(max;_; _, {; =)

(6.2) =

1 1
m"P(max{, = s) m"(s" —s" 1)’

since there are s” — (s — 1)* n-tuples (ry,...,r,) withmax,_,_,r,=s. O

THEOREM 6.2. If {y,...,{, are iid unifdrm on {1,...,m} and if m =s,
1 <k <m,then

1( k k
() —_ pk - —
(6:3) 197, x = Fnll < 2(n " n)

P, being the uniform distribution on (1,..., m}.

Proor. There are s” — (s — 1)* n-tuples (ry,...,r,) with max r; = s. To
determine Q% ,, we consider two cases.

Case 1. t=j;V - Vj, <s;then

stk — (s - 1)"_k

6.4 () 1y eeesJp) = 7

( ) Qn,s,k(]l Jk) s — (S_ 1)
CAsE 2. t=j, V -+ Vj, =s;then

6.5 () i i st

( . ) Qn,s,k(Jl""’-,k)_ sn_(s_l)n.

Consider at first Case 1, where ¢t =j; V -+ V j; <s =m. Then
Qs i) _ 8"t = (=)™ 1- (- /s
Prﬁ(jla”wjk) sn_(s_l)n 1_(1_(1/3))71

I >infy_, (1 -x%/(1 —x) = ¢(x), where a =(n —k)/n. But ¢(x) is
monotonically decreasing on [0, 1], so I; > ¢(1) = a. Thus

I, =

0c s 1< 3
SI_I_ %k T n-k
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and hence
Jy = E |Prﬁ(j1a~“’jk) - Qr(::)k(jl»“wjk)l
Grreerd)
J1V "tV p<s
1 o
(66) = 2 I_ -1 Qns)k(.]li"-».]k)
(jly'ﬂyjk) 1
jl\/ \/jk<s
< er(:j)s,k{(jl»“-’jk):jlv ij<3}°
In the second case, where t =j; V - -+ V j, = s, we obtain
1seeer ] snk 1
I,= ank(:h :]k) _ gk _ _ > 1.
Pr(jus- s dr) s"—(s—-1) 1-(1-(1/9))
Hence
Jz = Z |Prﬁ(j1""»jk) - ngk(jli“"jk)l
.(j1y~~~1J:k)
J1V o Vig=s
sn—k
S
6.7) JaV o Vig=s \ 8T — (s—1)

n—k
= (Sk - (S - l)k)(m - S_k)

1\* 1 1—xP
=(1'(1'?) )(1—(1—(1/s))" '1)= = T

where x = (1 — (1/5))", B = k/n. Since ¢(x) = (1 —xP)/(1 —x) - 1 +xP <
¢(1) = B, we obtain J, < k/n and therefore

1 1( & k
() — k = — a -
(68) ”Qn,s,k Pm|| 2(J1 +J2) = 2(n—k + n)'

RemMaARk 6.1. (a) If
1

s = )
1—(1=k/(n—k)""
then the proof of Theorem 6.2 gives the improved bound

6.9 1R, — Pl Lk
() Qn,s,k mszn_k‘

(b) The estimate in Theorem 6.2 is uniform in s and therefore (6.3) implies
a finite and also infinite de Finetti-type theorem. (For an analysis approach to
this infinite de Finetti theorem cf. also Ressel [17], Example 4).
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Consider now the discrete p-spheres of radius s € N:
n
R
i=1
and
n
S;sn_{xeNg:inp=s}, pEN°
i=1

As in Lemma 6.1, we get:

Lemma 6.3. If {y,...,{, are iid uniformly distributed on {1,..., m} (resp.,
{0,...,mY and if S, , , # & (resp St +# ), then the condztzonal distribu-

psn

tion Q(P) = PG LIIEE=s i uniform on S, ; , (resp., S, _ ).

REMARK 6.2. The question arises whether S *s . #* & is related to the
famous Waring problem of number theory. The main result of Hilbert (proved
in 1909) says that for any p € N, there exists an n € N such that S, , # &
for all s € N. Furthermore, a famous theorem of Hardy and thtlewood (cf.
Vinogradov [21] and Ellison [11]) states:

If n > 2P + 1, then

Tp,n(8) = 1S5 5.l

(6.10) - ws(n/m—lg(s,p’n) + o(s/PY)

I'(n/p)
as s = oo,

where

G(s,p,n) = G(s)

=L L (S.e/Q) e,
Q=1 0<a<@
(a,@)=1

Sa,Q= Z e21ri(a/Q)l”
0<I<@Q

and © > C(p,n) = G(s) = ¢(p,n) > 0 for all s.

For 2 €(0,1), p € N, we can define in analogy to the continuous case
distributions

(6.11) P,.(J) =a,2’", jeN, a,=a,z),

where 1/a, = £5_42'". Let u,(2) = a,L%5_ojz'" = L ;jP, (j).
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LEMMA 64. Letz€(0,1), p e Nand {,...,{, be iid distributed accord-
ing to P, ,. Then the following hold:

() P(f1 """ EIEE-10=5 is uniformly distributed on S, ,, if S;., , # @.
(i) P , 1S the unique distribution with support N, such that ‘() holds.
(iii) P .z 18 the distribution with support Ny with given first moment p,(2)
and with maximum value of the entropy —Z‘;’:o In P(j) = H(P).

REMARK 6.3. From (6.10), we obtain for Q) , = Py W IEiudf=s

QP n(J1s- -5 Jn)
Pp,z(jl" .. ’jk)

r.._.(s—t L
= B2 - At t) where t = Y j?

ro(s)akz Z
{r@ + (1/p))" (s — 1) P/»71
X G(s,n—k,p) +o((s— t)«n—kvp)—l)}
x {T((n = k)/p)(T(1 + (1/p))"/T(n/p))s"/P!
XG(s,n,p)akz' + o(s<n/p)—1)]-1
(n/p) k (s - t)«""”/P)—l
((n—k)/p)(1+ (1/p))"\ s

G(s,n - k,p) 1+ O(((s —_ t)/s)((n—k)/P)—l)
G(syn’p) sk/”a’;z‘+o(sk/p)

(6.12)

as § — oo,

For a more explicit evaluation of the supremum distance one would need more
information on the function G(s, n, p) as a function of n, s.

From Corollary 3.3 of Zabell [22], we infer:

THEOREM 6.5. Letc, =o(n), k 2 1and a, = nu,(2) +c, €N, then

1+ lc,l
n b

(6.13) Q) — Pl = o(
where Pp’fz is the k-fold product of P,

In addition to the number theoretic result (6.10) concerning the case s — =,
n fixed, one gets from (6.13),

(6.14) i _P_i_igt_l____t_) - a';z‘

t= p,n(an)

(1+ le,,|

asn — o,
n
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For the analysis, the big problem is contained in the normalization ¢(z) =

E‘;;ozj" =1/a,. By elementary calculations (¢(2)" = L5_7, (s)2° and
therefore r, ,(s) = [le(e*™*)]"e 2" da. ‘
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