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OPTIMAL STOPPING AND BEST CONSTANTS FOR
DOOB-LIKE INEQUALITIES I: THE CASE p = 1

By S. D. Jacka
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This paper establishes the best constant ¢, appearing in inequalities of
the form

ES. < c,supllM,llg,
t>0

where M is an arbitrary nonnegative submartingale and

S, = supM,.
s<t

The method of proof is via the Lagrangian for a version of the problem
supE{AS, — AIM7},
r .

where M = |B|, B a Brownian motion. More general inequalities of the

form
ES. < CosupllM,lle
t>0
and
ES, < Cysup | M, |l o
t>0
(where || llo and ||| - [l ¢ are, respectively, the Luxemburg norm and its

dual, the Orlicz norm, associated with a Young function ®) are established
under suitable conditions on ®. A simple proof of the John-Nirenberg
inequality for martingales is given as an application.

1. Introduction. It is, or should be, well known that if X is a D(0, )
(cadlag) process, then for all stopping times 7' and all g > 1

(1.1) EX} < sup || Xglly, X = suplXgl,

q-1 SeT(T) s<t

where T(T') = {S: S < T as., S a stopping time}.

If X is a nonnegative submartingale and (X, , ) is uniformly integrable
(ui), then the right-hand side of (1.1) may, by virtue of Doob’s submartingale
inequality, be replaced by [q/(q — DIl X4l,.

One aim of this paper is to establish the following theorem.
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THEOREM 1.1. For any nonnegative, cadlag, ui submartingale X:
(1.2) EX* < (T(1 + §)"IX.,,

where § is the conjugate of q: § = q/(q — 1)), and the constant appearing in
(1.2) is the best possible.

In a companion paper we shall characterise the best constant C, , appear-
ing in
p .
E(X2)" < Gy o X2lg;

this may go some way toward explaining the subtitle of this paper.

As the title suggests, the main tool used in establishing inequality (1.2) is
that of optimal stopping. We establish (1.2) [and more general inequalities
bounding E X} by suitable multiples of the Luxemburg and Orlicz norms of
X, with respect to ® (a convex Young function)] by explicitly solving the
problem of optimally stopping the process (X;¥ — ®(u|X,])).

Section 2 is devoted to the groundwork establishing the connection between
payoffs of a class of optimal stopping problems and global inequalities like
(1.2). In Section 3 we simplify the relevant class of these problems by scaling
and by embedding in Brownian motion. Section 4 is devoted to the heuristic
considerations which establish a candidate optimal policy and the correspond-
ing payoff. Section 5 is devoted to establishing the validity of this candidate
payoff, a task which, unfortunately, necessitates the proof of a whole batch of
lemmas, because of the unusual form of the optimal stopping problem for
which, apparently, no suitable theory exists.

Throughout the paper we address a larger class of optimal stopping prob-
lems than that which is dictated by a desire solely to establish Theorem 1.1.
The payoff for this is seen in Section 6, where we find the solution to all
optimal stopping problems of the form:

maximise over stopping times T' such that ( B, , 1) is ui:
EB} — f(IB7l),
where f is an arbitrary R U { + «}-valued function.

Section 7 is devoted to some applications of the result in Section 5. First
Theorem 1.1 is proved and then a suitable generalisation is given of the form

EXF <34l X.lle and EX} < oplll X, |l 0,
where || |l is the Luxemburg norni, and || - ||| ¢ is the Orlicz norm induced
by ®, an arbitrary Young function and
S <0 g, <o fwe"“”(" dt <« for somewu > 0,
0

where ¢ is the left derivative of ®.
The final application in Section 7 is a proof of a version of the John-
Nirenberg inequality for martingales of bounded mean oscillation.
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Note that inequality (1.2) has been obtained independently by Gilat (1987)
by an entirely different method.

2. Some preliminaries. In what follows we shall assume that we are
working with a fixed filtered probability space [, F, (F,; ¢ > 0), P], which is
rich enough to carry a Brownian motion; all stopping times are with respect to
this filtration. We recall the definition of a Young function: ®: R,—» R, is a
Young function if ® is convex, increasing, ®(0) = 0 and ®(x)/x — ». It will
be convenient in some of what follows to extend the definition: ®: [0, ) — [0, «]
is an extended Young function if ® is convex (as an extended real valued
function), increasing, ®(0) = 0 and ®(x)/x — .

We may associate with any Young function ® (indeed with any extended
Young function) its convex conjugate (or Fenchel conjugate) ® given by
®(x) = sup, . o[xt — ®(t)] [see Rockafellar (1970), pages 102-111]. The func-
tion @ is also a Young function (or an increasing convex function started at 0).
There ares two norms associated with Young functions: the Luxemburg norm
(slightly redefined)

1 X
I Xl = inf{p, > 0: E(I)(-—-) < @(1)}
s
and what is, essentially, the dual norm of || - ||, the Orlicz norm, given by
XMl = inf{p, > 0: sup(uA — E®(AIX])) > ci>(1)},
A=0

at least for ®: ®(1) > 0; see Jacka (1991) for details.

The main reason for introducing ®-norms and the associated L® spaces is
that we can ‘“‘see’” finer structure using Luxemburg norms than by simply
looking at the LP-norms for p > 1. Note that both L®-norms coincide with the
LP-norm if ®(x) = x?.

THEOREM 2.1. Let (X,; t > 0) and (Y,; t > 0) be nonnegative adapted
processes, let T be any collection of F-measurable nonnegative random vari-
ables and let @ be a fixed Young function. Define for each u > 0,

T(u,®) = {T € T:EP(pYy) < x}.
Then
T(®)= U T(u,®) = {T € T: |¥7llo < =}

w>0
={TeT: Y7o < o}
Define

A
L*(p) = sup sup [E(—-XT - d)(AYT)).
A>0 TeT(,®) \M
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Then if we define

(X,Y,T) EXr
Og = O, , Y, T) = su
° =% reme MYz lle

and
EX,
2<I> = EQ(X’ Y’ T) = Ssup ’
TeT(®) "I YT ”l ]
then
0y = inf{n > 0: L*(u) < ®(1)}
(2.1) . A -
=inf{u > 0: sup sup E| — X7 — ®(AY;) | < @(1)
TeT(®) A20: TeT(, ®) \ M

and

S = inf {w(L*(u) + (1))}
un>0
This is just Theorem 10 of Jacka (1991).

In particular we have the following corollaries.

CoroLLARY 2.2. Suppose X and Y are nonnegative adapted processes and
T = {T': T a stopping time; T < ©a.s. and (Y, 1) is ui}.
Then the best constants Cy and ¢, appearing in the inequalities
2.2) EX; <CollYrlle, VTET,
EX; < collY7llo, VTeT,

are given by
Cy = 0. Cp =2
o = Op) @ @

CoroLLARY 2.3. If X, Y and T are as in Corollary 2.2, then the best
constant appearing in

(2.3) EXr <C/llYzlly,, VTEeT,
where q > 1, is o, given by
) 1/4
(2.4) o, = (il/"ql/q(sup sup E(AXp — (AYT)q)) ,
Az20 TeT(X,)

where § = q/(q — 1).

These are, respectively, an obvious corollary of Theorem 2.1 of this paper
and Corollary 11 of Jacka (1991). The interested reader is referred to Jacka

(1991) and to Barlow, Jacka and Yor (1986) for further details and applications
of these techniques.
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We now see the connection between our original problem of finding the best
g, in (1.2) and a class of optimal stopping problems:

(2.5) find, for each A,  sup E(AMjF — (AMp)?),
TeT(x9)

where T'(x?) = {stopping times T: T < w a.s., (M, , ;) is ui and E M% < o},

We can and will consider the more general problem:

*

T - ¢(AM;)].

A
(2.6) find, foreach A,u >0, sup E
TeT(®) L

By embedding the positive submartingale M in the modulus of a Brownian
motion we shall see, in the next section, that in order to obtain a uniform
bound for o5, and 3, over all cadlag martingales we need only consider
problems (2.5) and (2.6) for M = B, a Brownian motion. We shall solve this
problem in Sections 4 and 5 and then go on to find the solutlon to the still
larger problem:

find sup E(Bj - f(B7l)),
TeT

where T = T(B, f) = {finite stopping times T: (B, , ) is ui and E f(|IBp|)* < =}
and f is an arbitrary R U {+x}-valued function.

3. Embedding in Brownian motion. Define I, to be the class of
nonnegative, cadlag submartingales M adapted to (F,) with M, = x, and for
each x € Rand M € I, set

T(M) = {stopping times T: T < » a.s. and (M, , ;) is ui}.
Then, for each f: R, — R define
T(M, f) = {T & T(M): Ef(Mp)" < =},

(3.1) V(M, f)= sup E(MfF - f(My)).
TeT(M, f)

Let us now simplify the problem further.

LemMA 3.1. The supremum over M € I, of V(M, f) is given by

(3:2) e d V(M, f) =V(B, f),

where B* is an (F,)-adapted Brownian motion with B, = x.
Moreover, if we define I to be the class of nonnegative cadlag submartin-
gales on (F,), then

(3.3) sup V(M, f) = V(B, f).
MeMm
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Proor. Clearly, since |B*| € M, and |B°| € M, we need only establish
that

(3.4) V(B f) = V(M, f), VMe®d,
(3.5) V(B°l, f) = V(M, f), YMe®.

Now we know that (M,) may be written as (IN,)), where N is a cadlag
martingale [see Barlow (1981)].

Take a T € T(M, f). Then |N, , 7| is ui and so N is integrable, so we may
maximally embed the law of Ny in a Brownian motion B started at x = M;
that is, we may find a stopping time 7 s.t. ) L(B,) = L(Ny), (i) (B, ,,) is ui
and (iii) B% is the stochastic maximum of (N;)*, where N' runs through all
cadlag ui martingales with L(N,) = L(B,) [see Jacka (1988), Theorems 1
and 2]. But (N,,;) is ui, so EB} > ENj}, while, since L(B,) = L(Ny),
Ef(UB,)*< »,s0 7 € T(B|, ) and

E(Mj — f(M7)) = E(N# — f(Ngl)) < E(BF - f(B,])),

establishing (3.4).
To establish (3.5), by conditioning upon the value of M, we see that we
need only show that

(3.6) V(B°l, f) = V(B*l,f), VzeR.

But if we define T, = inf{¢t > 0: |B| = |x[}, then {|B3 .|} has the same law as
IBZ| and we may embed the law of |B7| in |B3 .| and repeat the argument
above, using the fact that (Bz)* > supy.,., IB? ., thus establishing in-
equality (3.6). O

We are now confronted with the class of optimal stopping problems: find
V(|B|, f) for each real function f, or, restricting attention to extended Young
functions, find for each x € R, A = 0, u > 0,

A M A
(3.7) —V(IB"I, 7c1>A) =  sup IE(—B;i - (I)A(IBTI)),
K TeT(B*, ) \H

where ®,(x) = ®(Ax). Note that by scaling B, (8.7) is the same as finding

(3.8) sup  E(Bf — ®,(Brl)),
TeT(B*|,9,)

where x' = (Ax/u), and it is this problem which we shall solve in Sections 4
and 5.

4. Solving the optimal stopping problem: heuristic principles. Re-
calling once more Theorems 1 and 2 of Jacka (1988), we know that if
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T € T(B°|, ®,) with L(BJ) = v, with v symmetric, then, defining

f tdv/v([x,®)), x>0,

(4.1) p(x) = {7
2( tdv, =0,
Jyteo "
and letting
(4.2) 7 =1, =inf{t > 0: B > y(IBY))},

then, since By is integrable and (B?, ;) is ui,
P(BY* = A) =2 P(Bp*>1), VA=0,

while L(B?) = v, at least if v does not charge {0}.

Now by the symmetry of the optimal stopping problem (3.7) we would
expect that if T achieves the supremum, then BY should have a symmetric
law and so T' must be of the form given in (4.2) for some law v. We know that
(since T must have this form, and since the process (|B,|, B}) is strong
Markov) if we write

V(x,y) = sup E[(Bj - ®,(Bql))/Bs =y],
TeT(B%,®,)

then V must be given by

V(4(0),4(0)), ¥y <4(0),
- ®,(Ixl), Y(lxl) <y,
k=)
(4.3) V(x,y) = =y V(5,9)
y_—ll(l) V(= 9),9)s ¥(0) <y < y(lxl),

where ¢ is the solution of (4.1) corresponding to the optimal law &. The third
expression in (4.3) is obtained by conditioning on the first time that |B,| leaves
the interval (¢~ 1(y) ¥).

In order to find & we apply the following heuristic principle:

(4.4) V(x,y) has a continuous first derivative in y.

This sort of requirement often occurs in optimal stopping problems and seems
to correspond to the extremal nature of V.

Clearly the constraint (4.4) bites at the stopping boundary y = ¢(x). Apply-
ing (4.4) at this boundary we see that (for x > 0)

¥(z) -
(4.5) «/f( ) o) = (df(z) #(Z)))

should be equal to (9/92)X¢(2) — ®,(x))|,-. = ¥'(x). Evaluating the expression

T =5 (W(2),(2)) +

Z2=x
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in (4.5) gives us

V), 6(2)) + 9(x) — B(x)
Y(x) —x

where ¢, is the derivative of @,.
If we now use the fact that

V(¥(x),¥(x)) = EBY — 9,(B.l),

where B, = ¢(x) and 7 = inf{t > 0: (IB,]) = By}, we see that |B,| must have
the conditional law P(IB_| > A) = v([A,®))/v([x,»)), and so we deduce that
V(i (x), y(x)) must be given by

(47) V(W (), 0(0)) = [ (0(2) = () do(t) /5(x),
where (x) = v([x, ©)). Substituting (4.7) in (4.6), we obtain
5(x) (4(x) — 1) 8,(x) = 0(=) (4(x) = D))

—j:(lp(t) — ®,()) dv(t).

Rewriting the right-hand side of (4.7) as — [;7(¢Xdy(t) — ¢,(¢) dt) and recall-
ing from Jacka (1988) or Azema and Yor (1978) that

(4.9) vdy = (¢ —x)dv,
we see, by considering the differential of (4.8), that we must have
(¢ —x)do, +0¢,(dy —dx) — (¥ —x)¢, dv - v(dy — ¢, dx)
= (¢ —x)(vd¢, — dv) = 0.
Applying the symmetry condition on v we see that we must have

exp(—@,(x)), forx>0,

(4.6)

é,(x) =0,

(4.8)

(4.10)

In the preceding argument we have assumed that ®, is differentiable and that
$,(0) = 0. Clearly this is not the case for general extended Young functions,
but it also seems clear that for any extended Young function ® we can
approximate ® uniformly on Dj, the interior of its effective domain (Dg, =
{x: ®(x) < }), by a sequence of extended Young functions which are C 1 on
their effective domains, and deduce that the optimal law v should be given by

0(x) = gexp(—¢,(x)), x>0
9(0) = 1 — exp(—¢,(0 +)),

where ¢, is the left-hand derivative of @,.

(4.11)
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If we return to our expression for U we see that, dropping the u-dependence
of ®, and once more assuming that ® is differentiable,

(i) w(x) = [ tdv/o(x)
—x+ f:l')(t) dt/5(x)
—x+es [ eb0 g
(ii) V(#(x), () = EB — ®(B,),

where |B,| has conditional law 7.(¢) = [0(¢)/0(x)], at least for ¢ > x, while
B¥ = (|B,]); thus

V(¥(x),¥(x)) = E¢(B,l) — ®(B,).

Now
Ew(B,)) = [Tw(t) du,(t)
- fw{t + e¢<t>/°°e~¢<u>du} do(t) /5(x)
(4.12) =y(x) + fw{fme“f’(”) du} do(t)e®™
=y(x) + e"’(x)fw(d)(u) - ¢(x))e *“ du (by Fubini)
= 9(2) = $(X)(W(x) —2) + ¥ [ P(u)e ™ du,
while
EQ(B,I) = (x) + [ $(£)T,(¢) dt
(4.13) *

= 0(x) + e [ p(£)e 4O d.

Thus, assuming [Z¢(t)e ¢ dt < =,

V(¢(x),¥(x)) = ¥(x) — ®(x) — ¢(x)(¢¥(x) — x)
and so for |x| > ¢(0),
(4.14) V(x,lxl) = |zl — @y~ (Ix1)) — d(v~ (=) (Il = = (Ix])).
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If we substitute (4.14) into (4.3) we obtain the expression

V(¥(0),4(0)), y <¥(0),
y — ®(lxl), P(lxl) <y,
y =@ () - p()(xl = ¢~ (9)),
¥(0) <y < ¢(lxl),

(4.15) V(x,y) =

where p(y) = ¢(y "X (y)) and ¢ is given by
U(x)=x+ e"’(")fwe“"’(’) dt.

Note that by virtue of the representation (4.9) we may write p(-) as

p(y) = fy &

vt — 7 (2)
and note that ! represents the right inverse of ¢,
¥~ Y2) =inf{x: ¢(x) =2} forz>ux,

so, since the continuity of ¢ implies that of ¢, we see that (= 1(2)) = z if ®
is differentiable.

5. The optimal stopping problem: statement and proof of the re-
sult. Given an extended Young function (EYF) ®, which is not identically
+oo, let D, be given by

Dy ={x €R,: ®(x) < x}.
Since ® is convex, D, is an interval of the form [0, d] or [0, d), d € [0, »]. We
shall assume in this section that ® is a fixed EYF and

either Dy is closed and ® is continuous on Dy

(5.1) or Dy, is half-open and lim, , ; ®(x) = .

In either case ® has nonnegative increasing left and right derivatives &' and
@', . We define ¢(x) as

0 x =0,

P_(x), 0<x<d,
px) = _

im,,, ® (1), x=d,

+ o, x>d.

We are now in a position to give a statement of our main result.

THEOREM 5.1. Suppose ® is an EYF satisfying condition (5.1). Then
defining

(5.2) U(x) = exp(—¢(x)) forx =0,

(5.3) w(x) = [Tdv(t) /5(x),
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we have: either

(i) [ exp(~ (1) dt = =,

V(B*,®) =», VxeR,,

or

(ii) [ exp(~o(t)) dt <,

V(IB*|, ®) = Vy(lxl, Ix]) <, Vx e D,.
Here Vi(x, yXlx| < y) is given by
V($(0), ¥(0)) =w(0), y<y(0),

y = ®(lxl), U(lxl) <y,

54 ,¥) = Vo(x,y) = _

(G VD) =Walad) =1y o)l - w7(9)) |
- (¥~ '(9)), ¥(0) <y < ¢(lxl),
where 1 is the left inverse of ¢ and
y dy

5.5 L. S

( ) p(y) '/://(O)y_(/f_l(y)
Moreover

(iii) if [ (t)e™*® dt <  and Dy is closed,
0

then, setting T = inf{t > 0: B* > ¢/(|B,D)},
r€T(B*,®) and V(x,x)=E, (B} - ®(B,l)) forlxl<d.

The standard approach to showing that a proposed solution V to an optimal
stopping problem is correct is in four stages: First show that V is a super-
martingale; second show that there is a stopping time 7 such that V, = E[ X_|F}],
where X is the optimally stopped process; third establish a suitable version of
Snell’s criterion (that the optimal payoff is the minimal supermartingale which
dominates X); fourth show that V dominates X. The following lemmas
execute this procedure for the given problem. We start with a lemma which
determines a suitable weak version of Snell’s criterion.

LEmMMmA 5.2. Given a process X, define T(X) = T = {stopping times T:
T < xa.s. and (X, , 1) is ui}. Suppose that M is a local supermartingale and
that

@ foranyTeT, X; <My a.s. and
(i) there exists a 7 € T with EX_= M,,.
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Then
TeT

Proor. Given a T € T, take a localising sequence (T,) for M [so that
(M, , 1) is a ui supermartingale for each n]. Then clearly T A T, € T, and so,

from (i),
EXpar, <EMp,p, < M.

Now T, 1 a.s. s0 Xp,r — Xy as., since T < as,; so, since T € T [and
hence (X7 , 7 ) is uil, Xy, —71 X7 and we may deduce that EX, < M,. The
result now follows from (ii). O

The lemma above maps out our plan of attack on Theorem 5.1. We know
that if B, = x and B} =y, then our conditional expected payoff is V(|x|, y) so
we want to show that, essentially,

(i) V(B,, B}) is a local supermartingale,

(i)  V,=V(B, Bf) > Bf - ®(B,) =X,
(iii) T(IBl, ®) c T(X),
(iv) T = inf{t > 0: B} > ¢(|B,|)} € T(B,I, ®),

where T(-, ®) is as defined in section 3. We shall prove these four require-
ments in order.

(5.6)

LEmMMA 5.3. Assume d > 0 and suppose B is a Brownian motion started at
x, where |x| < d, the upper limit of the effective domain of ®. Then, defining

T — {inf{tzO: IB,| = a}, a < o,

@ + o, a =,
(5.7) ifd = +, V(B,, B}) is a local supermartingale,
while if 0 < d < x, either
(5.8) ®(d) < and V(B,,r1,, Bf.r,) is a supermartingale,
or
(5.9) ‘®(d) =» and V(B,.r,Bf\r,)

is a supermartingale for any x: x| < a <d.

Proor. We assume first of all that ® is C2 with ®',(0) = 0 so that ®(|x|)
is C? and that [“p(t)e *® dt < ». Note that V is continuous,

0, ¥ <¥(0),
= { —o(l)sgn(x),  y(lxl) <y,

" csm(x)p(),  w(0) <y < w(x),
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so that V is C! in x, while

0, y <¢(0),
w1, d(lxl) <y,
dy B y — l«l
_— 0) <y< ,
so that V is piecewise differentiable in y, and
(92V Oa Yy < (/’(O)a
(5.10) o2 = | kD), ¥(lxl) <y,
0, ¥(0) <y < y(lxl).

In other words, V possesses generalised first and second derivatives in x and a
generalised first derivative in y in the sense of Krylov [(1980), page 47,
Definition 1].

It follows by a standard smoothing argument that we may approximate V
arbitrarily closely by a C*! function (indeed, by an arbitrarily smooth func-
tion) to deduce that V(B,, B}) satisfies the generalised Ité formula
32

wv 192V v
dV(B;, BY) = 5-(B,, BY) dB, + 5 ——5(B,, By) dt + —(Bt’B;k)dB;k

29

and it follows, on observing that B only increases on the set {¢: |B,| = B}
and that (3V /dy)1 = 0, that

lxl=y =
%
(5.11)  dV(B;, Bf) = —=¢'(1Bd)1yp,<np dt + 7= (Be BF) dB,.

Since 9V /dx is bounded on compact sets, while ¢’ > 0 (since ® is convex), it
follows from the representation (5 11) that V(B,, B}) is a local supermartin-
gale and indeed that V(B, , , B}, 1) is a supermartingale for any a € R,. To
establish the result for any EYF satlsfylng (5.1) we smooth ¢ in a sultable
manner.
We now extend the result to the case where ® is an EYF with D, = R,.

Given ® satisfying (5.4) with D, = [0, ), take a family of smooth, that is, C°°
kernels p,: R - R, ¢ > 0, satisfying

(1) the support of p, is contained in [0, ],

(5.12) i) [ pt)di=1,
(i)  p,>0.
Now extend the definition of ¢ by defining ¢(¢) = 0 for ¢ < 0 and define

6:(x) = [ (D)o, (x - 1) dt,
(5.13) -

®,(x) = fo"@(t) dt.
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Note that (5.12) and (5.13) imply that ®, is a C? Young function, ¢, < ¢,
®, < ® and because ¢,(x) > ¢(x — &), [“p (¢t)e %< dt < =, since the function
te”* is decreasing on [1, «).
Since @, is C2, we deduce that
V. = Vo (B, B) is a local supermartingale.

Moreover, since ¢ is left-continuous, ¢, 1 ¢ pointwise, ¢, 1P and ¢, — ¥;
thus V(x,y) - V(x, y). It follows immediately that V(B,, B}) is a local super-
martingale and that V(B, , r, B}, r,) is a supermartingale since V is bounded
on compact sets.

Finally, to establish the lemma for an EYF satisfying (5.4) we may define

" (%), x<d,
¢7(x) = {¢(d) +n(x—d), x>d

and deduce the result from the above by letting n — , while if ® is an EYF
satisfying (5.1) with D, half open we may define (for a < d)

o(x), x<a,
"% (x) = {d(x) A7, a<x<d,
(1l +x—d), x>d,

where 1 > ¢(a), and again let n — «. O
We now wish to prove that V, satisfies the second criterion in (5.6).

LEmMMA 5.4. For |x| <y <d,
(5.14) Vo(lxl,y) =y — ®(Ixl).

Proor. Clearly we need only establish (5.14) on D = {(x,y): ¢(0) <y <
#(xD}, assuming w.lo.g. that x > 0. Now setting d(x,y) = Vy(x,y) —
(y — ®(x)),

d(x,¢(x)) =0,
while as we saw in the proof of Lemma 5.3,
ad x =y ()
ay  y—u )
thus d(x,y) >0on D. O

on D;

We are now left with the task of establishing suitable versions of criteria (iii)
and (iv) in (5.6) (and showing that V, satisfies them). The clue to the right
version of (iii) is contained in part (iii) of Theorem 5.1: The point is that if ®
satisfies

(5.15) [ #(1)e#0dt < and Dy is closed,
0

then we have the following result.
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LeMMA 5.5. Suppose ® satisfies (5.15) and x € Dy,. Then given a Brown-
ian motion B, started at x, if we define

(5.16) T = inf{t > 0: B} > y(IB,])},
where ¢ is given by (5.3), then
T € T(IB,,®)
and
(5.17) EB} — ®(IB,]) = Vp(x,x).

Note this is just part (ii) of Theorem 5.1.
To prove the lemma we need the following standard result.

LeMMA 5.6. Suppose f is a strictly increasing convex function (possibly
taking the value +), continuous on its domain, and (X,) is a nonnegative
submartingale with X, - X, a.s. Then if E f(X,) < o,

f(X,) isui and f(X,) —»f(X,)inL'anda.s.

Proor. It is immediate that X, —»;: X, [Chung (1968), Theorem 4.5.4]
and so by the conditional version of Jensen’s inequality,

E[ f(X.IF] = f(E[ X.IF]) = f(X,).
Thus f(X,) is a submartingale bounded in L' and so is uniformly integrable.
But f(X) - f(X,) a.s. [ is continuous on D, and P(X,, € D) = 1] and so
f(X) - f(X). O

Proor oF LEMMA 5.5. We have already established (5.17) in Section 4 in
the case where ® is C2. Note that for general ® we first smooth ¢ as in the
proof of Lemma 5.3.

Defining 7, as in (5.16) with ¢ replaced by ¢, (the ¢ function corresponding
to ®,), then as before we may deduce that V, - V, so that

EBf - @,(B,]) - V(x, Ixl).

Note that, since ¢, - ¢, ¥, = ¢, and so 7, = 7 a.s. This implies, since ®, > ®
and ® is continuous, that
B} — BY as.
and
@,(IB, |) - ®(IB,|) ass.,

so it is sufficient to prove that the collections {B}} and {®.(IB, D} are uni-
formly integrable to establish that V(x, |x|) = EB* — ®(|B,|).
Now

[E[Bf}(B:;za)'Bo = x] = [E[‘/’s(leJ)l(lB,Elz’w;‘m»'Bo = x]
[at least for a > ¢,(0)]
r(a, x)!E[(/IE(lBTJ)/BO = x] ,
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where
v.(v. Y (avy,(0)))
0 (v, Y(xlvy,(0)))

r(a,x) =

We deduce from (4.12) that
(lxl = P,(Ix) (I - 2.))

dred [ —6.(0)
E(d’s(lBTel)lBo = x) = te ,/;s ¢E(t)e dt’ |x| = (/Is(o)a

0 (0) + [(6.(£)e 4 dt, el < (0),

where z, = ¢ X(|x|).
If we now note that for all ¢ € (0,1] and ¢ > 1, ¢(¢) > ¢.(¢) > ¢(¢ — 1) s0
that

U (t) <k(t)=t+ e¢(t)f°°e—¢<u—1) du,
t

we see that ¢ 1(2) > " 1(2) (V £ € (0,1]) so that , (a) - » uniformly in
¢ €(0,1] and hence 7,(¥; %(a)) » 0 uniformly in ¢ € (0,1]. It follows that
r(a,x) = 0 as a — » uniformly in ¢ € (0,1] and hence that the collection
(¥.(IB, 1) is ui. We may establish in a similar fashion that the collection
(®,(IB, ) is ui and thus = € T(|B|, ®). O

We need one final lemma.

Lemma 5.7. Suppose T € T(|B|,®). Define the process X by X, = B¥ —
®(|B,|); then EXy =lim, |, EXp , 1.

Proor. This is immediate from Lemma 5.6 and the dominated conver-
gence theorem. O

ProoF oF THEOREM 5.1. The proof is achieved by first assuming that ®
satisfies condition (5.15) and then by approximating ® by
_ | ®(x), x<a,
(5.18) @, (x) {w’ r=a

(1) Assume that ® satisfies (5.15). Taking B to be a Brownian motion

started at x, with |x| < d, we know from the proof of Lemma 5.5 that
EBf <o and E®(|B,|) <,

while from Jacka (1988) we know that B,,, is ui and 7 < as. [so
7 € T(|B|, ®)]. Thus we see that ®(|B, ,,|) is ui (from Lemma 5.6) and B}, . is
ui (since Bf,, is increasing and B} is integrable), so X,,, is ui and
7 € T(X) N T(|B|, ). Moreover, by Lemma 5.6, EX_ = V,(|xl, |x|]) while, set-
ting V, = Vg(IB,|, Bf), V, » 1, is a local supermartingale (from Lemma 5.3) and
Vint, 2 X; o7, (from Lemma 5.4).
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We have established that (X, ,r,), (V;,r,) and 7 satisfy the conditions of
Lemma 5.2, so that
(5.19) Vo = Vo(IX1,1Xl) = sup E[B% — ®(IB,l)].
TeT(X)
Now take a T € T(|B|, ®); it is not clear that T € T(X), but we know that
T AT, € T(X) [by the argument which established that 7 € T(X)], so from
(5.19),

EX7 a1, < Vo(lxl, lxl)
and now from Lemma 5.7 we deduce, letting n — «, that EX, < Vg (x|, |x]).
This establishes that

Vo(lxl, Ix]) =  sup EXy,
T<T(B|,®)
since 7 € T(|B|, ®).
(ii) Define @, as in (5.18). Note that we may take

é(x), x<a,
$o(x) = {lim,,, ¢(¢), x=a,
o, x> a,

and &, satisfies (5.15).
Now

dfa(x) =x + eqsa(x)f e_d’a(t) dt
x

—x+ e¢a<x)f“e—¢<t) dt,
and so ¢,(x)1 ¢(x), for a > x, provided

(5.20) ' fme“”“) dt < .

0
Assuming that & satisfies (5.20) we can easily show that ¢, (x)| ¢ '(x)
[x > $(0)]. Thus we see that Vg, (Ixl, [x]) — Vi(lxl, |x]) as @ — o if (5.20) holds.
Define

(5.21) 7, = inf{t > 0: B} > ¢,(IB,)}.
Now if Dy =R,, then for any a > |x|, 7, € T(X,,r), and by the same
argument as in Part (i),

Vo (lxl,lx[) = sup EXp
T<T,,
TeT(Bl, o)

and taking an arbitrary T € T(|B|, ®),
EXp = imEXy ,p < li*n V%(le, lx|)

a T

= Vo (lxl, lxl).
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If, on the other hand, Dy =[0,d), then if T € T(|B|,®) it is clear that
P(T < T;) =1 and so

EX,= lim EX
T a%l?d TAT,

< lim Vg (x|, |x
Jim Vo, (el )

= Va(lxl, Ix1),

while lim, , , ; EX, = Vg(lxl, |x]), establishing Part (ii) of the theorem (here
a T 1x means a increases strictly to x).

Part (i) is established in the same manner, since if [je *® dt = =, then
Dy = R, and lim, _,, Vg (Ix], [x]) = = [since lim ¢,(0) = «]. O

6. The optimal stopping problem for arbitrary f. This section is
devoted to finding V(|B|, f) for arbitrary functions

f: [0’°°) - (_°°’°°]'
Essentially, we do this by showing that
V(Bl, f) = V(|B|7<Df)

for a suitable function ®,, where either
(@) ®(x) = ®(x) — ®£(0) is an EYF satisfying condition (5.1) so that

V(1Bl, ®,) = V(BI, &;) — @,(0)
= Va(1Bol, 1Bol) — £(0);

or
(b) @ is bounded above by a linear function and V(|B|, ®;) = .
For any f: [0, ] — (-, ] let f be defined by f(x) = f(IxI) Clearly f is a
symmetric function. Define fIJf by

(6.1) &y(x) =inf{Af(s) + (1 —A)f(¢): X €[0,1],As + (1 — A)t = x}.

CfJf is the greatest convex function bounded above by f [Rockafellar (1970),
page 57, Corollary 17.5]. Note that, by the symmetry of f, ®, is symmetric
increasing on R, and, of course, is convex.

LEMMA 6.1. Given a function f: [0,0) - (—o, ],
V(BI, f) = V(BI, &).

Proor. Given a T € T(|B|, f), define
r=1(e,T) =inf{t > T: B, =s,(Br) or t,(Br)},
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where s, and ¢, are functions chosen so that

() s.(x) <x <t(x),
o F t(x) —x : x = s.(x) 5
(ll) f(Sg(x))t—(_x)__—;—(x_) +f(t5(x))m _<_<I>f(x) + €.

Conditional on By, (B, 1y, ,) is clearly ui and so, since (B, 7)isui, (B, )
is ui. Moreover

f(B.)) = f(B,) < &(By) +¢
<f(B,) +,
so Ef(B,)) < Ef(IBg]) + £ and so 7 € T(B|, f).

A

Moreover, since 7 > T, B* > B}, while ®,(1B;l) < f(IBgl) so T € T(BI, &,);
thus we see that

EB% — f(Byl) < EB§ — &,(Bfl) < EB} —f(IB,]) +¢,.

so, since ¢ is arbitrary, the result follows. O

We now define &, = cl(fiJf), that is, ®; is given by

(6.2) ®p(x) = tlTirTnx <i>f(t), for x > 0 and <i>f symmetric;

@, is the function whose epigraph is the closure of the epigraph of fiJf [see
Rockafellar (1970) for details]. Clearly ®; is symmetric increasing on R, and
either Dy, is closed or Dy = (-d,d) and lim,,, ®(x) = o or &= +co.
Clearly, either @, satisfies condition (5.1) or @, is bounded above by an
increasing linear function (on R,) or ®,= +c.

LEMMA 6.2. Suppose ®; is given by (6.1) and (6.2). Then V(IBI|, f) =
V(IBI, ®,).

Proor. We need only prove that
v(Bl,&;) = V(BI, ®/),

thanks to Lemma 6.1. . .
Take T € T(|B|, ®;). If @, +# ®, then since d; is increasing we must have

D =Dy, =[-d,d] or else D =(-d,d) for some 0 <d < and dp(d) >
lim 4 ®4(x). In either case
(IA)f: le * d,

()] (x) = . A
f Lim®,(¢), =d.
tl¢n§ (1) ||
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Note that if 0 < a < d, T € T(B|, $,) and T’ € T(B|, ), then
T eT(Bl,®) and T' AT, < T(Bl,&).
Thus
V(1BI,®;) = V(BI, ;).
Conversely, given T € T(|B|, ®;), let 7, = T A T,. Then
EB} - @(B, ) = EBY, - ®(B,,])
> EB} — ®(|B,]) - (d —a) (byLemma5.7).
Thus, letting a 1 d, we obtain
V(Bl, &) = V(1BI, ®;). O

We are now ready to prove the following theorem.

THEOREM 6.3. Suppose f is an arbitrary function from [0,®) to (—o, ],
Then define

(6.3) éf(x) = O (x) — D4(0),
where ®; is given by (6.1) and (6.2). If f is not identically + either:
® &Df is an EYF satisfying condition (5.1) and
V(IBI, f) = V(IBI, ®;) — ®:(0)
= V<i>f(|Bo|’ IBol) — ®£(0);

or
(i) <f>f is bounded above on R, by a linear function and
V(IBI, f) = o,
while if f = + o,
V(BI, f) = — .

Proor. The case where f= + is obvious. If f# +, then consider fIJf
if <I> is not bounded above by a linear function, then clearly <D is an EYF
satlsfylng (5.1) and so (i) holds by Lemmas 6.1 and 6.2. Otherwise we still have

V(BI, f) = V(BI, @),

but ®(x) is bounded above by ¢ + dx, say.
Clearly such a linear function may be bounded above by ¢’ + ®, where ® is
an EYF satisfying (5.1) but with [je %® d¢ = » so that, by Theorem 5.1

V(IBl, f) > V(BI, ®) = =. o

7. Some applications of the results. We still have to prove Theo-
rem 1.1.
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Proor oF THEOREM 1.1. We simply apply Corollary 2.3, Lemma 3.1 and

(3.8) to see that the best constant g, is given by

o, = p/Pq/9[V,(0,0)] vp
where V, = V, with ®(x) =x% and p = ¢ = q/(q — 1). Now
V,(0,0) = ¢,(0),

where ¢, (x) = x + 9" [%e~9""" dt (from Theorem 5.1); so

¢(0)—feq‘q1dt

p
= FTF(P - 1)
_ T(p)
=i
where p is the conjugate of g; thus o, = [T(p + DI'/?. O

We see the following, more general theorem.

THEOREM 7.1. If ® is a Young function with conjugate ® such that
®(1) > 0, then there exist o4 and 34 such that

Soll Xlle,
ol X, lll o,

for all cadlag, nonnegative ui submartingales X iff

(7.1) "EsupX, <

>0

(7.2) Ju>0: fme_’“”(‘) dt <o,
0

and if (7.2) holds for some u > 0, then the best constants o, and 3,
appearing in (7.1) are given by

= inf{p. > 0: fme—“"’(t) dt/u < @(1)},
0

s, - inf ( [Cemo s + MCD(I)).
0

p>0
Proor. We observe that Corollary 2.2, Lemma 3.1 and (3.8) indicate that
op = inf{n = 0: Vy, < (1)},
S = inf (,LVQM(O,O) + u®(1)).

But, by Theorem 5.1, Vo, (0, 0) = [ge WD dt = (1/p)[ge **™ du, establish-
ing both the 1nequa11t1es i (7.1). O
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We now use Theorem 7.1 to prove the John-Nirenberg inequality for
martingales [see Dellacherie and Meyer (1982) for full details].

THEOREM 7.2 (John-Nirenberg inequality). Suppose X is a martingale
with :

1
| Xllgmo < —.
c

Then

4cll Xllsmo
1—-cllXllgmo’

(7.3) Ee* <1+
where || - ||gmo is the norm on BMO space (the dual of H') and c is the best
constant appearing in

(7.4) E[ X.Y,] < cll XXI:IY IBmo,

X and Y martingales in H? [see Dellacherie and Meyer (1982) or Garsia
(1973) for details].

We need a couple of lemmas.

LemMA 7.3. Define ®,(x) = (1 + tx)log(l + tx) — tx, x > 0. Then:
(i) its conjugate is
Y,(x) = exp(x/t) — x/t -1
(ii) If X is a ui nonnegative submartingale with EV(X,) < =, then
EW,(X*) < AE¥,(X,).

Proor. (i) We obtain ¥, by using the fact that ¢,(x) = ¢, (x) =
[exp(x/t) — 1]/t (where ¢ and ¢ are the derivatives of ® and ¥, respectively).

(ii) Lemma 5.7 tells us that (¥(X,); s > 0)is ui and the result follows by
looking at ¥,(X,) where T, =inf(s > 0: X, > n}, taking a power series

expansion for ¥, and observing that EX*? < [p/(p — DIPEX? < 4EXP for
p=2.0

LemMma 7.4. If X is a ui martingale, then

(7.5) coyll X llsmo = 1 Xllw,,
where c is the constant given in (7.4), || - ||y, is the norm defined by
. 1 X]
(7.6) | Xllw, = inf{ u > 0: E¥,| — | < ¥(1)
m

and o, is the constant appearing in Theorem 7.1 with ® = ®,.
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Proor. Given X € BMO we may take a localising sequence (T,,) such that
(X, nr)€H?andV Y € H?,
EXy, Y, < ol X llsmoE V%,

But, from Theorelp 6 of Jacka (1991) we know that the dual norm of || - ll, is
Il l o, so take Y: || Y|l 4, < « and

EXp Y. = 1X7 v, I %ol 0,3
by localising we may assume ¥ € H2 and

EXy Y, = 1 Xz llv, I .l o,.
Thus

o1 Xl I Voll o, = 0,E( X7, ¥2) < co,ll X llnmoE V..
But by Theorem 7.1, EY.* < o, ||| Y. || o, 80 || X7, lly, < co,l X|lgmo and the result
follows by letting n —» «. O
LemMa 7.5. If X € BMO, X a martingale, then EX* < 4c| X|lsmo.

ProOF. Suppose X € H2 Then
E(X*)® < 4E(X.)? (by Doob’s inequality)
< 4cllXllsmoE X¥ [by (7.4)];
conversely [EX;!‘2 > (EX})2 The result follows by localisation. O

LemMA 7.6. If o, is as given in Lemma 7.4, then
1/2

(7.7) to, =5+ (3 +1/¥(1))"".
Proor. From Theorem 7.1,

1l
=3 . —und(u)
o, 1nf{y.>0.”j;e uoy dus‘lft(l)}

1l =
inf{p, > 0: —f exp(—ptlog(l + tu)) du < ‘I’t(l)}
M0

1 1
inf ——— <Y (1);.
1n{u>0 wt (pt=1D) < ¥,( )}

Thus
1
to, =inf{u > 0: ——— < ¥,(1)}. O
¢ {N p(w — 1) o )}

Proor oF THEOREM 7.2. From Lemma 7.3,
Eexp( X)) = 1 + EX} + EV,(¢XF)
(7.8) <1+ EX} + 4EY,(¢1X.])
<1+ 4c|lXllgmo + 4[E‘I't(t|Xw|) (from Lemma 7.5).
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If | X|lgmo < 1/c, choose £ such that fo; = (1/¢)l| X|Ismo; from (7.7) it follows
that
¥y(1) = (el Xllsmo)*/(1 — ¢l Xllamo).
Then from Lemma 7.4,
1
B
so EW{#1X,|) < ¥«1) and substituting in (7.8) we see that

4¢*(I1 X llsmo)”
1 — cll Xllsmo

1 X lw, <

Eexp(X*) < 1 + 4cll Xllamo +

14 4cll Xllsmo
1-cllXllpmo
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