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EXPONENTIAL DECAY FOR SUBCRITICAL CONTACT AND
PERCOLATION PROCESSES

By CaroL BEZUIDENHOUT ! AND GEOFFREY GRIMMETT

University of Wisconsin and University of Bristol

We study the contact process, together with a version of the percolation
process with one continuously varying coordinate. It is proved here that the
radius of the infected cluster has an exponentially decaying tail throughout
the subcritical phase. The same is true of the Lebesgue measure (in
space-time) of this cluster. Certain critical-exponent inequalities are de-
rived and the critical point of the percolation process in two dimensions is
determined exactly.

1. Statement of results.

1.1. Introduction. The contact process is a stochastic model for the spread
of disease amongst the members of a population distributed about d-dimen-
sional space. Individuals inhabit the points of a lattice (Z¢, say) and the
process evolves roughly as follows. Infected individuals infect each of their
neighbours at rate A and are cured of the disease at rate 8. When fully
formulated, these rules give rise to an infinite particle system which has
received much attention [see Liggett (1985), Durrett (1988), Bezuidenhout and
Grimmett (1990)]. There is a critical value p, of the ratio p = A/8 such that
the probability 8°(A, §) that the disease survives forever from a single initial
infective satisfies

6°(1, 5) 0 ff)t/s < Ppe»
>0 ifA/8>p,.

One of the main techniques for studying the contact process is the graphical
representation of Harris (1974, 1978). Consider the graph Z¢ X [0, »), in which
Z¢ represents the spatial component and [0, ») represents time. Along each
time line x X [0, ) is positioned a Poisson process of points (with intensity &)
called deaths and between each ordered pair x, X [0,®) and x, X [0,%) of
adjacent time lines, there is a Poisson process (with intensity A) of crossings
oriented in the direction x, to x,. Then 6°(A, §) is the probability that there is
an unbounded directed path from the origin of Z¢ X [0, ), using time lines in
the direction of increasing time but crossing no death, together with crossings
in the directions of their orientations. This graphical representation enables
one to couple together contact processes with all initial configurations.
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As witnessed in the previous paragraph, the contact process has much in
common with the percolation model [see Grimmett (1989)] and many argu-
ments developed for the latter model have proved valuable when studying the
former. One major difficulty can arise from the fact that the contact process
has one coordinate (time) which is continuously varying rather than discrete.
In loose terms the difficulty is as follows. Where in percolation-theoretic
arguments one counts points, the corresponding argument for the contact
process may require a counting of intervals. Now intervals may be long or
short and so counting by number may give a very different result from
counting by Lebesgue measure. The principal contribution of the present paper
is to develop a technique for dealing with this problem. We do this while
proving the following concrete result: the radius and Lebesgue measure of the
region of Z? X [0, ©) which is infected from the origin, when the process is
subcritical (i.e., when p < p_), has an exponentially decaying tail. This fills a
gap in the theory of the contact process which was referred to but not dealt
with by Aizenman and Barsky [(1987), pages 520-522)].

The contact process is a type of oriented percolation process. Its unoriented
sibling arises as follows. Suppose for the moment that we are working in two
dimensions and consider the anisotropic bond percolation process on the
square lattice in which each horizontal bond is open with probability eéA and
each vertical bond with probability 1 — £8, where ¢, A, 8 > 0. Writing 6,(A, 8)
for the probability that the origin lies in an infinite cluster, it is established
that 6.(A,8) = 0 if and only if A/8 < 1; proof of this may be distilled from
Kesten (1982) and Grimmett (1989). In the limit as ¢ | 0, and with a suitable
rescaling, the process approaches a certain partially continuous process which
we may think of in the following way. Along each vertical line there is a
Poisson process of points (with intensity 8) called deaths, while between each
pair of adjacent vertical lines there is a Poisson process of horizontal crossings
(with intensity A). In this partially continuous process, let 6(A, 8) be the
probability that there is an unbounded path from the origin following vertical
lines and horizontal crossings but traversing no death. The original motivation
for the present work was to verify the natural guess that 6(A,8) = 0 if and
only if A /8 < 1. We note that the above limit, as ¢ | 0, arises naturally in work
of Grimmett and Newman (1990), who have studied percolation processes on a
class of graphs having three distinct phases, corresponding to the existence of
0, 1 and infinitely many open clusters, respectively.

The modern route to establishing the last result claimed above proceeds by
extending the results and techniques of Menshikov (1986) and Aizenman and
Barsky (1987) and then using special properties of the two-dimensional process
in order to derive the exact calculation of the critical surface. In doing so, the
same difficulty arises as that sketched above for the contact process. In
circumventing this difficulty, we obtain certain results valid for a broader class
of processes, namely, oriented and nonoriented percolation models in any
number of dimensions, one of whose components is allowed to vary continu-
ously; this class includes the contact process. In addition to demonstrating
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exponential decay below the critical point, we shall obtain certain critical-expo-
nent inequalities.

1.2. The models. We introduce informally the two types of process studied
in this paper, namely, a continuous-time percolation process and the contact
process. We shall need later to discretize these processes for the purposes of
analysis and therefore postpone until Section 2 a rigorous discussion of their
properties.

Continuous-time percolation. Let Z% be the set of d-vectors with integral
components, as usual; for x € Z¢, we write x = (x,,..., x,;). We consider the
set Z% X R and think of it as comprising vertical copies of R laid out in the
manner of a grid. Let A, 8 > 0. On each vertical line x X R (we often abbrevi-
ate {x} to x), as x varies over Z¢, we position a Poisson process of deaths with
intensity 8, independently of all other vertical lines. Between each pair x, X R,
x5 X R of adjacent vertical lines (i.e., x; and x, are neighbours in Z¢), we place
horizontal crossings or bonds in such a way that their centres form a Poisson
process on 3(x; + x,) X R with intensity A, independently of all other Poisson
processes in the construction. We write P, ; and E, ; for the corresponding
probability measure and expectation operator. For (x,¢) € Z¢ X R, let C(x, )
be the (random) set of points in Z¢ X R which are joined to (x,t) by paths
which follow vertical line segments and horizontal bonds but traverse no
death. We write C = C(0, 0) for the corresponding set of points joined to the
origin (0, 0) of Z? X R; we write 0 for this origin.

We are interested primarily in the function

(1.1) 6(A,0) = P, 5(C is unbounded).

It is easily seen, by rescaling vertically, that 8(A, ) = 6(nA, 18) for any n > 0,
and therefore 6(A, 8) is a function of A /8 only. For p > 0, we define 8(p) =
0(pé, 8), where & > 0. It is clear that 6(0) = 0 and that 6(p) is a nondecreasing
function of p and therefore we may define the critical value

(1.2) p. = sup{p: 6(p) = 0}.

It is not difficult to see that 0 < p, < .
Let |C| be the (one-dimensional) Lebesgue measure of C and let

(1.3) x(1,8) = E, ,ICI.

One of our main steps will be to show that x(A,8) < if p = A/8 <p,.
There is nothing vital about the choice of Z¢. For example, techniques
similar to those used below are valid if Z¢ is replaced by any vertex-transitive
lattice and probably the requirement of vertex-transitivity is not crucial.
We note that continuous-time percolation may be a misnomer, since we
allow paths which proceed backward in time.

Contact process. The percolation structure of the contact process is very
similar to the process defined above; see Harris (1974, 1978), Durrett (1988),
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Griffeath (1979, 1981) and Liggett (1985) for accounts of the contact process.
Starting with Z¢ X R as before, we position deaths in the same way. Horizon-
tal bonds, however, are directed. Each Poisson process of horizontal bonds is
replaced by two independent processes, each with intensity A, the first mark-
ing the centres of crossings with one orientation and the second marking
crossings with the opposite orientation. It is well known that the ensuing
random directed graph may be used to generate realizations of the contact
process on Z%¢ with death rate & and aggregate infection rate 2dA from each
site. For ¢ > 0, let ¢2 be the set of points x (€ Z¢) such that there is a path in
Z¢ X R from the origin (0, 0) to (x, ¢) using vertical line segments traversed in
the upward (i.e., increasing time) direction and oriented horizontal crossings
and traversing no deaths. Let

(1.4) 0°(A,8) = P? 5(&) + @ for all t),

where P ; (and E; ;) are the appropriate measure (and expectation operator)
and A,6 > 0; the superscript o stands for oriented. As before, 6°(A,8) =
0°(nA, m8) for n > 0 and we write 6°(p) = 0°(pd, 8) for § > 0. The critical
value of p is

(1.5) pe = sup{p: 6°(p) = 0}
and it is well known that 0 < p? < .

We write
(1.6) X°(A,8) = Ef,s{fo |§,°(dt},

and it is one of our targets to show that y°(A,8) < »if p = A /8 < p2.

In a companion paper [Bezuidenhout and Grimmett (1990)], we prove that
6°(p?) = 0. The corresponding question is open for the continuous-time perco-
lation model, except in the case d = 1, for which the continuity of 6 at p,
follows as for two-dimensional percolation [Theorem (1.12)].

1.3. Results for continuous-time percolation. It is elementary that the
critical value p, in (1.2) satisfies 0 < p, < ». The inequality p, < « follows by a
comparison with the contact process. The inequality p, > 0 may be obtained in
any of several ways, one of which is to show that the number of crossings in C
is stochastically smaller than a branching process with mean family-size
4dAr /8.

Turning to the question of exponential decay, we define the distance func-
tion

d
8((x,t),(y,8)) =lt —sl+ ¥ Ix; —
i=1
for (x,t), (y,s) € Z¢ X R. For r > 0, we define the ball

S(r)={rez?xR:8(0,7) <r}
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and its surface, the sphere
a8(r) ={mrez2? xR:8(0,7) =r}.

If U and V are closed subsets of Z¢ X R, we write {U © V} for the event that
some point u € U is joined to some point v € V by a path comprising vertical
line segments and horizontal bonds but traversing no death; we write A, =
{0 & 3S(r)).

1.7 THEOREM. If A < p,§, then there exists (A, 8) > 0 such that

P, 5(A,) <e ™®? forallr > 0.

It is actually the case that the existence of such a §(A, 8) is equivalent to
the finiteness of y(A, 8); the first part of the next result is a consequence.

1.8 THEOREM. (a) x(A,8) < xif and only if A < p_b.
(b) If A < p_8, then there exists a(A, 8) > 0 such that

(1.9) P, s(ICl>s) <e™**™ foralls > 0.

We shall give proofs of neither Theorem 1.8 nor the statement preceding it.
These facts may be proved by adaptations of the arguments of Hammersley
(1957) and Aizenman and Newman (1984), in the forms given in Grimmett
[(1989), pages 83 and 96].

Next we discuss critical exponents. It may be proved without great difficulty
that either 6(p,) > 3 or there exist a, b > 0 such that

0(p) — 0(p;) =a(p —p,) for0<p—p, <b;

this may be obtained in very much the same way as was Theorem (3.8) of
Grimmett (1989). Alternatively, one can imitate the proof of the main result of
Chayes and Chayes (1987), using the comparison lemma of Section 2.4; similar
arguments appear in Section 3.2. More demanding is the following, proved in
Section 3.2. Define

(1.10) 0(A,8;v) =1 —E, s(e ) fory > 0.

1.11 THEOREM. Either 6(p,) > 0 or there exist a,b > 0 such that

0(p,5,8;v) =ay/? for 0 <y <b.

By Tauberian theory, this is tantamount to a critical-exponent inequality
for P, ; ;(IC| > s) as s — .

We now turn to the case d = 1, for which we have an exact determination
of p,.
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1.12 THEOREM. Ifd =1, then p, =1 and 0(p,) = 0.

The proof may be found in Section 3.3.

To write out complete proofs of the results stated above is a laborious task
and involves the reproduction of large quantities of material which is already
in the literature. Some new ideas are needed and the principal such idea may
be found in Section 2.4. Our strategy in this paper has been to indicate with
care the places where new ideas are needed to adapt known technical argu-
ments, but we have omitted sizeable portions of standard material. For the
important Theorem 1.7, we give a complete proof in Section 3.1.

1.4. Results for the contact process. Broadly similar results are valid for
the contact process as for continuous-time percolation. We shall not give
separate proofs of these, which may be obtained in exactly analogous ways.
The two situations are so similar that the reader will have no difficulty in
reworking the proofs for the contact process. We have two main reasons for
using this approach. The first of these is that the notation is easier this way,
since there is no complication arising from the orientations. For example, for
the contact process, we would have to introduce the idea of both left-pivotal
and right-pivotal intervals in the discussion of Russo’s formula (see Section
2.3) and the statement and proof of that formula would be correspondingly
more complicated. Our second reason is that we have an extra exact calcula-
tion (Theorem 1.12) for the percolation case.

For our first result, we have as in Theorem 1.7 that

(1.13) PP 5(0 > 38(r)) <e ™™ forall r

for some i satisfying (A, 5) > 0 when A/8 < p?; here A — B means that
there exist @ € A and b € B such that a is joined to b by a directed path of
the process. Hence x°(A, 8) < « throughout the subcritical phase. The argu-
ment of Aizenman and Newman (1984) may be adapted to show that

(1.14) P s(IC°1 > s) <e ™ forall s

for some « satisfying a(A, 8) > 0 when A /8 < p?; here
el = [ g2l at,

the Lebesgue measure of the set of points in space-time infectable from the
origin.

The argument leading to (1.13) may be adapted and extended to obtain a
critical-exponent inequality for 6°(p). When combined with the result of
Bezuidenhout and Grimmett (1990), this may be phrased as follows: There
exist positive constants a and b such that

(1.15) 0°(p) = a(p —p2) if0<p—p2<b.
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As in Theorem 1.11, one obtains also that
6°(1,8;7) =1 — EY 5(e™"")
satisfies
0°(p28,8;v) = ay'/?

for some a > 0 and all small positive values of y. As in the unoriented case
(see the comment following Theorem 1.11), one can derive from this a critical-
exponent inequality for Pj; ;(IC| > s). Note that when d = 1, this critical-
exponent inequality follows from the known fact [see Durrett (1988), page 73]
that v P (£ + @) tends to infinity as t — «.

Slmllar results have been reported by Aizenman and Barsky (1987) for
oriented percolation. They have conjectured that such conclusions are valid for
the contact process, but they lacked the technique of the forthcoming Section
2.4, designed to enable us to deal successfully with continuously varying time.

2. Technicalities. This section contains technical details of the topology
we use in approximating continuous-time models by discrete-time ones, as well
as some technical lemmas needed later. The reader may skip Sections 2.1-2.2,
referring back to them later as necessary.

We begin with a sketch of the measure-theoretic and topological details
associated with the discretization of percolation processes in continuous time.
This is followed by an account of the FKG and BKF inequalities in such a
context. Russo’s formula appears in Section 2.3. The principal estimate of the
paper is contained in Section 2.4, in which we prove the necessary lemma
linking the number of pivotal bonds for an event A to the number and length
of subintervals of vertical lines which are pivotal for A, for certain events A.

2.1. The space of configurations. We shall describe configurations as col-
lections of points (deaths and crossings) on vertical (time) lines. In order to say
when two configurations are close to each other, we introduce the natural
topology on the space of such configurations: Two configurations are close in
this topology if they have the same numbers of deaths and crossings in some
large space-time box and if the positions of corresponding deaths and crossings
are approximately the same. This topology is familiar in various guises. For
example, if we restrict to a single interval on a vertical line and identify a
configuration of points with the increasing right-continuous integer-valued
step function which is 0 at time ¢ = 0 and jumps up by one unit at every point
in the configuration, then our topology is the restriction of the Skorohod
topology on the space of real-valued right-continuous functions defined on the
real line. There is some discussion of the relation between this topology and
the weak topology following (2.3).

Let e, ..., e, be the unit vectors generating the lattice Z¢ and define

(2.1) S=27%v {CJ (z¢ + %ei)};
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we write () for the collection of locally finite subsets of S X R, that is those
whose intersection with any bounded subset of R%*! is finite.

Let .# be the set of bounded open intervals in R with rational endpoints.
ForoeQ, I Zand x €8, let

(2.2) N(x,I;0) =|lo N (x X I)|,

where |Y| is the cardinality of Y. For o, w;, w,, ... € Q, we write 0, > o, as
n — o« if, whenever x € 8, I € £ and w,N(x X dI) = &,

(2.3) N(x,I;w,) = N(x,I;0,) = N(x, I; »,)

for all large n. This defines a separable topology 7 on (.

Note that an element w of () can be identified with the counting measure
on S X R with atoms at the points in w. Therefore another way of topologizing
Q) is to declare two of its element to be close if the corresponding counting
measures are close in the weak topology on the set of measures on some large
bounded subset of S X R. We shall refer to this topology on S X R as the weak
topology and to ours as the Skorohod topology because if one réstricts our
topology to a finite interval in S X R, it is indeed the Skorohod topology
applied to the distribution functions of the corresponding counting measures.
Ethier and Kurtz (1990) use the term weak atomic topology instead of
Skorohod topology. Note that the Skorohod topology is (strictly) stronger than
the weak topology (any sequence that converges in the Skorohod topology also
does so in the weak topology, but not vice versa). We use the stronger topology
because the set of point locations (counting measures) is not closed in the weak
topology—for example the weak topology allows atoms to coalesce.

If o€Q and >0, let f(x,t,w), —t <s <t, be the right-continuous
increasing step function defined on [ —¢, ¢] with jumps of size 1 at the points in
o N (x X [—t, t]) which takes the value 0 when s = —¢ [or 1 if (x, —%) € w].
Let d, be a complete metric bounded by 1 generating the Skorohod topology
on D(—¢,t]). Then the metric on () given by

d(w,0) = ) 2_E?=1|xi'[mdt( f(x,t;0), f(x,t;0))e " dt
xS Y
is complete and generates 7. See Ethier and Kurtz [(1986), page 117]. Write
#(Q) for the Borel o-field generated by 7.
For w € Q, we write

(2.4) 9(w) =0 N (2% X R),

(2.5) ?(0) =N ({S - Z% X R);

we call points in D(w) deaths and in €(w) bonds (or crossings). For » € Q,
let G(w) be the subset of R?*! comprising (Z¢ X R) — 2(w) together with all
horizontal line segments of unit length centered at points in (w), that is, all
line segments in the collection {x + se;: 0 <s < 1} X {€(w) N [(x + 3¢;) X R}

for i =1,2,...,d and x € Z¢; each point in €(w) corresponds to exactly one
of the latter line segments which we call bonds (or crossings). (Note that we
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use this terminology both for these intervals and their centres.) We may think
of G(w) as a (random) graph whose edges are bonds together with connected
vertical line segments. There is a one-to-one correspondence between configu-
rations  and their graphs G(w).

For o € Q, closed subsets U and V of Z¢ x R and subsets I' of R?*!, we
write U o V if there exist « € U and v € V such that « and v are in the
same connected component of G(w) N T [i.e., there exists a path from u to v
in G(w) lying entirely within T]; if T = R?*! then we suppress explicit
reference to I'.

We say that an event A € #(Q) is determined by the configuration inside
the open subset T' of R%*! if 1,(w) = 1,(w") whenever ® N T = ' N T, where
1, is the indicator function of A.

There is a natural partial order on (: We write » < o' if €(w) € ¢(') and
Dw) 2 (o). For A € B(Q), A is called increasing if 1,(0) < 1,(»") when-
ever w < ' and called decreasing if A is increasing.

Let A,6 >0 and let #={P(x): x € S} be a collection of independent
Poisson point processes on R, having intensity & if x € Z¢ and A -otherwise.
Almost every realization of & corresponds naturally to a configuration w € Q
and we denote by P, ; the measure induced on (Q, #(Q2)) by &.

We may approx1mate P, ; (in the sense of weak convergence) by measures
corresponding to certain processes in discrete space. Suppose that ¢ is positive
and satisfies ¢ max{A, 8} < 1 and let {X,(x, k): (x, k) € Z¢*1} and {Y,(x, &, i):
(x,k) € Z%*1, 1 < i < d} be independent 0-1 valued random variables with

P(X.(x,k) =0)=¢d, P(Y,(x,k,i)=1)=eA.
Let
= {(x,ek): X,(x,k) = 0} U {(x + 3e;, ek + 3¢): Y.(x,k,i) = 1}

and write Py ; for the measure induced by w, on (Q, #(Q)). It is not difficult
to show that

(2.6) Pf,=P,, asel0.

We omit the proof of this, but note that it follows from the facts that: (i) {P; ,:
e > 0} is a tight family of measures [see Billingsley (1968), pages 35-37], and
so the sequence has at least one weak limit point; and (ii) all weak limits of this
sequence must be products of Poisson point locations, and therefore there is a
unique weak limit point.

For future reference, we record the following consequence of weak conver-
gence:

2.7 ProposITION. If A € #(Q) satisfies P, 5(0A) = 0, then
Py s(A) = Py 5(A) asel0.
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In applying this fact, the following observation will be useful. Let Q' be the
set of configurations in which there are no simultaneous points:

QU ={weQ:|on(Sxt)<1lforaltecR};
then clearly P, ,(Q) = 1.

2.2. Two fundamental inequalities. We shall make later use of analogues
of the BK inequality [see van den Berg and Kesten (1985), van den Berg and
Fiebig (1987)] and the FKG inequality [see Harris (1960), Fortuin, Kasteleyn
and Ginibre (1971)] and a sketch of their proofs is contained in this section.
The only extra difficulty [over and above the usual proofs—see Grimmett
(1989), Chapter 2] is due to the nature of the measure P, ;. Our strategy is
simple—we check that the inequalities are valid for the measures Py ; and
then we take the weak limit as ¢ | 0.

If A, Be #(Q), we define A O B to be the event that A and B occur
disjointly, which is to say that there exist disjoint measurable subsets K and L
of S X R such that the cylinders wy and w; are contained in A and B,
respectively [w = w () is defined to be {0’ € Q: 0’ NT = w N T}].

We name the following lemma after van den Berg, Kesten and Fiebig.

2.8 BKF INEQUALITY. Suppose that A, B € #(Q) and each is the intersec-
tion of an increasing and a decreasing event, both of which are determined by
the configuration inside the bounded region T of Re*!. If

(2.9) P, 5(3A) = P, 5(9B) = P, ;(3(A O B)) =0,
then
(2.10) P, s(ADO B) <P, ;(A)P, 5(B).

It is straightforward to check in the present context that the BKF inequality
may be applied to events A and B which are finite intersections of events of

the form {U < V} and complements of such events, for any bounded region T’
of R4+1,

2.11 FKG INEQUALITY. Suppose that A, B € #(Q), each being an increas-
ing event determined by the configuration inside the bounded region T of
Re*L If P, (3A) = P, ;(dB) = 0, then

(2.12) P, s(ANB) =P ;(A)P, ;(B).

We omit formal proofs of these inequalities, giving here only a hint of the
proof of the BKF inequality; the FKG inequality may be proved in much the
same way. By hypothesis (2.9) and the weak convergence (2.6) of Py ; to P, ;,
it suffices to show that

P;s(A O B) <Pf;(A)P; ;(B) fore>0.

However, Py ; is a product measure and the result of van den Berg and Fiebig
(1987) may be applied directly in order to obtain the last inequality.
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2.3. Russo’s formula. The preliminaries being largely complete, we move
on to the notion of pivotality.

Let A be an increasing event. For w € A and X € ¢(w), we say that X is
pivotal for A (or that the bond at X is a pivotal bond for A) if w — X & A.
Suppose x € Z? and I is a nonempty open subinterval of x X R. For w € A,
we call I death-pivotal (or pivotal) for A if: (i) w U t & A for all ¢ € I; and (i)
I is maximal with this property. Such intervals have the property that the
addition of a death anywhere within them prevents A from occurring.

Let B be a decreasing event. For w € B and X € 9(w), we say that X is
pivotal for B (or that the death at X is a pivotal death for the event B) if
wo—-Xe¢BIfxe7%1<i<d,weQand I is a nonempty open subinterval
of (x + 3e;) X R, we call I bond-pivotal (or pivotal) for B if: (i) @ U t & B for
all ¢t €I; and (ii) I is maximal with this property. Any point y lying in a
bond-pivotal interval is called bond-pivotal for B.

Any pivotal bond, death or interval is called a pivotal incident. As a
shorthand, we omit explicit mention of the event for which an incident is
pivotal, whenever no confusion results.

2.13 Russo’s FORMULA. Let A be an increasing event which depends only
on the configuration inside the bounded region T'. Then

d 1
(2.14) ey P, 5(A) = —E, ;(number of pivotal bonds; A)

= E,\, s(total length of bond-pivotal intervals; A°)

and

d 1
(2.15) Y P, 5s(A) = <K, s(number of pivotal deaths; A°)

=E, a(total length of death-pivotal intervals; A).
Proor. We prove (2.14) only; (2.15) is proved similarly. Let 6 > 0 and
0 < h < A. We construct a random configuration w, according to the measure
P, ;. From o, we construct a random configuration w,_, by deleting each

bond of w, with probability h/A, independently of all other bonds; w,_,
induces the measure P,_, ; on (). Now

1
- ;(Ph—h,é(A) - PA,&(A))

(2.16)

1
zP(w)‘ €A w,_,EA)

1
= 2P(0, €A, 0, , €4, N =1) +0(1)

as h — 0, where N is the number of bonds of w, N T'" which are not in w,_,.
The last probability differs by o(h) from the probability that w, € A, there
exist in w, pivotal bonds for A, and exactly one such bond is removed in
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forming w, _,. Writing K(w) for the number of pivotal bonds for A in », we
find that the left-hand side of (2.16) equals

1 h I
Z P, (K=Fk,A)k— [1— —] +o(1),
k 0 A

which, by monotone convergence, approaches A 'E, ,(K; A) as h — 0. This
deals with the left-hand derivative of P, ;,(A) in (2.14). Replacing A by A + &,
we have that

1
Z’(P,wh,s(A) - PA,&(A))

k-1
+ o(1);

el

Y P K=k, A)k|1 h
T aan E DKk AR S

using dominated convergence and the continuity in A of P, (K =k, A), we
find that the right-hand derivative equals A ~'E, (K; A) also .

Turning to the second part of (2.14), we choose 1,8 > 0 and & > 0. We
construct a random configuration w, according to P, ; and then add extra
bonds as (independent) Poisson processes with 1ntens1ty h, obtaining thus a
configuration w,,;, drawn according to P,., ;. Let C be the set of extra
bonds. Then

Z(P).+h,5(A) - P).,«S(A))
(2.17)

1
= Z-P(w,\ EA 0., €A ICNAI=1)+0(1)

as before. The latter probability equals the chance that |C N A| = {X} for some
bond X in w,,, and that, in w,_,, X is pivotal for A. Now A N {(S — Z%) x
R} = A’ is a union of intervals; write m for (one-dimensional) Lebesgue
measure on A' and L = m(A’). Conditional on {|C N A| = 1}, the measure
associated with the pair (w,, X) is P, ; X (L™'m). Now P(IC N A|=1) =
hLe "L and therefore the left-hand side of (2.17) equals

—f P,.(x is bond-pivotal for A% A°)  dm (x)hLe~*E + o(1)

h A L

(2.18) ad f P, s(x is bond-pivotal for A°; A°)dm(x) as h |0
K

= EA,S[[A;J(&,,(x) dm(x)]

by Fubini’s theorem, where J(w) is the set of points y in A’ which are
bond-pivotal for A°. This deals with the right-hand derivative of P, ,(A). For
the left-hand derivative we argue as before, using dominated convergence and
the continuity in A of the integrand in the centre of (2.18). O
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2.4. Comparisons for pivotal incidents. The result of this section is vital
for the proofs of the main theorems. Suppose that A is a bounded region in
R?*! and D is a fixed, closed nonempty subset of A; denote by A the event
{0 &, D}.

2.19 COMPARISON LEMMA. It is the case that

E, s;(number of death-pivotal intervals; A)
<P, s(A)
+ eE, s;(number of pivotal bonds; A)
+ 2dA eE, ,(total length of death-pivotal intervals; A),

(2.20)

where such incidents are pivotal for the event A.

Proor. We prove the lemma by making local changes at bounded cost,
thereby turning one type of pivotal incident into another. This technique has
been used by Menshikov (1987) and Aizenman and Grimmett (1989).

Fix 1 (> 0) and let v be the number of pivotal bonds, u, the number of
pivotal intervals of length greater than m, and w_ the number of such
intervals of length less than 7. We shall show that, in the limit as £]0
through the irrational multiples of 7,

Ef s(n_;A) < P{5(A) + {c(A) + 1}E; 5(v; A)
+ c(A)ES 5(p4; A) +o(1),

where c(A) = e29*" — 1. (We restrict the limit to the irrational multiples of 7
in order to avoid having deaths or crossings coincident with the endpoint of
some fundamental interval of length 7.) Inequality (2.20) follows from (2.21),
as follows. Suppose that (2.21) holds. The events A, A N {v > k}, A N {u_ > k}
have boundaries in the space Q of configurations which are contained in the
union of the complement of ' with the set of configurations which have
births or deaths on the boundary of the space-time region A. Taking the limit
as ¢ | 0 (through the irrational multiples of 7), it therefore follows from (2.7)
and the remark following it that (2.21) is valid with the &’s removed. Now

(2.22) E, ;(total length of pivotal intervals; A) > nE, ;(u.;A),
so that
E, s(n; A) <P, 5(A) + e>PE, 5(v; A)

(2.21)

(2.23) 1 0 . .
+ —e29A7E, .(total length of pivotal intervals; A),
n ,

where u = u,+ u_. We have a free choice of 7 here and we choose 7 =
1/(2d 1), obtaining (2.20).

In proving (2.21), we regard Py ; as being product measure on the set of
subsets of a finite set (see Section 2.1), writing Py ;(B) as the summation of
P; (w) for w € B. Suppose that the event A occurs and there are pivotal
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incidents. Then any path from 0 to D in A must traverse all pivotal incidents
(bonds and death-pivotal intervals) in a given order, each being traversed in a
given direction. In any such configuration, each pivotal bond or interval has an
endpoint closer to 0 and an endpoint further away from 0. For any such
incident, we shall speak of the direction leading away from 0, and so on, as
being the direction from the endpoint closer to 0 towards the endpoint further
from 0.
Let
d
A, ={2¢x ez} U{ U (2% + 3¢,) X (¢Z + 3¢)},
i=1

the discretized version of the space S X R. Suppose that x € (Z¢ X R) N A,
and introduce the following events.

(a) A(x) is the event that there is a pivotal interval I of length less than 7
starting at «x.

(b) B(x) is the subset of A(x) containing configurations for which there
exist somewhere in the configuration two bonds having a common endpoint.

(¢) C(x) is the subset of A(x) containing configurations for which the other
end of I lies in D.

(d) D(x) is the subset of A(x) containing configurations in which the other
endpoint of I is the endpoint of a pivotal bond.

(e) E(x) = A(x) — (B(x) U C(x) U D(x)) is partitioned as E(x) U E,(x) U
E4(x), where: (i) E{(x) contains configurations for which there exist deaths
between x and y (y denotes the point on the same vertical line as x but a
distance n away from x in the direction away from 0); (ii) E,(x) contains
configurations for which no such death exists and between y and the first
death beyond y (measured from x in the direction away from 0), there is some
point joined to D in T’ — [x, y]; (iii) E4(x) contains configurations for which no
such death exists and neither is there a point between y and the first death
beyond y that is joined to D in T — [x, y].

We shall define a mapping ¢ on E(x) = E(x) U Ey(x) U E4(x) which sends
configurations to configurations. Consider Ey(x) first. For any configuration
o € Ey(x), we define o' = ¢(w) to be the configuration obtained from w by
removing all bonds which intersect (x, y]; see Figure 1 for diagrams of »' and
similar later constructions. In ', x is the starting point of a pivotal interval of
length exceeding 1. Furthermore, for o' € y(Ey(x)),

(2.24) Y PPs(w) <ay(e) Py (o),
wey™ N o)
where
P} 5(one or more bonds touching (x, y])
P} 5(no bond touching (x, y])
=c(A) +o(1) aselO,
note that o' & ¢~ Y'), since o' & A(x).

ay(e) =
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y
D
Dt
0 x
D x<
"]7' y 4‘ y TI—
>z .-lzdz
A b P >
! = b -
0 X 0 x 0‘_4-;4
E(x) E{x) E(x)

D 4 Start/end of pivotal interval
A Pivotal bond
>< Death

Fic. 1. Schematic diagrams of the mapping v in the cases of the three events Ey(x), Eg(x) and
E(x). '

We turn next to E;(x). Suppose o € E3(x) and let z be the point in (x, y]
furthest from x which is joined to D in T — [x, y]; if no such point z exists,
then » € C(x), a contradiction. We obtain the configuration o' = y(w) by
removing all bonds which intersect (x, z) U (2, y]. In ', the interval (x, 2) is
pivotal and z is the first endpoint of a pivotal bond. Moreover, for o' €
Y(E(x)), (2.24) holds with a,(¢) replaced by

P¢ ;(one or more bonds touching (x,2) U (z,y])

as(e; %, 2) = P¢ 5(no bonds touching (x,2) U (2,y])

=c(A) +0o(1) aselO,

where the o(1) term is uniform in x and z; note that o' & ¢ (o) since
' € D(x) and D(x) N E(x) = &.

First consider E(x). Suppose w € E(x) and let z be the death in (x,y)
closest to x and let u be the point in (x, z) furthest from x which is joined to
D in T — [x,z]. We obtain o' = ¢(w) by removing all bonds which intersect
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(x,u) U (u, 2). In o, (x,u) is pivotal and u is the first endpoint of a pivotal

bond. For o’ € y(E(x)), (2.24) holds with a,(¢) replaced by a term a,(¢; x, 2, u)

having order c(A) + o(1), the o(1) term being uniform in x, z and u as before.
Now

po<p_(c) +p_(d)+pu_(e),

where u_(c) is the number of pivotal intervals contributing to u_ that have
an endpoint in D, u_(d) is the number leading directly into pivotal bonds and
u_(e) is the rest. Thus, with B denoting the set of configurations in which
there are two or more bonds in I' with common endpoints, we have as ¢ |0
that

B o(u_; A) = Ef (u_;ANB) +Ef (u_; A—B)

<o(1) + Ef 5(n_(c); A — B) + Ef ;(n_(d); A — B)
+Ef 5(n_(e); A-B)

<0(1) + P{5(A) + Ef 4(v; A) + Ef ,(u_(e); A — B)

since u_(c) < 1and u_(d) < v as. Also, as ¢ | 0, we have from (2.24) and its
analogues that

Ef s(n-(e); A=B) <{c(d) +o()} X X Pi,(o),

x o'eVv

(2.25)

where ¥ = y(E;(x) U Ey(x) U E4(x)). Hence, as ¢ |0,
E; s(n-(e); A= B) < {c(A) + o(D}(E; 5(n+; A) + Ef 5(v; A)),

where we have used the fact that ¢(E (x)) N ¢(E4(x)) = &. We combine this
inequality with (2.25) to obtain (2.21). O

3. Proofs of main results.

3.1. Exponential tail of radius distribution. We prove Theorem 1.7. The
basic method is due to Menshikov (1986) [see also Menshikov, Molchanov and
Sidorenko (1986)]; we follow Grimmett [(1989), Section 3.2] closely here,
making use of the extra estimate of Section 2.4.

Suppose A <X, 8 > 8, { =min{\' — 1,6 — &8},

(A;,8,) =(A,8) +t(N —1,8'—6) forO<t<1,

and set P, = P, ; with expectation operator E,. We write g(r) = P(A,).
We have from Russo’s formula [Lemma (2.13)] that
© 8() = “E(BIA) + (5 - ) E(LIA,)
T.8\T) = —/ r + -0 r)s
8/(r) dt ! A ‘ !
where, on A,, B is the number of pivotal bonds (i.e., crossings) for A,, L is
the total length of death-pivotal intervals for A, and (later) I is the number of
pivotal incidents (pivotal bonds and death-pivotal intervals) for A,. Applying

(3.1)
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Lemma 2.19, we find that
E(I-B;A,) <PJ(A,) +eE(B;A,) +2d)\eE(L;A,).
After dividing by P,(A,), one obtains from this that
E,(IA,) + E(LIA,) < 1+ (1 + ¢)E/(BIA,)
+(1+2dre)E(LIA,),

and hence, since 1 + e < (1 + 2dA, e)/A,, that the left-hand side of (3.2) is no
greater than

(3.2)

1+2dAi,e A —A ,
1 " (6 - 8') A (X - A) [ )‘t Et(BlAr) + (6 - 6)Et(L|Ar)]

Hence from (3.1) we have that, for 0 < ¢ < 1,

’

d 4
(3.3) E log gt(r) > W{Et(IlAr) + Et(L|A,)} - z—m

Integrating over ¢, we obtain

(3.4) 8o(r) < c1g1(")exP{—szfol(Et(IlAr) + E,(L|Ar)) dt}

for functions ¢; = ¢,(A, X), ¢, = ¢,(X) which are finite, strictly positive and
continuous when A, A’ € (0, «).

Suppose that » € A, and note that I(w) is a.s. finite. If I(w) > 1, then the
pivotal incidents in w may be ordered in the usual way, since every path from
0 to 3S(r) traverses such incidents in a fixed order and a fixed direction. Write
x; and y; for the initial and final points of the ith pivotal incident in the order
of its traversal. With & the L! metric on Z¢ X R, as in Section 1.3, we define
p; = 60, x,), and for i > 2,

8(yi-1, %) ifI>i,
0 ifI<i-1.

Let M = sup{s: 0 © 3S(s)}. As in Grimmett [(1989), 3.12 and 3.19], the joint
distribution of the p,’s, conditional on A, is dominated by that of independent
copies of M. Thus, proceeding in the usual way (loc. cit.) but with some minor
differences, we obtain that, if s <r and £ > 1, then

k
A,) ZPt(Z M, <s),

i=1

(3.5) Pt( Zk‘, pi<$
i=1

where M, M,, ... are independent random variables having the same distri-
bution as M (and we have abused notation by using the measure P, on the
probability space supporting the M,’s). The proof of (3.5) is by induction on k.
The inductive step involves a conditioning argument which is technically more
complicated than in the discrete case. However, no new ideas are needed and
we shall not give the details.
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Suppose that A, occurs and p; + p, + - +p, <r — 2k. Then, either
I>korI<kand

r<p,+py+---+p,+L+k<r—k+1L
so that L > k. Hence
k
(3.6) P,( Y p,<r—2k A,) <P(I>klA,)+P(L>klA,),
i=1
and therefore, by (3.5),

k
(3.7) Pt(Z M;<r|<P(I=klA,) +P(L=kIA,),

i=1
where M = (M; Ar) + 2. Let N =inf{n: 7?_;M] > r}. The left-hand side of
(8.7) equals PN > k + 1), and so, after summing over k, one obtains that
E(N)-1<E(I|A,) + E(L|A,). We have from Wald’s equation that
E(LN,M)) r
> .
E,(M) 2+ [gP(A,)ds

E(N) =

Now P,(A,) is increasing in ¢ and therefore

(38) E(11A,) + E(LIA,) > 1,

r
2+ [P(A)ds
which may be substituted into (3.4) to yield

2dT
(3.9) g(r) < ngl(")e"p{‘ TP )ds}

for some c3 = c4(A, A') which is positive, finite and continuous on (0, x)2,
It is clear from (3.9) that the theorem is proved once we have shown that

[P y(A)ds <o ifA <p,d.
0

This in turn will follow once we have shown that, if A < p_§, there exists
a = a(A, 8) > 0 such that

04

Vs
since this implies by (3.9) that g,(r) <Be "V for positive constants B,y
depending on A and §. The proof of (3.10) follows extremely closely that of
Lemma (3.27) of Grimmett (1989). We sketch the details, which are somewhat
tiresome but require no new ideas.

Suppose U is a closed ball in (0, ®)2. Then, by (3.9), there exist constants c;
such that, for all choices of (A, §) and (), 6") in U with A’ > A and § > &',

cor min{A' — A, 8 — 8’}
2+ [gPy 5(A,) ds

(3.10) P, s(A)) < fors > 0,

(3.11) P, 5(A,) <c3Py (A, )exp| —
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Fix (Ao, 8,) in the interior of U and suppose that A, < p.8,. Suppose (1, ;) €
U with A, €(0,Ay) and 8, =8, + (1 —A;). Choose ro>1 and r >
ro/Py, (A, Then, since P, ;(A,)is decreasing in s, we have that

mn
(3.12) 2+ [o P, 5(A,) ds <2 +ro+ 1P, ;(A,) <4rP, 5(4,,)

Apply (3.11) with (A, 8) = (A, 8,), (X, 8") = (A, 8y) and r = r,. Together with
(3.12), this gives

ca(Ao — A1)
. P P A -,
(3 13) )\1»31(Ar1) =¢C3 1\0,30( rl)exP{ 4PA0,80(A;~0)
Let
4 x

(3.14) h(x)=——x log(——) for0<x <1.
Ca C3

Suppose we pick A, satisfying

(8.15) Ao — Ay = h(PAO,SO(A,O)),

so that

ca(Ao — Ay)
4P/\0y30(A"0)
Then if (A, §;) € U, we have from (3.13) that, since r; > r,,

(3.16) P, 5(A,) <[P, Aro)]z.

Now, since A, < p.8y, h(P, SO(A,)) — 0 as r — « and therefore, by (3.15), we
may be sure that (A;,8,) € U so long as ry has been chosen sufficiently large.

To summarize, we have that if (A,, 8,) (with A, < p.8,) is in the interior of
U, if ry=ry(Ag, 8,) is large enough to ensure that (A, 8,) = (A —
h(P, s(A,)), 8o+ h(P, ;(A, ) €U andif r; > ro/Py, 5{A,,), then (3.16)
holds.

Now fix (A, 8) with 0 < A < p,8. Fix ¢ > 0 so that A + & <p(8 — &). Let
(A9, 8,) = (A + &, 8 —¢) and let U be the closed ball of radius ¢ centered at
(Xg, 8¢

Note that the function % defined in (3.14) is increasing on some interval of
the form [0, 7] with 1 > 0. Suppose 0 < x, < 1. Let x; =x?_; for j > 1 and
set

P)\o»lso(A'fo) =cy exp{ -

s(xg) = ioh(xj).

Since x; < x&/, it follows easily from the definition of A that s(xqy) < = for x,
in (0, 1) and that s(x,) — 0 as x, = 0. Choose x, € (0,1 A 1) small enough to
ensure that s(x,) < A, — A = ¢. Pick r, large enough to ensure that

(3.17) g0 =Py, s(A,,) < %o
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We shall choose 7, A;, 81, T'g, Ag, 85, . .. Tecursively by
Th =Th-1/8r-1>
(3.18) Ap=2Xp_1 — h(8r-1),
Oy =0,_1+h(8-1)
for k > 1, where
(3.19) 8i = P)\i,ﬁi(Ari)‘
We shall prove by induction that
(3.20) A+e=>A,>A and 8 —e<6,<98,80(A;,8,) €U,
(3.21) 8 < &1,
(3.22) 8, < Xp.

Assume that (3.20), (3.21) and (8.22) hold with % replaced by j for j = 1,...,
kE — 1 and choose r,, A, and §, according to (3.18). Then we have from the
argument leading to (3.16) that if (3.20) holds, then so does (3.21). Now (3.22)
follows from (3.21) together with the fact that g, _, <x,_, and x, = x2_,. To
prove (3.20), note that by definition,

k-1
Ap=Ap_1 —h(8r_1) = Ao — > h(gj)'
j=0

Using the fact that k& is nonnegative and increasing on [0, x,] together with
the induction hypothesis, we have

k-1
A+e=Ag2A, 22— 3, h(x))
Jj=0

> Ao —8(x9) > A

by the choice of x,. Similarly 6§ — ¢ < §, < 8. Hence (1,,8,) € U.
Now if £ > 1, by (8.18) and (3.21),

8F 1= 8r 18k-1 < gk—lgf—z

< 8r-18r-2 ' g1gg

_ Tp-1Tk-2 " rog
=2 g
Nplp—1 """ I
ro8o Iy
= S -,

T Ty

which is to say that
P

Ty
’\hAlr‘sk—l(ArhAl) = ;.— .
k

Note that (3.22) implies that g, —» 0 as k£ — » and hence by (3.18) that

r, — ®.
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Finally, suppose that r > r, and choose k so that r,_, < r <r,. Then
P, s(A,) <P, 5 (A)

Ty

= P)‘kAlr‘sk—l(ArhAl) = ;.— ’
k

since A <A,_,, 8 >6,_, and r > r,_,. However r < r,, and so

-
P (A)<1A ‘/—3 for r > r,.
’ r

This inequality is valid also when 0 < r < r, and therefore (3.10) holds with

a(A, 8) = y/re(A, 8) .

3.2. Critical-exponent inequalities. Theorem 1.11 may be proved by an
adaptation of the argument of Aizenman and Barsky (1987). Following their
method, one obtains a collection of differential inequalities for the finite-volume
quantity

(3.23) 0,(1,8;7) =1 — E, 5(e "),

where |C,| is the Lebesgue measure of the set of points reachable from the
origin within a closed box A with appropriate periodic boundary conditions.
There are three such inequalities:

a6, a0,
(8.24) 0, < 202 + yxs + c(A)8,— — co(A) 0y —,
EN ER)
a6,
(3.25) o < 26axa;
30, 8ar(1
(3.26) ~ % = _a_{ﬁ +xA}0A,
where ¢,(A) = A(e + 1), cy(A) = 2de A + 1 and
(B2 (557 = B0 M) = S0,(h,5).

We sketch the proof of these inequalities. Note that the proof consists
basically of discretizing and following Aizenman and Barsky, although Lemma
2.19 is needed in addition in the proof of (8.24). As in Aizenman and Barsky
(1987), introduce a random set ¢ of green sites so that {ZN (x X R): x € 7%
is an independent family of Poisson point locations with intensity vy, indepen-
dent of the deaths and crossings. Let P, ; , and E, ;. denote the probability
measure and corresponding expectation operator of the resulting configuration
of deaths, bonds and green sites. The BKF and FKG inequalities for these
measures can be established as before and Lemma 2.19 remains valid with
P, ; replaced by P, ; ., the deterministic set D replaced by # and A the event
{0 &, #).
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To prove (3.24), begin as in Aizenman and Barsky (1987), writing
(X, 8;7) = Py 5,({0 &y £} 0 {0 0, £}) + Py s (ICkn&l=1)

|Cy N Z| = 2 but there are not
two disjoint connections from 0 to &

=1+ 1I+ III, say.

By the BKF inequality (Section 2.2), I < 6,(A, 8; y)?. By the independence of
the green sites from the deaths and crossings, IT = yx,(A, 8;y). The term III is
more complicated to handle. Discretize as in Section 2.1, writing Py, ., E; ;
and 6 for the corresponding measure, expectation and analogue of 6,. By the
argument used to estimate the probability of F; on pages 517-518 of
Aizenman and Barsky (1987), the analogue III° of III with P, ; . replaced by
Py 5, satisfies

T < 65(), 8 7) [ Ef 5., (B; A) + Ef 5 ,(I; A)],

+ A8,y

where B and I denote the numbers of pivotal bonds and death-pivotal
intervals, respectively. To see this, observe that if a site (x, ¢) in Z¢ X R is the
last pivotal site for A, then it occurs at the end of a pivotal interval. Let £ |0
and use the analogues of (2.7) and Lemma 2.19 to obtain

I < 6)(A, 8;7)[0s(A,8;7) + (e + 1)E, 5 (B;A) + 2dAeE, , (L;A)],
where L is the total length of pivotal intervals. Inequality (8.24) now follows

from Russo’s formula; see (2.14) and (2.15).
By Russo’s formula (2.14), the left-hand side of (8.25) equals

[ Ps(B(x,t) nA%)dt,
(x,t)eA

where B(x,t) is the event that (x,¢) is bond-pivotal for the event A. If
x =y + ze; with y € Z9, then by the BKF inequality and the periodicity of the
boundary conditions,

P, 5, (B(x,t) NA%) < 6,(A,8;7)[Py5,(0 <5 (y,t),CL N F= D)
+P, 5 ,(0 o5 (y +e,t),CoNnF=02)].
Inequality (3.25) follows by integrating.
Finally, use the first equation in (2.15) to see that the left-hand side of

(8.26) equals 6 'Ef ; (D; A°), where D denotes the number of pivotal deaths.
By the argument used to prove 7.1 in Aizenman and Barsky (1987),

number of deaths in A joined

E}5./(D; &%) < 63(2, 8;7) ES ., to 0 from one side only ;A
< 205(X, 8;y)[1 + Ef 5 ,(number of bonds in C,; A%)].

The second inequality follows from the facts that each vertical interval has two
endpoints and that every such interval in C, except the one containing the
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origin requires at least one bond to connect it to C,. At least one of the
endpoints of a bond in C, is connected to 0 by a path that does not use
the bond itself and so the last expectation in this inequality is no greater than
4A¢Ef 5 (number of sites in C,; A°) < 4AE} ; (ICsl; A%). Now let £10 and
use the analogue of (2.7) to obtain (3.26).

Substituting (3.25) and (3.26) into (3.24) and using Lemma 4.1 in Aizenman
and Barsky (1987), we obtain Theorem 1.11.

3.3. Exact calculation in two dimensions. The extra ingredient essential
for the proof of Theorem 1.12 is self-duality in two dimensions. Consider the
percolation process on Z X R with parameters A and & and construct the
following dual process on (Z + 1) X R. Each death (x,t) of the first process is
mapped onto a bond of the second, joining (x — 3, ) to (x + 3,¢). Each bond of
the first process, with centre at (x + 3, ¢) say, 1s mapped onto a death of the
second at (x + ,t). Clearly the second process is a percolation process with
parameters 8 and A. If A = §, then the two processes have the same distribu-
tion. See Figure 2. ‘

That p, = 1 follows now by roughly the same method as used for bond
percolation on Z?% [see Grimmett (1989), Section 9.3]. First we show that
p. < 1. Let n be a positive integer and let D, be the region of Z X R
containing all points (x,t) satisfying |x — | + ItI < n; see Figure 2 again.
Denote by F,, F,, F, and F, the sides of D, in clockwise order starting from
the lower left side. Suppose that A = § > 0. Let A, ={F, &p F;} and let Al
be the correspondlng dual event: Ad is the event that there emst (x+ 3,8) €
F2, (y + 1,5) € F, such that (x + },¢) is joined in D, to (y + 3, s) by a path
in the dual. By symmetry and the fact that exactly one of A, and AY occurs in
any configuration, we have that P, ,(A,) = P, J(A%) = 3 IfA = 5 and p.> 1,

N
// N
I
A N RN
4RRR A= Bond
_ o
//: L \f\
A : x ! 1 o= Path
N I ! ] ! P
; : x : 15 - Dual path (blocked)
| I
SN :/F/ =< Deah
F X . F
1 \\, | >$) 4
* |/
\vl/

Fic. 2. Part of the primal and dual processes on the region D,,. Solid horizontal lines indicate
crossings in the primal process. Note that the dual death marked with an open circle blocks a path
in the dual from F, to F,.



EXPONENTIAL DECAY OF SUBCRITICAL PROCESSES 1007

then
P, 5(A,) < ne "

for some ¢ = ¢(A, 8) > 0, by Theorem (1.7). Thus P, s(A)—>0asn—->xa
contradiction. Hence p, < 1.

The first step in the proof that p, > 1 is to check that the Burton-Keane
(1989) proof of the uniqueness of the infinite cluster holds for this situation.
This is easy; it is necessary only to replace the notion of an encounter point by
that of an encounter interval I, that is an interval of length one, say, which is
incident in (Z X R) — I to three or more disjoint infinite clusters. Next we
adapt an argument of Zhang [see Grimmett (1989), page 195]. Let n be a
positive integer, write H, = D, + (3,0) C R? and let Fy(n), Fy(n), Fy(n) and
Fy(n) be the sides of H, taken clockwise and beginning with the lower left
side. Let G,(n) be the event that some point of F(n) is the endpoint of an
infinite path of (Z X R) — H,, (except for this endpoint). Suppose that 6(1) > 0.
Then .

4
Pz\,&( U Gi(n)) =1 asn—x,
i=1

so that, for all large n, P, ,(G,(n)) > %, by the FKG inequality and symmetry.
Moving to the dual, let HY = D, — (,0) and define G3(n) to be the events
corresponding to G,(n) but defined in terms of dual clusters and HJ. If n is
such that

Py s(Gi(n) N Gy(n)) > 3 and P, ,(G3(r) N Gi(n)) > %,

then we have a contradiction, since if all four of these events occur, an event
with probability at least 3, then there are two disjoint infinite clusters in

Fic. 8. The regions H, and H3. The infinite cluster of the primal process is unique and hence
there are two or more such clusters in the dual, a contradiction.
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either the primal or the dual process (see Figure 3). This contradicts the
uniqueness of the infinite cluster.
This proves that 8(1) = 0 and hence that p, > 1.

Acknowledgments. We are grateful to Yu Zhang and the referee for
pointing out the fact that 6(1) = 0 in two dimensions.
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