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BRANCHING PARTICLE SYSTEMS AND
SUPERPROCESSES!

By E. B. DYNKIN

Cornell University

We start from a model of a branching particle system with immigration
and with death rate and branching mechanism depending on time and
location. Then we consider a limit case when the mass of particles and their
life times are small and their density is high. This way, we construct a
measure-valued process X, which we call a superprocess. Replacing the
underlying Markov process £ by the corresponding ‘‘historical process”
£ 4, We construct a measure-valued process M, in functional spaces which
we call a historical superprocess. The moment functions for superprocesses
are evaluated. Linear positive additive functionals are studied. They are
used to construct a continuous analog of a random tree obtained by
stopping every particle at a time depending on its path (say, at the first exit
time from.a domain). A related special Markov property for superprocesses
is proved which is useful for applications to certain nonlinear partial
differential equations.

The concluding section is devoted to a survey of the literature, and the
terminology on Markov processes used in the paper is explained in the
Appendix.

1. Main results.

1.1. Branching particle systems. Such a system is determined by three
parameters:

(a) a Markov process ¢ = (¢, #(A), 11, ,);
(b) a positive continuous additive functional K of ¢;
(c) a generating function

¢'(x,2) = ¥ pp(x)2",
n=0

where pi(x) > 0 and T ,pi(x) = 1.
The system is characterized by the following properties:

(i) Each particle has random birth and death times.
(ii) Given that a particle is born at time r at point x, the conditional
distribution of its path is determined by II, ,.
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1158 E. B. DYNKIN

(iii) Given the path ¢, the conditional probability of survival during time
(s, t) is equal to

H(s,t) = e K@D,

(iv) The only interaction between the particles is that the birth time and
place of offspring coincide with the death time and place of their parent.

(v) For a particle which dies at time ¢ at point x, the number of offspring is
a random variable with the generating function ¢’(x, 2).

Conditions (i)—(v) describe a branching particle system heuristically. A
rigorous construction is given in Section 2.

The state space of the process ¢ at time ¢ is an arbitrary measurable space
(E,, 8,). The global state space & is the set of pairs ¢ € R, x € E,. We denote
by %, the o-algebra in & generated by functions f: & — R with the following
properties:

(a) For every t € R, f(x) is #,-measurable.
(B) For every r <u € R, the restriction of f¢,) to (r,u) is measurable
relative to #(r,u) X F(r,u), where #(r,u) is the Borel o-algebra in
(r, ).
The set £(A) = {(r,x): r € A, x € E,} belongs to &, for every interval A.
We put &_, = &(—x,t].
We say that a function f is progressive if it is measurable with respect to
#%. (Superscript * indicates the universal completion of a o-algebra.)
We assume that:

1.1.A. The transition probabilities are progressive, that is, the function

ft(x) = 1t<th,x{§u € B}

is progressive for every u € R, B € %,.
1.1.B. The functions p(x), n = 0,1,..., are progressive.

In addition, to simplify the presentation, we concentrate on the subcrltlcal
and critical case, that is, we suppose that

1.1.C. The expected number of offspring

o

a; = Y npy(x) <1
n=0

for all ¢, x.
Let Y,(B) be the number of pérticles at time ¢ in a set B. Properties (1)—(v)

imply that Y, is a Markov process in the space of integer-valued measures (i.e.,
measures with values 0,1,...,n,..., +»). Its transition probabilities Q..
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satisfy the condition

(1.1) Q. exp{ - f,Y,) = I_[lQr,yi exp( — f, Y,
iz
for v = Ly, (here { f,Y,) means the integral of f with respect to the measure
Y,). Besides, if 8, is the unit mass concentrated at x, then the function
(1.2) wi(x) =Q, s exp{ —f,Y) forr<t, w/(x)=0 forr>t¢

is progressive in r, x and satisfies the equation

wi () = 1, | H(r, Dex( (&)
(1.3)
+ [*H(r,5)K(ds)¢* (£, wi(£,))| forr<t.
r
Formula (1.3) has a clear heuristic meaning: The first term in the brackets
corresponds to the case when the particle born at time r at point x is still alive
at time ¢, and the second term corresponds to the case when it dies at time

s e(r,t).
We consider the process Y, on the time interval R and we assume that

Q (Y, =0forallz<r} =1,

which means that there is no particle until time r when a bunch of them
“immigrate” at locations described by v. A more general situation—each
particle immigrates at its own time—is described by the stochastic process
(Y,,Q,), where n = L8, . is a configuration in & and @, is the convolution of
the measures @, ;. .

By 1.1.C, '

(1.4) ¢'(x,2) = ¢'(x,2) —220 for(t,x) €&L,0<z<1.
Formula (1.3) implies that A
(15) wi(x) =T, [¢°[&, wi(£)]K(ds) + 1, ,exp(~f(£)} forr <t

(see Section 2.3). It follows from (1.1) that, for every integer-valued measure v,
(16) Qr,uexp< _f,Yt> = exp<10g wtr’V>,
and therefore, for every measure 7 on the space of integer-valued measures,

(1.7) Q.mexp( = f,Y,) = [m(dv)exp(log w],»).

If m, is the Poisson measure with intensity u, then

fwu(dv)e“"’) =exp(e/ — 1,u)



1160 E. B. DYNKIN

and, by (1.7) and (1.5),
(1'8) Qr,q-rﬂexP< _f,Yt> =eXP< _vtr,l">’

where v] = 1 — w/ satisfies the equation

(19) W) + T [W (6,07 (£))K (ds) = T, .[1 — exp{~F(£)]

forr <t
with
(1.10) Yi(x,z) = ¢*(x,1 — 2).
More generally,
(1.11) Q. exp{ — f,Y,) = exp( — v, m),

where 7, is a Poisson random measure on (&, %) with intensity n, v] = 0 for
r > t,and {v,n) = [Lv"(x)n(dr, dx).

1.2. Passage to the limit. Imagine a branching system of small particles,
with short life, distributed with high density over the state space. More
precisely, consider a branching particle system (¢, K/B, ¢,) which depends on
a small positive parameter 8, with an initial (‘‘immigration’’) distribution 7.
Let Q,f’ be the probability law of the corresponding process Y, and let ¢, and
¥, be defined by (1.4) and (1.10) with ¢ replaced by ¢,. If every particle has
mass 3, then BY, is the mass distribution at time ¢. By (1.11) and (1.9),
(1.12) QF exp( —f,BY,) = exp{ — v(B),n

Tn/B
and

(1.13) o(B,) + 1L, [U5[£,,vi(B,£)] K (ds) =1L, Fy(£) forr=t,
where

(1.14)  ¢g(x,2) = Yi(x,B2)B™%,  Fy(x) = (1 - e P™®)p1,
Suppose that

(1.15) 0<f(x) <c forall x.
Then
(1.16) | Fa(x) — f(x)] < $Bc>.
Hence Fy(x) - f(x) as B — 0.

Let

oh(x,2) = F,[b'(x), 2]

1.17
(1.17) + B2 [*[em/Pe /8 — 1 + u(1 - 2)B~"|n*(x, du),
0

where F(b,2) =b/k +[1 - b/(k — D]z + bz"/k(k — 1), b*(2) is a bounded
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positive progressive function and n’(x, du) is a kernel from (&, #%) to (0, +x)
such that

(1.18) fluzn‘(x,du) and fwun‘(x,du)
0 1

are bounded functions on & and [yun‘(x,du) — 0 uniformly in (¢, x) as
N - . For sufficiently large &, formula (1.17) represents a generating func-
tion and the corresponding function ¢, is given by the formula
t( ) k -2
Wh(x,2) = ———[(1 - B2)* — 1 + kpz|B
k(k 1)
(1.19)

+fp_l(e_"z -1+ zu)nf(x,du),
0
which tends to
(1.20) Pi(x,2) = 3b'(x)2® + fw(e"‘z — 1+ zu)n'(x,du)
0
as B — 0. By (1.18), ¢ is differentiable with respect to z and
(1.21) Dy!(x,2) = b(x)z + [ (1 - e **)un'(x,du);
0

in particular,
(1.21a) D,y*(x,0) = 0.

It can be deduced from a result of Kawazu and Watanabe [22] and the
results in Section 3 that (1.20) is the most general form of a function ¢ which
can occur as the limit of ¢, given by (1.14) under conditions 3.1.A, B and
(1.21a). A simple direct proof was given recently by Li [27].

Note that the integrals (1.18) converge for n(du) = const u~?"* du with
0<a <1 and that the corresponding ¢(z) = const z'** [assuming that

bi(2) = 0l.

According to [4], a Luzin (Radon) space is a measurable space (E, &)
which is isomorphic to (E, #) where E is a Borel (correspondingly, a univer-
sally measurable) set in a metrizable compact space and & is the trace of the
Borel (universally measurable) o-algebra on E. We write f€ & if f is a
positive #-measurable function. We denote by .#, the set of all finite mea-
sures on (E,, #,) with the measurable structure generated by the functions
F(n) = w(B), B € #,. We say that a measure 7 on (&, 4,) is admissible and
we write n € (&) if n(&£_,) < = for all ¢.

THEOREM 1.1. Suppose that:
1.2.A. For each t, (E,, #,) is a Radon space.

1.2.B. ¢ is a Markov process with progressive transition probabilities.
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1.2.C. K is an additive functional of ¢ with the properties:

(a) for everyq >0, r<t€Randx €E, II, ") < o;
(B) for every t, <t € R, there exists a constant k such that 11, ,K(r,t) < k for
allr € [ty,t), x €E,.

1.2.D. ¢ is given by formula (1.20) with b and n subject to the conditions
listed above.

Then there exists an .#;valued Markov process X = (X,, #(A), P, ,) such
that, for every t € R and every bounded f € %,,
(1.22) P, exp{ —f,X,) = exp{ —v", u),

where v (x) is a progressive function determined uniquely by the equations

vr(x) + 10, [We[&, v (£)]K(ds) = 11, . f(&) forr<t,

v'(x) =0 forr>t.

Write v, for v to indicate explicitly its dependence on t. To every n € (&)
there corresponds an #,valued Markov process (X,, P,) such that

(1.24) P exp{ —f,X,) = exp{ —v,,m) foreveryt €R.

(1.23)

We call X the superprocess with parameters (¢, K, ). Note that X and ¢
are defined on unrelated sample spaces. We denote them, respectively, ()
and Q°.

ReEMARK 1. If we assume that IT, {¢, =9} = 1 for all £ < r, where 9, is an
extra state added to E,, and if we put f(3,) = 0 for all f € %,, then (1.23) is
equivalent to the equation

(1.25) v"(x) + H,’xfwd/s[fs,vs(gs)]K(ds) =1, ,f(¢) forallreR
(cf. Section 0.2 in the Appendix).

REMARK 2. We assume that
(1.26) PY=PP Y
forall Y € 4., and all n € IR(&) concentrated on & _ .. If &, is generated
by X,, t > r, then it follows from (1.22), (1.23) and (1. 24) In general this is a

slightly stronger form of condition 0.1.B which is a part of the definition of a
Markov process.

REMARK 3. Suppose that a"(x) is a strictly positive progressive function
and let *(x, 2) = ¢°(x, 2)/a’(x), K(ds) = a*(¢,)K(ds). Then

¥° (£, h°(&,)) K (ds) = v°(£,, h*(,)) K (ds)
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for any positive_progressive function h. Therefore the superprocess with
parameters (&, K, ) is identical with the superprocess with parameters
& K, ¢).

Theorem 1.1 can be extended to certain classes of infinite measures. Let p
be a strictly positive progressive function such that: (a) for every ¢, p’ is
bounded; (b) for every r < ¢t € R, there exists a constant a} such that

(1.27) I, .p'(¢) <ajp’(x) forall x €E,.

We denote by .#? the space of all measures u on (E,, %,) such that {p*, u) < .
This implies: For every u € .#f, the measure

v(B) =11, (¢ € B}
belongs to .#f. Theorem 1.1 remains true with .#, replaced by .Zf.

By applying formulas (1.22) and (1.23) to uf and by differentiating with
respect to u at u = 0, we get the relation

(1.28) P, (f, X)) =1, ,f(&).
Analogously (1.24) implies
(1.29) PLf, X)) =1,f(&).

Here (¢,,11,) is the Markov process with transition probabilities II, , and the
initial distribution n (see Section 0.2).

In Section 5 we investigate the moments of order m under the following
assumption:

12.E,_. [fu™n'(x,du) is a bounded function.

Condition 1.2.E, is satisfied automatically because of (1.18). Under condi-
tion 1.2.E, we prove that, for all ¢,,¢, € R, f; € %, , f, € ¥, n € UL,

P"l< fl’ ‘th>< f2’ ‘th> = H"l fl(gtl)n'rl f2(§t2)
(1.30)
+ anqg(gs)ns,fs fl(ftl)ns,gs f2(§,2)K(ds),

where
gj(x) = D2y*(x,0) = b*(x) + [ wPn*(x,du).
0

This can be proved in a way similar to the proof of (1.29) for f, =f,, ¢, = ¢,
and then generalized by using (1.26) and the polarization in f. Instead we get
(1.30) as a particular case of the general expression for the moment functions
of all orders.

1.3. Branching particle systems as measure-valued processes in functional
spaces. Historical superprocesses. The complete picture of a branching parti-
cle system is given not by the process Y, but by the random tree composed of
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the paths of all particles. Introduction of historical superprocesses makes it
possible to preserve this information under the limit procedure of Section 1.2.

A path with the birth time a is a collection of points w, such that w, = 9, for
t<a and w, € E, for ¢t > a. We assume that the process ¢ is canonical, i.e.,
the sample space is a set W of paths, £(w) = w, for each w € W and %(A) is
generated by £,(w), ¢ € A. We denote by w(A) the restriction of w € W to A
and by W(A) the image of W under this mapping. Let % °(A) stand for the
o-algebra in W(A) generated by ¢,, ¢ € A. Note that B € % °(A) if and only if
the inverse image of B under the mapping w — w(A) belongs to F(A). We
write W_, for W(—, t]. The notation ¥_,, #2,,W,,, w_, etc. has an analo-
gous meaning.

Let r <t<u. Suppose that w' € W(r,t], w" € W[t,ul. We write w =
w' vw"if w,=uw, for s €[r,t] and w, = w! for s € [¢ u] (consequently,
w; = wy). We assume that:

1.3A. Ifw €Wlrt]l,w € Wlt,ulandif w = w' V w", then w € W[r, u].
13.B. For every ¢, (W_,, #2,) is a Radon space.

Both conditions are satisfied in the following typical situation: The spaces
(E,, #,) can be imbedded isomorphically into a compact metrizable C in such a
way that:

(a) E, is a Borel subset of C.

(B) W consists of all right-continuous functions with left limits such that
w, € E, for all ¢.

(y) Ifw, €E, andif w, >weWast,|t thenw€E,

Condition 1.3.A holds independently of (y). Condition 1.3.B follows from a
result of Dellacherie and Meyer (see [4], 4-18 and 4-19).

With a canonical process £ = (5,, F(A), 11, ,), another Markov process B =
(¢, F=(0), 11, ) in (W_, F2) is associated which we call the historical
process for &. It is ; defined by the formulas

(1.31) Eo(w) =w_,, Fa(r,u) = F_,,
(182) [ F), . (dw) = [ Fxe, Vw, ), (dw,,).

Here W' is the set of all w € W such that w, = x,. (Note that %[r ©) = F(R)
for all r and that I, ,__is the image of II, %, under the map j: W' — W given
by the formula J(w) =x_.,Vw,,) The global state space for = will be
denoted (¥, %y ). There exists an obvious correspondence between measures
on (W_,, &2,), measures on (W, & _,) and measures on (W, #*,). By applying
Theorem 1.1 to E we get the following result.

THEOREM 1.2. Suppose that a historical process E, its additive functional
K and a function ¢*(x _,, z) satisfy conditions 1.2.A-1.2.D. Then there exists a



SUPERPROCESSES 1165

Markov process M = (M,, £(A), P, ) on the space # _, of all finite measures
on (W, F%,) such that, for everyt € R and every F € .9";‘”

(1.33) P, yexp{ —F,M,) =exp{ —V",N),

where V'(x _,) is a progressive function determined uniquely by the equations

V() I, [ U062 V(6] K (ds)

(1.34) _m,

F forr <t,

V=0 forr > t.

To every T € IM(¥') there corresponds an # _,valued stochastic process
(M,, P;) such that, for everyt € R,

(1.35) Prexp{ — F,M,) = exp{ - V,, T,
where V, is determined by (1.34).

Suppose that K is an additive functional of ¢ and that ¢ = ¢*(x, 2). Then
the historical superprocess M with parameters (£, K, ) can be obtained from
the superprocess X with the same parameters by the following direct con-
struction.

First we define the finite-dimensional distributions

Mt{thEAl,...,wtnEAn}, ;< o <t,<t,
(1.36)
A €%, . A, €%,

of the random measure M,. To this end we replace X, by its restriction X; to
A, run the superprocess durmg [¢,, £,] starting from X; , proceed analogously
until getting a Z € .#, and then take Z(E,) as the value for (1.36). Then we
construct M, by applymg Kolmogorov’s theorem to the family (1.36).

The historical superprocess can also be obtained from branching particle
systems by the limit procedure of Section 1.2 applied not to the process Y but
to the process % which is defined as follows.

Pick up a particle P at time ¢ at a point z. Its genealogy can be represented
by a scheme

(1.37) (r,2) = (51,91 = = (800) 2 (4,2).

The labels (s;, y;) indicate the birth time and place of P and its ancestors, and
the label (r, x) refers to the immigration time and place of the first member of
the family. An arrow a from (s, y) to (s’, y') corresponds to a path w® € W[s, s']
such that w? = y, w? = y'. Combined together, w® determine a path w € W_,
which we call the historical path for P (we set w, = 9 for ¢ < r). The historical
paths of all particles which are alive at time ¢ form a configuration in W_,
which can also be described by an integer-valued measure 2, on W_,. As a
function of ¢, 2| is a measure-valued process in functional spaces W_,.
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A natural question is if condition 1.1.A for ¢ implies an analogous condition
for E. Note that, if B ={w: w, €4,,...,w, €A,} where t; <t; < -+ <
t, = u, then

Lo, , fé.,€B} =1, {w, €A,,...,w, €A,} fort<g

(1.38) - 1‘41( xtl) yer lAi( xti)ntivxti{wtin €A w;, € An}
fort € [t;,¢;41)
=0 fort>u. .
Therefore 1.1.A is satisfied for E if it holds for &.

1.4. Linear additive functionals. Denote by & the set of left-continuous
monotone increasing stochastic processes A, adapted to the filtration F¥, of
W and such that A, = 0. The measure A(df) on R determined by the
condition A(—w,¢) = A, is an additive functional of the historical process =. If
A € Z, then Als,t) =A,— A, € F* for s <t, and the sum

(1.39) Ja(Asr,u) = 3 (A[4 4, 1), M,)
i=1
is well defined for every A ={r =¢,<#¢ < -+ <t, = u} and represents a

Zlr, u)*-measurable function.

THEOREM 1.3. Under condition 1.2.E,, for every A € R, there exists a

unique (up to equivalence) positive functional J, of the historical superprocess
M such that:

14A. If
(1.40) supIl, , A, <

u
xsr

for all finite r < u, then

(1.41) Julr,u) =lim J,(A,;r,u)

in L*(P, y) for all finite r <u, N € .#_, and every monotone increasing
sequence A, with the union everywhere dense in [r, u].

14B. IfA,1 A, then J, 1J,.

For every u < +», we have
(1.42) Prexp{—J,(—»,u)} =exp{ — V,T),
where
r u S
Vi) + Ty, [ 001620, Vo(£20)] K (d5)
= H,’xsrA[r, u) forr<u,

V=0 forr > u.

(1.43)
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In particular,
(1.44) P, yexp{—du[r,u)} =exp{ — V", N).
For every B, B,, B, € #(R) and every T € J(¥"),
(1.45) P.J(B) = I, A(B),
Prd,(By)Ja(By)
= Ay(B;)IIAy( By)

+ Ir [q3(¢ <) [T, ¢ Al BY)|[IL,, ¢ Ax( Bo)] K(ds).

(1.46)

We write
(1.47) Ju(B) = [ (A(dt), M) = [ (dA,, M,).
B B

Weput YeL if Ye£*R) and if PrY = [P, ; YT(dr,dx_,) for every
I' € M(¥'). Obviously, L is a cone which contains all functions Y = (F, M,),
t € R, F € %, An additive functional J of M is called linear if J[r,u) € L
for every r < u € R. Obviously, all functionals JJ, have this property.

We call the function

(148) Hr(xsr) =Pr,8,, J(r,oo)
the characteristic of a linear additive functional «J.
THEOREM 1.4. Suppose E is a right process. Then every linear positive

additive functional J of M with a bounded characteristic corresponds to some
Ae R :

1.5. Measures M_. Special Markov property. Let &/, stand for the inter-
section of F*, over all u > ¢. Note that 7 is a stopping time relative to the
filtration 7, if and only if {r <t} € ¥* for every t € R. We assume that
r2a Put CeoZ if CNn{r<t} e for all t €R which is equivalent to
the condition: C N {r < ¢t} € FX for all ¢ € R. Denote by w _, the restriction
of w e W to (-, 7(w)]. Note that w — w _, is a measurable mapping from
(W, &) to the global state space (¥, %, ) of the historical process E (see [6],
Lemma 5.2, or [4], 4-64). To every F € %, and every stopping time 7 there
corresponds F™ € & defined by the formula

(1.49) Fi(w) =F(w,,)1 ..

THEOREM 1.5. Suppose that a sub-o-algebra % of @y contains ¥ _, forall
t and that (¥, %) is a Radon space. Then there exists a kernel M. from
(Q, ZR)* to (¥, #) such that

(1.50) M(F) = [(dF7,M,) Pra.s.
R
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for all F € & and all admissible measures T. We have
(1.50a) P.M,(F) = I F(w_ )1, ..
If T is admissible, then M (o, - ) is admissible for Pr-almost all o.

For every stopping time 7 we denote by ¢, . the o-algebra in () generated
by [r(A(d?), M,) with A subject to the conditions: A. =0 and Aft} is a
reconstructable function (see Section 0.4). We introduce &_, as the o-algebra
generated by M.(F), F € 4.

THEOREM 1.6. Suppose that the historical process E is strong Markov. If T
is a stopping time, then

(1.51) P,YZ = P.(YPy Z)

for all admissible measures I'and allY e 4_ ,Z € 4, .

1.6. Spaces of historical paths. A historical path of a particle P observed
at time ¢ is represented by a scheme (1.37). Historical paths «/,..., " for
particles P,,..., P, overlap. They can be represented by a scheme like the

following:
(1.52) (ry,%1) = (51,91) = (82,¥2) = (t1,21) (12, %) = (t2,22).

) \)
(t3a23) (t4,24)
The paths «', ..., «" can be decomposed into elements w? corresponding to
the arrows; they can also be combined into one historical path ~ for the
family P,,..., P,.
The combinatorial skeleton of the scheme (1.52) is the directed graph

- - - -

(1.53) Ly

In general, we deal with rooted trees and their disjoint unions which we call
groves. A rooted tree is a family of vertices and arrows such that each vertex,
except one, is the end of one arrow, and the exceptional vertex—called the
entrance—is the beginning of just one arrow—called the root. (For typograph-
ical reasons, we depict trees which lie, not stand up, which, of course, makes
no difference since isomorphic graphs are considered as indistinguishable.) A
special role is played by the vertices from which no arrow begins—we call
them exits.

A diagram is a grove with marked exits. For instance, there exist 12
distinguishable diagrams corresponding to the grove (1.53); one of them is

- > -1 - 2.

(1.54) T
34

[The diagram (1.54) is indistinguishable from one obtained by interchanging
the labels 1 and 4.] We denote by D, the family of all diagrams D with exits
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marked by the elements of a finite set A. For every D € D,, there is a
standard marking of all vertices. For diagram (1.54) it looks as follows:

(1.55) 134 — 1234 - 1l4 -1 2% — 2,

3 4
In general, a vertex v is marked by the list of all exits which can be reached
from v in the direction of arrows. In addition * is included in the mark of
every entrance.

The marks which do not contain * form a class of T’ C A with the proper-
ties: I contains all singletons and every two elements of T are either disjoint
or one of them contains the other. We call a class with these properties an
Zclass. There is a one-to-one correspondence between D, and all .Zclasses in
A. [Diagram (1.55) corresponds to I' = {1, 2, 3, 4, 14, 134}.]

We write D ={D,,...,D,}if D,,..., D,, are the connected components of
D (the corresponding .Zclasses satisfy the relation ' =T, U -+ U r,.).

Another construction allows us to reduce a connected dlagram D to s1mpler
connected diagrams (assuming D contains more than one arrow). If D € D, is
connected, then A is an element of the corresponding -Zclass I'. By eliminat-
ing this element we get a new Zclass I''. We write D = D, v --- v D, if the
diagram corresponding to I' is {D,,..., D,,}. This is equivalent to the follow-
ing recipe: To get D,, ..., D,,, drop the entrance A * from D and replace the
vertex A by the new entrances A;*,...,A, * if A > Aj,...,A > A, is the
complete list of arrows beginning at A.

Let Al*, ..+, A, * be the list of all entrances of D € D,. Note that A=
A; U -+ U A, isapartition of A into disjoint sets. Put « € Wy(ry,...,r,;t,)
1f « is a h1storlcal path for |A| particles whose scheme coincides w1th
labeled by elements e of & in such way that:

() e(A; *) € E, for every entrance A, *;
(i1) e( j) 1S E for every exit j.

[For instance, the historical path (1.52) belongs to Wy(r;, ry; ¢, .. .,t,) with D
shown on (1.54).] Note that

(1.56) Wp(ry,.. st HWD( )
if D={D,,...,D,}.

To every sequence of positive progressive functions q,,, m = 0,1, ..., there
corresponds a family of measures Ly(ry, xy;...;7,%,,) on Wy(ry,...,7.;t,),
x, €E,,...,x, €E, defined by the following inductive rules:

1.6.A. If D consists of a single arrow, then L,(r, x) is the image of I,
under the natural mapping w ., - wlr,t] from W™ = W_, to W[r, ¢].

1.6.B. If D is connected and if D =D, v --- v D,,, then
Lp(r,x)(d«) =11, (dw)q;(w,)K(ds)
XLD1(3> ws)(d‘”l) T LD,,,(S’ ws)(d”‘m)
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[we parameterize elements « of Wy(r,x;t,A) by s € R, by a path w corre-
sponding to the entrance arrow and by.a family of paths «, corresponding to
the diagrams D,].

16C. If D={D,,...,D,b}, then

Lp(ry, %4525, Xp) = HLD(

If 9, =p,, in 1.6.B, then L(ry,...,r,;t,) is a subprobability measure. It
can be interpreted as describing a certain version of the evolution of a finite
branching particle system observed between times r,, ..., r,andt,,...,t,.

1.7. Moment functions. Now we consider the measures L, corresponding
to

(1.57) qn.(x) = D"¢*(x,0).
By (1.21),
D2yi(x,2) = b'(x) + fmuze‘“zn‘(x,du) < qi(x),
0

(1.58) m
DI"yi(x, 2) =f u™e **n'(x,du) < qt(x) form > 2.
0

THEOREM 1.7. Suppose that conditions 1.2.A-1.2.D and 1.2.E_ are satis-
fied. Then, for every n € M(&), f1 € B,,..., f, € %, ,

PUf XD fo X,

(1.59) DgDA [n(dry,dsy) -+ n(dr,,, dx,,)

XLp(ry, %g5.. .57, Xy de) f1(“‘1t1) .- fn(m’t‘ )

Here A ={1,...,n}and «',..., " are hzstoncal paths of particles P,, ..., P,
considered as functlons of w € WD( re,. 3 bls e s Ep)-

REMARK 1. For n =1, (1.59) is identical to (1.29). For n = 2, (1.59)
coincides with (1.30). Two terms in (1.30) correspond to the diagrams

.ﬁl
and —><
_)2

REMARK 2. Tt follows from (1.18) that 1.2.E implies 1.2.E _ for all m < n.
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2. Construction of branching particle systems.

2.1. We start from a single particle at point (r, x) € & and we define the
joint probability distribution ﬁ, ,. for its life path « and the number m of its
offspring. It is convenient to describe a life path < by a triplet (w, a, B). Here
w € W is a collection of w, € E, for all t € Rand —» < a < B < + are the
birth and death times of the particle. Let # stand for the space of all such
triplets and let . be the o-algebra in # generated by the functions
(2.1) F(w,a,pB) =fa(wa)1a<t1<t2<BYgB(wB)s

where f,g € #%, Y € F(t,,t,)*. [¥(A) means the o-algebra in W generated
by the coordinate mappings w,, t € A. We put f(w,)=11if a = — and
g°(wg) =1 if B = +.] Note that, if w = w’ on [a, B], then F(w,q,B) =
F(w', a, B) for functions (2.1) and therefore for all F € 7. We call (¥, ) the
single particle path space, and we say that (a, w,) is the birth point and (8, wp)
is the death point of the particle.

LEmMMA 2.1. For every additive functional K, F(iv, a,B) =K(a,B) is A
measurable.

Proor. Put
a,=1i27" for(i-1)2""<a<i27",
B,=j27" forj27"<B < (j+1)27".

It is easy to see that 1, ., K(a,, B,) is #measurable and («,, 8,) 1 (a, B) and
therefore K(a,,B,)1 K(a, B). O

LEmMA 2.2. Let F € #. Then, for everyr,

(@) F(w,r,») is &, ,-measurable and F(w,r,s) is F, . X % -measurable;
(b) the functions

(%) =11, F(r, )

and
¥r(x) =1, , [ F(r,s)K(ds)
r
are progressive.

Proor. By the multiplicative systems theorem, it is sufficient to check this
for F given by (2.1), in which case (a) is trivial and (b) follows from 0.6.C, 0.5.a
and 0.5.8 since

®7(x) = f"(2)1, <, ]I, Y and ¥7(x) =f(x)1, 1, YK (t,%),
where K(dt) = g'(¢,)K(dt). O
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Let Z,=1{0,1,...,m,...}. A measurable function on (¥, ) X Z, isjust a
sequence of .#measurable functions F™. It follows from Lemmas 2.1 and 2.2
that the formula

fl, F= ¥ n,,x[H(r,oo)F"(w,r,w)

(2.2) o i
+[ H(r,s)p;,(ws)F'n(w,r,s)K(ds)], Fme .7,

defines a kernel from (&, #%) to (¥, /) X Z,. The intuitive meaning of (2.2)
was explained in Section 1.1. For every measurable positive F, H Fisa
progressive function. Note that H, Aa=r}=1

2.2. The construction of a general branching particle system can be easily
reduced to constructing a system generated by a single particle P. Let us
consider the set & which consists of an element @ representing P and

sequences of strictly positive integers {i, i,,...,{,} representing descendants
of P. We say that a = {il,...,ik} is an ancestor of b = {j,,...,j,} and we
writeb<aifk<nandi1 Jir--sip =Jp. If, in addition, £ = n — 1, then

we say that a is the parent of b.

Let # be the single particle path space. An element w of Q =(¥x7,)%
describes an eventual family history: The value w(a) = («(a), m(a)) mdlcates
the life path « and the number of offspring for the particle a. By applying the
Ionescu-Tulcéa theorem, we construct a probability measure @, ; on Q with
the following properties:

2.2.A. The probability distribution of w(@) is 11, ;

2.2.B. If a # @ and if (s, y) is the death point of the parent of a, then the
conditional probability distribution of w(a) given {w(b) for all b < a} is equal
to 1, ,; moreover, the evolutions of the siblings are independent.

Fix w € Q. We call a = (iy,...,i,) € & “a dream child” if i, > m(@) or if
i, >m(iy,...,i,_y) for some k=2,...,n. By eliminating all the ‘“dream
children” from &, we get the family tree G(w). The family path «(w) is the
collection w,, a € G(w). It is legitimate to assume that, for all a # @, the birth
point of a coincides with the death point of its parent (because this happens
with probability 1 with respect to all @, ;).

By 1.1.A and 1.1.B, the function w;(x) given by (1.2) is progressive in r, x
(we put it equal to 0 for r > ¢). To prove (1.3), we consider the life path
w = (w,r,B) of § and we note that (f,Y,) = f(w,) if t € (r, B) and Y, = Y}
+ - +Y,™ if t>p, where Y, describes the posterity at time ¢ of the
child {i}.

2.3. Now we prove (1.5).
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LEMMA 2.3. Let F € %, and let a function h"(x) > 0 be progressive. Then
(23) &) = 1L [Hr )W) K(ds) + HO, 0 F(E)]
is progressive and
g &+ [EE)REs) =11, F(6) + [h(6) K(ds)
forr <t.
Proor. Functions
Y, =1, [H(r,s)k(¢) K(ds)

and
Z =1, _H(r,t)F(¢,)

r

are right continuous and % -adapted. Therefore g"(x) is progressive by
0.6.C.
Let r < t. By (2.3),

I, [&*(¢&)K(ds) =1, [K(ds)I, (Y, + Z,)

(2.5)
=11, , ['K(ds)(Y, + Z,).

Note that

(2.6) ['K(ds)H(s,t) =1 - H(r,t)

and therefore
t t
@) I, . [K(ds)Z, =1, [K(ds)H(s,t) F(&)
= Hr,x(l - H(rs t))F(gt)
By Fubini’s theorem and (2.6),

1, . [K(ds)Y, =1L, ['K(ds) [ H(s,u)h*(£,) K(du)
(2.8) =1, . ['K(du)h*(&,) [ K(ds)H(s, u)

=10, ['K(du)h“(£,)(1 - H(r,u)),

and (2.4) follows from (2.5), (2.7), (2.8) and (2.3). O
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CoROLLARY. If w] is progressive in r, x and if it satisfies (1.3), then it also
satisfies (1.5).

Indeed, it is sufficient to apply Lemma 2.3 to g" = w;, h" = ¢(w]) and
F(x) = e_f(x).

3. From branching particle systems to superprocesses.

3.1. The proof of Theorem 1.1 is based on a general lemma regarding
Laplace functionals and on the fact that, if y; and ¢ are given by (1.19) and
(1.20) and if v;(B, x) satisfies (1.13), then v;(B, x) converges, as B — 0, to a
solution of (1.23). It is easy to see that:

8.1A. yj(x,2) converges to y'(x, z) uniformly on the set (¢,x) € &, z €
[0, c] for every ¢ € (0, »).

3.1.B. ¢'(x, 2) is locally Lipschitz in z uniformly in (¢, x), that is, for every
¢ € (0, ), there exists a constant g(c¢) such that

|‘lft(x>zl) - ¥i(x, zz)| < q(c)lz; — 2zl
for all z,,2, €[0,c], (¢,x) € &.

We use only properties 3.1.A, B but not the concrete form of ¥, and .

3.2. Let .# be the set of all finite measures on a measurable space (E, &).
We consider the o-algebra &, in .# generated by the functions Fg(u) = u(B),
B € # and the cone H of all bounded functions f € &% with the topology of
bounded convergence (f, — f boundedly if f, — f pointwise and if f, are
uniformly bounded). For every probability measure M on (#, £ ,) the for-
mula

(3.1) Ly(f) =[lM(dv)e‘<f”’>, feH,

defines a continuous functional on H which is called the Laplace functional
of M.

LEmMA 3.1. Let (E, &) be a Radon space. Suppose that M, are probability
measures on (#, & 4). If the Laplace functionals Ly, converge to a continu-
ous functional on H, then the limit is also the Laplace functional of a
probability measure on (A, B ,).

Proor. In the case of a Luzin space (E, #) this was proved in [10]. The
proof can be extended to the case of a Radon space by using the following facts:

(a) The space of all probability measures on a Radon space is again a Radon
space (see 0.7).



SUPERPROCESSES 1175

(b) If M, is a sequence of probability measures on a Radon space (S, Bs),
then there isaset S e P which supports all measures M, and such that
(S, Bs) (where %; is the trace of @s on S) is a Luzin space. (This follows
directly from the definition of a Radon space.) O

CoroLLARY. If Ly (f) > L(f) uniformly on each set H, = {f: 0 <f <c),
then L is the Laplace functional of a probability measure.

3.3. LemMA 3.2 (Generalized Gronwall inequality). If a bounded function
h"(x) is progressive and if

(3.2) R(x) sa+qll,, ['ho(&)K(ds) forallr € [t,),

then
(3.3) h'(x) <all, e?%"D  forallr € [ty t).

Proor. By induction,

W(x) <a ¥ ¢M, o Lcarc o <oy K(dsy) - K(dsy)
k=0

+ qn+lnr,xf1r <8< - <sn+1<tK(dsl) T K(dsn+1)hsn+l(§sn+1)
=a) ¢*l, K(r,t)*/k!+ R,
k=0

where
R, ., <constq"*'I, K(r,t)""'/(n + 1)!. ]

Lemma 3.3. Under conditions 1.2.C and 3.1.A, B, v(B, x) converges uni-
formly on every set

(34) ret,t), feH,

to the unique solution of the integral equation (1.23).

Proor. Forall fe H,
(3.5) 0<v/(B,x) <I,,f(&) <c.
By 3.1.A, for every ¢ > 0, there exists a 8, > 0 such that
|Ws(x,2) —¢s(x,2)| <e
for all B < By, (s,x) € &, z €[0, c]. By 3.1.B,
|wilx, v (B, )] = wg,[x, 02 (B, )] | < 26 + q(e)[vi(B,5) = vi(By, )]
for all B, B; € (0, By), f € H, and all (s, x), (s, y) € &. We conclude from (3.5),
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(1.13) and 1.2.C that
h(x) =|v(B, %) — v (B1, %)
satisfies (3.2) with a = || F; — F || + 2¢k. By Lemma 3.2,
h"(x) < all, ,e?®"?
and, by an elementary inequality,
|Fy — Fll <I1Fp — fll + 11Fg, — fll < (B + B fI2/2.

Passage to the limit in (1.13) is legitimate since ¢;5(x, v;(B, x)) — Pi(x, v°(x))
uniformly on the set s € [r,¢], x € E,. The uniqueness of the solution for
(1.23) follows from Lemma 3.2. O

REMARK. The function v is progressive as the limit of progressive functions

v(B).

3.4. Proor oF THEOREM 1.1. Formula (1.12) means that
(3.6) Ly (f) = exp{ = v(B), ),
where
Mg(C) = Q—E,,/B{BYt €C}, Ced4,
Let n € M(&) be concentrated on &, , . Then, by Lemma 3.3, (v(B),m) —

(v;,m) uniformly on each set H, and, by the corollary to Lemma 3.1, there
exists a measure F(n;¢, - ) on (4, & ,) such that

(3.7 fg(n;t,dv)e_“”’) — -,

For an arbitrary n € J(&), we consider restrictions 7, of 7 to &ln,n + 1)
and we define P(n;t, ) as the convolution of measures F(n,;t, " ). Since
(8.7) holds for 7, it is true also for n. By Fatou’s lemma,

[2(n3¢,dv)(L,w) < lim [P(nst,dv)(1 = eV A <n(Egp) <

and therefore #(n;t, - ) is concentrated on .#.

Let u €.#, and let 1, be the image of u under the mapping x — (r,x)
from E, to (£, #,). Formula &(r, u;t, ) = P(n,;t, - ) determines a Markov
transition function (see the proof of Theorem 3.1 in [9]). Theorem 1.1 holds for
any Markov process X with this transition function. O

The version of Theorem 1.1 stated at the end of Section 1.2 can be proved
by the arguments used in [10] to prove Theorem 3.1.

4. Linear additive functionals. Special Markov property.

41. LeEMMA 4.1. Let A be a finite subset of R and let f* € %, for every
t € A. Put

(4.1) AT = Z ft(ft)’ J" = Z (f?, Xt>’

teEA, teA,
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where A, = A N (r,). We have

(4.2) P, e =e ),
where
(4.3) v'(x) + 11, , [ °[£,0°(&)] K(ds) =TI, A",
For every n € M(&),
(4.4) P, exp{— v (f Xt>} _ -,
teA

Proor. If the cardinality |A| of A is equal to 1, then (4.2) and (4.3) coincide
with (1.22) and (1.23). The general statement is proved by induction in |A|.
Suppose that A = {¢; < --- <¢#,} and put A={ty< -+ <t,).Forr>t, we
have A, =A,, A" = A", J7 = J7 and, by the induction hypothesas, (4.2) and
4.3) hold for r > t;. If r <t,, then

Pr,y.e_Jr = r,y. exp[( - ftl’ Xt1> - Jtl]
= P,’”[exp( —fh, Xt1>Pt1’the“"1] =P ,exp{— (f+ v)", X,)
and, by (1.22),
(4.5) P, e77 =exp( —0",u),
where
~r b g =8
(4.6)  07(x) + 10, [9[&, 0°(&)] K(ds) =T, .(f+v)*(&,).
Using (4.3) for ¢;, 0.1.B and (4.6), we get that, for r <#,,
Hr,xAr = 1-[r,x[ ftl(gtl) + Atl]

=T, F3(6) + T, 05(6,) + Lo [ W76, 0 (8] K (ds)

= 5" (x) + 1L, , [0 (£, 5°(£)] K (ds) + 11, , [ 9*[&,,0*(£)] K (ds)

and therefore (4.2) and (4.3) hold if we put v" = 0" for r <t#,.

Since P, ,, = P, * P,, formula (4.4) holds for n + 7' if it is true for n and
n'. Therefore it is sufﬁment to prove (4.4) for m; concentrated on &(A;) where
A, =(—o, ], A;=(@;_, t;]for i=2,...,n, A, =(t,, +=). Since X, =0,
P, -as. for ¢ < ti_l, formula (4.4) follows from (4.2) and (1.26). O

4.2. Suppose that A, J are defined by (4.1). It follows from (1.28) that
(4.7 P J =1, A"
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If A, J are defined by analogous formulas with f, A replaced by f, A, then, by
(1.30),

(48) P, JJT=1, AN, A" +11,, rwq;(gs)ns, (AT, AK(ds).

Now let A be an arbitrary element of #. If J,(A;r,u) is defined by (1.39),
then

(4.9) Ju(Asr,u) = Z (FY{, M,),
teA
where
(4'10) Fti - {A[ti—l’ tl) fOI‘l. = 1,'..,n,
0 fori=0
and, by applying (4.7) to the historical superprocesses, we get
(4'11) Pr,NJA(A;r’u) =Hr,NA[r’u)‘

Analogously, (4.8) implies that
P, nJa(Asr,u)du(Asr,u)

(412) =L yAlrw)]
+ 10,y [ a3(€)TL, _Axls, w)T, ,_ Azls, u)K(ds),

where
Apls,u) =A[v(s),u)
and
t,_, fort,_,=<s<t,i=1,...,n,
() = {to for s < t,.

4.3. Proor oF THEOREM 1.3. First assume that A satisfies (1.40). Let A,
be the set of diadic fractions 22" where £ =0,+ 1,4+ 2,.... For every
A =[r,u) we denote by A% the intersection of A, with (r, u) augmented by
the endpoints 7, u. The right side in (4.12) tends to a finite limit as A, A run
independently over the sequence A%. Therefore J,(A%;r,u) converges in
L3(P, y). We construct an additive functional J which satisfies (1.41) by using
a simplified version of arguments in the Appendix to [14]. For every A = [r, u)
we consider the Mokobodzki medial limit

J(w,A) = limmed J,(A; 0,7, u)

(see, e.g., [5], 10-56 and 10-57). Put ¢ € G(w) if there exists an interval
A =[r,u) such that £ € A and j(w,A) < ». Each connected component of
G(w) is either an open interval or an interval of the form [a, 8), and in the
second case jla,t] < o for all ¢ € [a, B). There exists a unique measure
J(w, - ) concentrated on G(w) and such that J(w,A) = j(w, A) for every A C
G(w). This measure is o-finite. Fundamental properties of medial limits imply
that J(w, A) € £(A)* and that (1.41) holds (see [14] for details).
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For an arbitrary A € # we consider A, (k) = A, A k which belong to &%
and satisfy (1.40). Clearly additive functionals /,,, increase and we put
J = lim,, _,, J 4, Obviously, 1.4.B holds.

By applying Lemma 4.1 to the historical superprocess and by using (4.9), we

get that, forevery ¢t <u andevery A={t=t,<t; < --- <t,=u},
(4.13) P, ,,_ exp{—Jda(A;t,u)} = exp{ = Vi(x )},
where

ViGeo) + T, [ 06, Vi(£.))K (ds)

(4.14) = l'[,,ngA[r, u) forr<u,
V=20 forr>u.

Let A, be a monotone increasing sequence with the union everywhere dense
in [t, u). Since le™®* — e~ | < |a — b| for a,b > 0, we get from (4.13) and the
Schwarz inequality that

Pt’axsz exp{—JA[t’ u)} = exp{—Vt(xst)}’

where Vi(x_,) =lim,_V{(x_,). It follows from (4.14) that V/(x_,) are
uniformly bounded, and we get from (4.14) and the dominated convergence
theorem

Vi(x,) + T, [ W62, VA(EL))K (ds)

(4.143) =1, ,_Al[r,u) forr<u,
V=0 forr>u.
By (4.4),
Prexp{—dy(A;r,u)} = exp{—(V,s,[)}.
Therefore

Prexp{—du[r,u)} = exp{—(V, T},

where T, is the restriction of T' to #(A) and V is determined by (4.14a).
Passing to the limit as ¢ | — «, we get (1.42) and (1.43). Formulas (1.45) and
(1.46) follow from (1.42) and (1.43).

If A is an arbitrary element of %, then A, (n) =A, A n satisfies the
condition (1.40). We define J, as the limit of J,,, and we leave it to the
reader to check that with this definition 1.4.B and (1.42) and (1.43) hold for all
AeZ. O

4.4. Proor oF THEOREM 1.4. According to [9], two linear additive func-
tionals of M are equivalent if they have the identical finite characteristic
functions. By (1.45), the characteristic of the functional (1.41) is equal to
II SrA(r, ). To prove Theorem 1.4, it is sufficient to show that, if a bounded

r,x
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function H is the characteristic of a linear additive functional J of M, then
(4.15) H(x_,)=1 A(r,»)

rx<r

for some additive functional A of the process E. It is easy to see that, for every
r<s,

(416) Hr,xS,Hs(‘fss) =Pr,8,,s J(s,oo),

which implies that the left side does not exceed H"(x _,), tends to H"(x _,) as
s | r and tends to 0 as s » +, If B is a right process, then these conditions
are sufficient for a bounded function H to have the representation (4.15). The
proof can be obtained by a slight modification of arguments in Sections 33 and
34 of [33]. (The main point is that every bounded right-continuous super-
martingale is generated by an adapted increasing process.) O

4.5. LEmma 4.2. Let Q,(w, B) be kernels from a measurable space (0, &)
to a measurable Radon space (E, #). Put P € & if P is a probability measure
on (Q, &) such that, for every bounded function f € %, there exists a finite
limit

(417)  Qu o, f) = [Qu(w,dx) f(x) = lp(w, f) in P-measure

E
and, moreover, lp(-, f,) = lp(+, ) in P-measure if f, — f boundedly. Then
there exists a kernel Q(w, B) from (Q, & *) to (E, &) such that

(4.18) Q(w,f)=Ilp(w,f) P-a.s.
for every bounded f € % and every P € .

Proor. Put l(w, f) = limmed @, (o, ), Q; = {w: I(w, 1) < «}. Note that
(4.19) (o, f)=Ilp(w, f) P-as.

for every P € & and every bounded fe& #. Therefore P(Q1;) =1 for all
P € &#. We assume that E is a universally measurable subset in a compact
metric space K. For every Borel function F on K, the restriction f= Fg to E
is #-measurable. If w € Q,, then L(F) = l(w, Fg) is a positive linear func-
tional on the space C(K) of all continuous functions and, by the Riesz
theorem,

(4.20) I(w, Fg) = [R(w,dx)F(z), FeC(K),

where R(w, - ) is a finite measure on the Borel o-algebra #(K). Put F € ¥
if
(4.21) | R(,dx)F(x) = ip(w, F;) P-as.foral Pe 2.
K
Note that &# is a linear space closed under bounded convergence. By (4.19)

and (4.20), &# contains C(K) and therefore it contains all bounded Borel
functions. Let up(-) = [P(dw)R(w, - ). There exists a Borel set B O E such
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that wup(B \ E) =0 and therefore R(w, B\ E) =0 P-as. By (4.21),
R(w, K\ B) = lp(w,0) = 0 P-a.s. Hence the P-measure of the set Q, =
{w: R(w, K\ E)=0}is equal to 1 for all P € &, and Q(w, - ) = R(w, - ) for
w €0, NQ,, o, ) =0 for o & Q,; N Q, satisfies all conditions of Lemma
42. 0O

4.6. Proor oF THEOREM 1.5. Fix A =[r, u). To every finite set A = {r =

to < '+ <t, = u)} there corresponds a kernel Q, from (Q, £(A)) to (¥, %)
such that, for every F € &,
n
(4.22) Qu(w, F) = ¥ (Flt;_1, ), My),
i=1

where F'[r,u) = F] — F; [see (1.49)]. Note that Q,(w, F) = J,(A; r, u) if we
set A, = F; in (1.39). By (1.41),

(4.23) f(dYF,M>—thA( ,F) in L*(Pp)

for every I' € M(¥) and every bounded F € . By (1.46) and Lemma 4.2,
there exists a kernel @)(w, B) from (Q, £(A)*) to (¥, #) such that

QA(F) = A(dYFt’ Mt> Pr'a.s.

forall ' € M(¥#). Let A, = (n,n + 1]. The sum M, of @, over all integers n
satisfies (1.50).

Formula (1.50a) follows from (1.45). By applying (1.50a) to F(w _,) = 1
we get

t<u’

PeM(7..) =p{r <u} <M{a <u} =T(7_,).
Therefore M (¥ _,) < » Pr-as.if ' € M(¥). O

4.7. LEMMA 4.3. Let A € # and let Alt} = A,,— A, be a reconstructable
function. For every A € % put

(4.24) Vi(x_,) = —log P,,axsrexp{—f<dA,, Mt>}.
If B is strong Markov, then, for every stopping time 7,
o Vi) beco + T [0 (6, ViG] K (ds)
-1, Al7,%).
LetA,Ac Rand V=V, V=V IfA > Aandif H,,xsrA[r, ®) < o, then
e, (9620 VP(E20] — 0720 VP (62T} K (ds)

< Hr,xsr{A[T’ w) — AT, 00)}.

(4.25)

(4.26)
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If, in addition,
(4.27) A(s,t) = A(s,t) forallt>s >,
then

. [ 0620 V(€2 K(ds)
(4.28) " )
o A (PR A CPRIE(COE

In particular, if A(7,t) =0 for all t > 7, then

(4.29) M, [ vlé,,Vi(¢,)]K(ds) = 0.
Proor. It follows from (1.42) and (1.43) that

(4.30) Vi(x.,) +Ki(x.,) =Hji(x.,),

where

Ki(xor) =T, [ 0°[620 Vi( o) K (ds),
Hi(x.,) =11,,. Alr,®).

By (0.7) and 0.5.8, the second and third terms in (4.25) are equal to
O, . Ki¢.,)and I, , Hi(¢_,). (Here we use the assumption that A{t} is
reconstructable.) Therefore (4.25) follows from (4.30).

If A <A, then, by (4.24), V'(x_,) < V"(x_,) and (4.25) implies (4.26).

For every stopping time 7, there exists a sequence of stopping times 7, > 7
such that , | 7. Under condition (4.27), Alr,,t) = Alr,,t) for all n and all
t > 7,, and we get (4.28) by applying (4.26) to 7,,, by passing to the limit and by
taking into account that °(x, z) is monotone increasing in z for z > 0 by
(1.21).

We obtain (4.29) by taking A = 0 in (4.28). O

CoroLLARY. If E is strong Markov, then, for every stopping time T,
(4.31) Prexp{—-M (F)} = e V'D
forall T € M), F € & where

(432) V(x.,) + M, [W[6.,, V(£ K(ds) =TI, F(£.)1, .

This follows from (1.42), (1.43), (1.49) and (4.29).

4.8. Proor or THEOREM 1.6. First we consider
(4.33) Y=expM, (-F),
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where F € & is bounded and vanishes outside #(A) for some finite interval A
and

(4.34) Z= exp{—f<dA,, Mt>},

where A € & is constant outside a finite (nonrandom) interval, is bounded
and A = 0. By Theorem 1.5, M, € I(¥") Pr-a.s. and, by Theorem 1.3,

(4.35) PyZ =exp( - V,M),

where V = V, is defined by (4.24). By (4.35), (4.31) and (4.32),
(4.36) P.YPyZ =Prexp{ — V—F,M,) = exp{ — V, T,
where

Vi(x,) + I, [00(62,,V*(£2,))K (ds)

=IL, . (F+V)(£:)1, <o
On the other hand, by (1.50) and Theorem 1.3,

(4.37)

P.YZ = e VD),
where
Vr <r +er ) ° Ss’vs <s K dS
(4.38) (xer) + oo, [ 9°(E20 V(£2,)) K (ds)
=Hr,xsr{F(gs'r)l'r<oo+A[r’°°)}'

By (4.25),

M, Vi) o+ . [ (6., Vi(£.,))K(d
(a39) eV EL o W (E<s, VO(E2,))K (ds)

= Hr’xsrA['r,OO) = Hr,xS,A[r7°°)’
since A, = 0. Equations (4.38) and (4.39) imply that

Vi(xe,) + T, [ 00620 VP(£2,))K(ds)
(4.40) ' 3
=M, (F+V)(¢ ) o + T, . [ 0(£.,,V*(£2,))K(ds).

Note that V = V; where A, = F[ + A,. Since A,>A,and A=A, it follows
from (4.28) and (4.40) that V satisfies the same equation (4.37) as V. Using
Lemma 3.2, it is easy to show that V = V. Hence (1.51) holds for Y and Z
given by (4.33) and (4.34). Since both families are closed under multiplication
and generate, respectively, #_, and &, ., the general formula (1.51) follows
from the multiplicative systems theorem. O
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5. Moment functions.

5.1. It is sufficient to prove Theorem 1.7 for measures n concentrated on
&(A) for finite intervals A. This is an immediate implication of the following
lemma.

LeEmMMA 5.1.  Suppose that m, 1 € M(&) and let F(sy,...,s,) be a Borel
function on [0, )" monotone increasing in each argument. Put Z; =  f;, X, ),
i=1,...,n, where f; € %, are bounded. We have

(5.1) P,F(Z,,...,Z,)1 P,F(Z,,...,Z,) ask > .

Proor. Consider a sequence of independent stochastic processes (X}, P),
where v, =1, v, =m, —m,_, for k>2 Put ZF=<(f, X}), Sf=
Z}+ - +ZF S, =Z! + --- +ZF + - and note that

P,F(Z,...,Z,) = EF(S,,...,S,), P,F(Z,,...,Z,) =EF(S},...,8F).

Formula (5.1) follows from the monotone convergence theorem. O

5.2. Fix a finite interval A and a positive integer n and consider the class
G of bounded progressive functions hA"(u,x), u €[0,1]*, r € A, x € E,. Put
h € H if h is a polynomial in u,,..., u, with coefficients in G. Denote by %
the class of bounded functions h"(u, x), u €[0,1]", r € A, x € E, such that
h"™(u,x) — 0 as u — 0. Note that:

(a) G, H and Z are algebras and hR € Z if h€ H, R € &,
(b) the mapping h — A defined by the formula

(5.2) W (u,x) =1, ['h*(u, &) K(ds)
r
preserves spaces H, G and #.
Put
um=um o uln, o lul=u, 4+ tu,, Iml=mi+---+tm,
for u = (uy,...,u,) and m = (m4,..., m,). Denote by &/, the class of func-
tions v which admit representation of the form
l
(5.3) v=Y g.u™+ lulR,,
Im|=1

where g,, € G and R, € #. Clearly,

() o DD -+ D,
@) if v € &, then gv € &, for every g € G;
(e) if I > 2 and if v,,v, € &_,, then v,v, € .
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LEmMMA 5.2. Let t; €A, f;€ P, for i=1,...,n. Suppose that f; are
bounded and that

(5.4) v(u,x) + I, [ v°[&,0°(, &) K(ds) = ¥ w1, fi(£,)
r i=1
[v"(u,x) =0 for r > max ¢;]. Under condition 1.2.E_, v € &,.

Proor. Let 0 < f < c. Since ¢ > 0, we have |
(5.5) v'(u,x) <clul.
By (1.58), there exists a constant a such that
(5.6) v"(x,2) <az? forall(r,x) e &,z=>0.
By (5.4), (56.5), (5.6) and 1.2.C, (B)
(5.7) v=Y gu;+ Flu?

where g/ (x) = II, , fi(¢,) belong to G and F belongs to H. Hence the lemma
holds for / = 1. By Taylor’s formula, for every [ < n,

l
(5.8) ¥o(x,2) = X qi(x)2*/k!— ¢j(x,2)2,
k=2
where g, are defined by (1.57) and

1
¢’ls(x’z) = lT[Dé‘ps(x’O) - Dzl‘/’s(x’é)]
(5.9) ’
1 .
= l_'j; u'(1 - e *)n*(x,du)

with 0 < 2 < z. Let ¢ = max{t,,...,¢,}. By (5.4), (5.8) and (5.5), v"(u,x) = 0
for r > ¢t and

l
(5.10) vi(u,x) = ¥ giu; - Ez“r,xf:ﬁ(fs)vs(u,fs)"/k!K(ds)

+8S/(u,x) forr<t,

where
(5.11) 0 < S7(u,x) < clul'll, , [‘$3[£,v*(u,£)]K(ds).

By (5.9), (5.5), (5.11) and (b), lu| 'S, belongs to #. By formula (5.10) with
=2,

v'(u,x) = ¥ gl(x)u,
— 1L, , [1q3(£,)v(u, £,) K (ds) + S(u, x).

It follows from (5.7) that v? belongs to 27, and, by (b) and (d), v € &7,. We

(5.12)
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conclude from (5.10), (e), (¢) and (b) that the lemma holds for > 2 if it is true
forl—-1.0

5.3. Consider the class S of functions

(5.13) h = Z galp + Z y;u? + |ul"R,

i=1
where A runs over all nonempty subsets of the set {1,...,n}, g, € G, y; € H,
R € # and

= l_Iui-

i€A
We establish by induction in n that g, are uniquely determined by h. We
write o = 0if h € S and if g, = 0 in (5.13) for all A. Writing h; = h, means
that A, — h, = 0. Clearly, o/, c S and hh = 0if h,h €S and h = 0.
Note that
exp(gyy) = 1+ gauy,  exp(viu?) =1, exp(lul'R) =1
and therefore

(5.14) et=1+ Y 8, T Baa, T Up =1+ Y u,G,,
A

where
(5.15) Gy= L &, " &,
A

with the sum taken over all partitions of A into disjoint subsets A,,..., A,.
By Lemma 4.1,

n
(5.16) Poexp Y { —u;f;,X,) =e ",
i=1
where v is a solution of (5.4). By Lemma 5.2, v € &/, ¢ S and therefore

(5.17) v=Y (-)" MV,
A

for some V, € G.
Suppose that 7 is concentrated on A. Then (5.17) implies

(5.18) -, = L (=D)"™MuVy,m)
A
and, by (5.16), (5.14) and (5.15),
(5.19) Poexp ¥ (—u;f, X,) = 1+ £ (-1)"u,T,,
i=1 A
where
(5.20) Ty= ¥ Vo (Va,m.
Aq,..., Ay
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This implies

n
(5.21) P17]._I<fi’ Xti> = Z <"A1$'n> e <‘,Ak’ 17>3

i=1 Agyeens A
where the sum is taken over all partitions of {1,...,n} into disjoint sets
Aoy Ay

The next step is to evaluate V.
By (5.8) and (5.17),

¥ [x, v'(u,x)]

(522) =~ kgzqz(x)/k! X Z (_1)|A1|+ +|1\Iz|uAl e uAk

Leer Ay
XVi(x) - V(%) + F'(u,x)
where the second sum is taken over all ordered families of disjoint subsets

Ay ...,A, and F(u,x) = v"(u, x)"¢.(x,v"(u, x)). By (5.9) and (5.5), F = 0.
It follows from (5.4), (5.17), (5.22) and 5.2(b) that, for every A c {1,...,n},

G RRAC)
+ T L[ qi(&)K(ds)(—D)MVR(E,) - Vi(E,)
A=ALU --- UA, r

=10, . fi(&) ifA={(i},r<t¢,
=0 otherwise,
where the sum is taken over all partitions of A into & > 2 disjoint nonempty

subsets A, ..., A, (disregarding the order among the subsets). Hence
(523) ‘/(s(x) = lrst,-Hr,x fi(fti)’
(524 V{(x) = L M. [ ai(&)K(ds)Vi(&) - Vi)

A=ALU -+ UA,
if [Al > 1.
Denote by D} the set of all connected diagrams with exits enumerated by A.
We claim that, if r < ¢; for all i € A, then

(5.25) Vi(@) = ¥ [Lp(r,x;de) [T f(<).
DeDj i€A
Indeed, (5.25) follows from (5.23) and 1.6.A if A = (i}, r < ¢,. If (5.25) is true
for all |A;| < |Al, then it holds also for A by 1.6.B and (5.24).
Finally, (1.59) follows from (5.21), (5.24) and 1.6.C.

6. Bibliographical notes.

6.1. Branching particle systems corresponding to a diffusion ¢ and an
additive functional K(dt) = c(t, £,) dt were studied in [34]. Even earlier special
classes of such systems were investigated in [32]. A general theory of branch-
ing was developed in [18]. The construction presented in Section 2 is similar to
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the construction of age-dependent branching systems in Chapter 6 of the
monograph [17].

6.2. Passage to the limit from branching particle systems to measure-val-
ued processes was done by Watanabe [35] and Dawson [1]. More general
theorems were proved by Ethier and Kurtz [15], Chapter 9 (see also [31]). All
these authors considered only the case when ¢ is a process with a stationary
Feller transition function. This restriction was dropped in [9] and [10]. Another
construction of a superprocess over a non-Feller (but time homogeneous)
process £ was given in [16].

In the present paper, in contrast to [9], [10] and [16], we use the passage to
the limit not only heuristically but to prove the existence of superprocesses.
Introducing a general killing additive functional K seems to be a novelty.

6.3. Historical paths have been considered already by Kallenberg [21] in
his ‘“backward tree formula.” Various ways of constructing a historical super-
process—outlined in Section 1.3—were discussed at two conferences—at the
University of California, San Diego and at Cornell University—in the spring of
1989. An idea for getting a historical superprocess as the superprocess over the
historical process, due to Perkins, has been systematically implemented in a
recent paper of Dawson and Perkins [3]. Introductory parts of [3] and the
present paper are parallel but the terminology is not identical. Our ‘“‘historical
processes” are called “path processes’ in [3] and the name ‘historical pro-
cesses’’ is reserved there for what we call “historical superprocesses.” The
enriched model is used in [3] to get new strong results on path properties for
the super Brownian motion and some other superprocesses. (In earlier publica-
tions [2], [29] and [30] the authors studied paths by means of nonstandard
analysis.)

The primary objective of the present paper consists of developing new
probabilistic tools for applications to classical analysis. The next step in this
direction is made in [12] and [13]. In [12] a technique was developed to deal
with the general branching mechanism. This technique is applicable, in partic-
ular, to functions (2) = yz* with 1 < @ < 2 which do not satisfy condition
1.2.E, and therefore cannot be investigated using moments. The results of [12]
are applied in [13] to establish connections between an analytic theory of the
equation —Lv + (v) = p and path properties of the superdiffusion with the
generator L.

6.4. Recent papers [24], [25], [26] are devoted to pathwise construction of
superprocesses. Le Jan obtains them as projective limits of branching particle
systems. Le Gall constructs superdiffusions and historical superdiffusions
(with ¢ = y22) using excursions and local times of one-dimensional Brownian
motion.

6.5. A special class of linear additive functionals
J(r,u) = [(f* X, dt
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have been studied, first, by Iscoe [19] who called them ‘‘ weighted occupation
times.”” In particular, Iscoe proved for them a form of equations (1.43) and
(1.44). A general concept of a linear additive functional was introduced in [9]
where all square-integrable fair functionals were described and applied to
construction of positive functionals [an additive functional J is called fair if
P, ,J(r,u) = 0forall r, u and u]. The relationship between additive function-
als of a process £ and the corresponding superprocess X discussed in Section
1.4 seems to be new.

Linear additive functionals play the central role in [12] and [13]. In [12] a
theory of integration relative to a measure-functional is developed and used to
introduce random measures X, Y, corresponding to the first hitting time 7 of
any analytic set. The random measures X, and Y, are used in [13] to study
nonlinear PDE in a manner which recalls the classical application of function-
als f(£,), [§p(£,) ds to linear elliptic differential equations.

6.6. An analog of the special Markov property for branching particle
systems with discrete time parameter was studied by Jagers [20]. This prop-
erty is useful for probabilistic theory of a class of nonlinear partial differential
equations—a subject we shall investigate at another place.

Moment functions of order n > 3 were evaluated, first, in [8] for the case
K(dt) = dt, y(2) = 22

6.7. Equilibrium measures for superprocesses were studied in [10]. Analo-
gous problems for branching particle systems with discrete time have been
investigated in [28].

APPENDIX
Markov Processes and Their Additive Functionals.

0.1. In this paper we deal with inhomogeneous Markov processes on the
time interval R. For a general theory of such processes, we refer to [6], [7] and
[23]. The model used in this paper is very close to those presented in [11].
Suppose that we are given:

(a) an arbitrary set W;

(b) for every ¢ € R, a measurable space (E,, %,) and a mapping ¢, from W
to E,;

(c) for every open interval A, a o-algebra F(A) in W;

(d) for every r € R, x € E,, a probability measure II, , on &, . = F(r,).

We say that ¢ = (¢,, #(A),11, ,) is a Markov process if:

0.LA. F(A) c F(A) for A c A; ¢, is adapted to F(A), that is, {¢, € B} €
F(A)fort € A, Be &,
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0.1.B. Foreach Ye & ,1II,,Y is #,-measurable. For every r,¢ € R and
every Y € #(r,¢t), Z € &,

n,,YZ=1, (YN, ,Z).

We denote by %, the minimal o-algebra which contains #_, and {¢, € B}
for all B € %,. The notation F_,, #(r, u] etc. is defined similarly.

In addltlon to 0.1.A, B, we assume that every measure II, , can be contin-
ued to &, in such a way that II, {¢, = x} = 1. Under this assumption the
o-algebras &, and F(r,t) in 0.1.B can be replaced by #_, and F[r,¢].

0.2. A Markov process ¢ is canonical if:

(a) W is a subset of the Cartesian product of E, over all ¢ € R;
(b) £,(w) = w, are the coordinate functions;
(c) F(A) is generated by {w: w, € B}, t € A, B € &..

A canonical process can be modified to introduce a random birth time. To
this end we extend (E,, #,), W and F(A) and we continue ¢, and II, , in the
followmg way.

E is obtained from E, by adding an extra element 9,; .@’ is generated by %,
and 9,. W consists of paths of the form: w, = 9, on (-, @), w, € E, on [a, +oo)
for some & € [— o, +=] (a is called the birth tlme) {;‘t(w) = w, for w € W, and
F(A) is generated by £, ¢ € A. Finally, I1 rx 18 the i image of II, , under the
measurable mapping w - w” from (W, %, ) to (W, #(R) deﬁned by the
formula: w; =9, for ¢t <r; w{ = w, for ¢ > 7. Note that W is a subset of W
(determined by condltlon a = —x), £, coincides with £, on W, the trace of
Z(A) on W is equal to F(A) and l'[ . coincides with II, . on & . Therefore
without any confusion, we can drop a.ll “carets’” and use the same notation for
the extended spaces and functions.

Note that

(0.1) M, {e=r¢=x)=L1

Consider the global state space (&, &) defined in Section 1.1. If ¢ is
progressive, then I, (C) is % -measurable for every C € (R) and we set
(0.2) IL,(C) = [H, (C)n(dr, dz)

for an arbitrary measure n on (&, 4,). Obviously,

(0.3) n(B) =1,{(a,¢,) €B} forall B € &,.

WARNING. The superprocess X = (X,, #(A), P, ,) constructed in Theorem
1.1 does not need to be canonical but all measures P . are defined on Z(R) by
construction. We can assume that P, (X, = 0 for all t < r} =1 and therefore
the role of 4, is played by the null of ./
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0.3. Denote by &7, the o-algebra in & generated by the functions
(0.4) fi(x)=1,_,1, {¢{,€B}, u€eR, Be4,.

The transition probabilities of ¢ are progressive if and only if o7, c Z%.
A process ¢ is called right if:

0.3.A. & is generated by a countable family of functions g‘(x) such that
g'(¢,) is right continuous with left limits.

0.3.B. If f is given by (0.4), then, for every r € R, x € E,, (&, is right
continuous for ¢ > r, II, ,-a.s.

Clearly, the transition probabilities of a right process are progressive.

We say that ¢ is regular if it satisfies 0.3.A and the following stronger
version of 0.3.B.

0.3.B. If Il is a measure on %, such that
(05) INYZ=IYI,,Z) forallt>r,Ye F(r,t),Zec F,,,

and if f is given by (0.4), then f%(¢,) is right continuous for ¢ > r II-a.s. [By
0.1.B, (0.5) holds for all measures II, ,.]

PROPOSITION.  Suppose that:

(@) €& is regular;
(B) each space (E,, #,) is Luzin;
(y) 11, , separate states, i.e., I, (C) # 11, (C) for some C € &, ifx #y.

Then the superprocess X with parameters (£, K, ) can be chosen to be regular.

For the case K(dt) = y dt, ¢(z) = 2%2/2 this has been proved in [11], Theo-
rem 1.2. The proof is applicable to the general case. (Later the same result was
proved in [16] by a different method for more general ¢ (but only in the time
homogeneous case).)

0.4. We say that a function on R X Q is reconstructable if it is measurable
with respect to the o-algebra generated by the sets (—x,u) X C, u € R,
C € F*,. It is well known that a function Y(w) is reconstructable if it is
adapted to &, and right continuous in ¢ for each w.

A Markov process ¢ is called strong Markov if

(06) Hr,x{f(fu)l‘g;‘r} = H1,§., f(§u) Hr,x'a's' on {T < u}

for all r <u, f€ #, and each stopping time 7 relative to the filtration
Flr, t.

If ¢ is a strong Markov process with random birth time a and if 1 > @ is a
stopping time relative to the filtration & _,, then
(0.7 {Y"|#_,})=F"(¢) with F/(x) =1, ,Y"

for every reconstructable Y > 0.
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Every right Markov process is strong Markov (see, e.g., [7] or [23]).

0.5. We say that a measure is 2-finite if it can be represented as the sum
of a countable set of finite measures.

A positive additive functional K of a Markov process ¢ is a function K:
Q X Z([R) — [0, =] with the properties:

0.5.A. For every w € Q, K(w, * ) is a 2-finite measure on Z(R).
0.5.B. For every open interval A, K(-, A) is & (A)*-measurable.

An additive functional K is called continuous if K{t} = 0 for every single-
ton ¢. (Often stronger finiteness conditions on K are imposed. We refer to
[14])

Note that:

0.5.27. If K is an additive functional and if f is progressive, then K(d¢) =
fi(¢)K(de) is also an additive functional.

0.5.4. If K is a positive additional functional, then Y, =1, _,K(r,u) is
reconstructable.

0.6. We list some simple properties of progressive functions.
0.6.A. f%x)=1,_,h(x) is progressive for each h € Z}*.
0.6.B. f%(x) = b(t) is progressive for every b € Z(R)*.

0.6.C. If the transition probabilities of ¢ are progressive and if Y, > 0 is
reconstructable, then f*(x) = II, ,Y; is progressive.

The first two statements are obvious. To prove 0.6.C, note that, if Y € F*,
and F(y)=1I,,Y, then 1, ,II,,Y=1,_,II, \F({,) is progressive. By the
multiplicative systems theorem, II, .Y, is progressive for every reconstructable
Y=>0.

0.7. The following useful lemma (and its proof) was communicated to me
by R. Getoor.

Lemma. If (E, #) is a Radon space, then (#, % ,) is also a Radon space.
Here .# is the set of all probability measures on (E,#) and %, is the
o-algebra in # generated by the functions fg(n) = u(B), B € #.

ProoF. We may assume that E is a universally measurable subset of a
compact metric space E and that & is the trace of #* on E where & is the
Borel o-algebra in E. The set . of all probabilities on %* can be identified
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with the set of all probabilities on & and we can consider it as compact metric
space. Besides we can identify .# with {u: u € .#, w(E)=1). Then & »
coincides with the trace of 5 on .#, where & is the Borel o-algebra on .#
[which is generated by the functions fz(u) = u(B), B € #). It remains to
show that {u: u(E) =1} € #Z%. To this end, it is sufficient to prove that

fz(n) = u(B) is measurable with respect to &% for every B € #*. Let N be
an arbitrary probability measure on (., #;) and let v = [,N(dp)u. If
B € #*, then there exist B; C B C B, such that B;, B, € & and »(B, \
B;) = 0. We have fp <[5 <fp, and N(fg \ fg) =v(B, \ B;) = 0. Since

2 *

fs fs, € #.2, we conclude that f, € #. O
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