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ASYMPTOTIC APPROXIMATIONS FOR BROWNIAN MOTION
BOUNDARY HITTING TIMES

By G. O. ROBERTS

Nottingham University

The problem of approximating boundary hitting times for diffusion
processes, and in particular Brownian motion, is considered. Using a
combination of probabilistic and function-analytic techniques, approxima-
tions for conditioned diffusion distributions are obtained. These lead to
approximations for the distribution of the hitting time itself. The approxi-
mations are split into three cases depending on whether the boundary is
upper case, approximation square root or lower case, and one-sided bound-
aries are also considered separately.

1. Introduction. The calculation of the distribution of time-dependent
boundary hitting times for Brownian motion has been found to be intractable,
the simplest of problems leading to complex partial differential equations, and
solutions at best being given in terms of implicit eigenfunctions. However, very
often we are merely interested in studying the asymptotic behaviour of such
hitting times.

In this article we attempt to describe the asymptotic properties of certain
classes of these boundary hitting times. The approach is to consider these
different types of boundary: approximate square-root boundaries [i.e., bound-
aries of the form f(¢) = t/2a(t), where a(t) has a positive limit as ¢ — o],
lower-case boundaries [i.e., boundaries of the form f(¢) = ¢t'/2a(t), where
a(t)| 0 as t —» ] and upper-case boundaries [ f(¢) = t'/2a(t), where a(¢)1x as
t » »]. We also treat one-sided boundaries and two-sided boundaries sepa-
rately.

The existence of power moments for Brownian motion hitting times of exact
square-root boundaries was first considered by Breiman (1967) and Shepp
(1971). They established separately the following result. Let

(1.1) 7 =inf{t > 1; |B,| > ct'/?},
where B, is Brownian motion, then
(1.2) E[77] < 0 = ¢ < c(p),

where c(p) is the smallest positive root of the pth confluent hypergeometric
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function:

= (=22 "p(p—1) - (p—m +1)
(1.3) F(x)= X Gm)i :

m=0

More recently, Taksar (1982) considered the approximate square-root bound-
ary case, and showed that if

T =inf{¢t > 1; |B,| > a(#)t'/?},

where a(¢)1 c¢(p) as ¢t - », then
E[7P] < e iffmt"‘l‘”‘(“(‘» dt < o,
1

where m(-) is the inverse function of ¢(-). Taksar’s methods involve approxi-
mating the boundary at each time point by a boundary for which the problem
becomes more tractable. This characterises modern methodology in this area.
In particular, Strassen’s tangent approximation techniques involve the approx-
imation of the density of the hitting time by the density of a straight-line
boundary hitting time where the straight line is tangent to f at some point.
Tangent approximations can be used to approximate asymptotic properties of
both upper- and lower-case boundary hitting times; see Bass and Cranston
(1983) and Lerche (1986) for an excellent account of these methods.

However, we advocate a different approach. Instead of approximating the
boundary, we approximate the distribution of Brownian motion conditioned
not to hit the boundary. It turns out that this method can lead to powerful
techniques of approximation for boundary hitting times which are applicable
for a large class of diffusions, as well as Brownian motion.

Most of the results to transform distributional estimates for the conditioned
process to approximations for the distribution of the hitting time are proved in
Section 2. Stochastic inequalities for the conditioned Brownian motion are
derived by coupling-type arguments, and the existence of limit distributions
for time-homogeneous systems is established. This leads to a proof of the
asymptotic exponential decay rate of hitting times of constant boundaries for
time-homogeneous stochastically monotone Markov processes. It is interesting
to compare these proofs with their associated derivations by the more func-
tion-analytic methods of Jacka and Roberts (1987) and Pinsky (1985), and
results from Jacka and Roberts (1987) are also used extensively in this article.

The nature of the problem makes it necessary to consider different classes
of boundaries separately despite the similarities in the techniques used. There-
fore Sections 3, 4 and 5 consider the three cases: approximate square-root
boundaries, lower-case boundaries and upper-case boundaries respectively, and
in Section 6, we set up an analogous theory to the function-analytic setup of
Jacka and Roberts (1987) in the context of a semi-infinite domain. Then
one-sided boundary hitting time approximations are given for certain classes of
these boundaries.
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2. Notation and preliminaries.

2.1. Stochastic approximation results. Let B, be a standard Brownian
motion, and let X, be the associated Ornstein—-Uhlenbeck process defined by

B(e?)
(2.1.1) X, = iz
Then X, satisfies
(2.1.2) dX, = dB, - 1X, dt,
where B’ is a Brownian motion. Define
(2.1.3) o, = inf{t > 1; |B,| > ct/?}
and
(2.1.4) 7, = inf{t > 0; |X,| > c};

then 7, = log, 7.
More generally, suppose f(-) is a positive function; then

(2.1.5) ;7 =inf{t > 1; |B,| = f(¢)},
(2.1.6) 7= inf{t > 0; IX,| = f(e?)e™?/?},

and we will write f(¢) = a(¢)t'/2 for the approximate square-root case. So, in
particular, 7, , will denote the hitting time of the exact square-root boundary,
@) = a(t )t/

Suppose w is a probability distribution with support contained in (—c, ¢).
Then we define

m(x) = IP’[Xt < x|t > t, X,, has law y,]

(2.1.7)
= fIP[xt <zxlrp>t, Xy = y] du(y).

and
(2.1.8) pd(x) = [ du(y).

—-C
Also denote by u the modulus law of wu,
(2.1.9) B(x) = [ du(y).

—X

We will make extensive use of stochastic order relations and write

st.
ny < py ifandonlyif u,(x) > uy(x), VxeR.

We then say p, is stochastically less than pu,.

The correspondence between Brownian motion and the Ornstein-
Uhlenbeck process is fundamental to the main results of this article. However,
the preliminary results in this section are true in greater generality than just
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for the Ornstein—Uhlenbeck process. So for the rest of this section, we will
assume X is a time-homogeneous symmetric diffusion process,

dX, = o(X,) dB, + b(X,) dt,

where o(x) = o(—x) and b(x) = —b(—x). We also impose regularity condi-
tions on o and b to ensure that the solution to the S.D.E. is unique in law. We
assume therefore that o and & are bounded and measurable; see, for example,
Stroock and Varadhan (1969). Also o and b are such that the scale function of
X is bounded on bounded intervals, and o is bounded above and below by
positive constants (at least on bounded intervals). The symmetry of the
problem allows us to look at |X| and X interchangeably and most of the
following results are stochastic inequalities for |X].

LEmMMa 2.1.1.  Let py, py be dzstrzbutzons on (—f(1), f(l)) for some positive
function f: [1,0) -» R*U{x}. Suppose &, < Lo then (/"'l)t < (&y),.

Proor. Let
(2.1.10) py,(2) =P[IX,| <ylr;>t, X, =2].
Then since i; has support [0, £(1)),
(B)(9) = lim ['p, (2) dEi(2)
(2.1.11) .
: cy%)[py,t(c)m(c) - B do, ()]
st.
for i = 1,2. Now i, < it,, S0
(2.1.12) Ai(x) - By(%) 2 0,

(F)) = (@) = 1m [ b, ) (Ele) — Fal)

(2.1.13) )
+/(;(ﬁ2(x) - 14(x))dp, (x)],

and the first term on the right-hand side is clearly 0.
So it remains to show that p, [(2) is a decreasing function of z. To prove
this, we need to show that the conditioned process Y, deﬁned by

Y, = [Xs|7f> t],

satisfies the strong Markov property, and has almost surely continuous sample
paths. Then we can use a pathwise argument on the process started at two
different points to give the result.

The strong Markov property follows easily from that of the parent process;
see, for example, Karlin and Taylor (1981), page 261.
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Similarly, the almost sure continuity of the sample paths of Y follows from
that of X, since

P[Y is discontinuous on [0, s]]

(21.14) = P[ X is discontinuous on [0, s]ir; > ¢]
1. P[ X is discontinuous on [0, s 1l

IP’[Tf> t]

Now Plr;>t]> 0 for all ¢ since f is strictly nonzero. So Y, is an as.
continuous function of time.

Now consider two processes Y*1, Y2 started at z,, z, respectively, with 0 <
2; < 2z, < f(0), and let

(2.1.15) ™ = inf{s; |Y71| = |Y?2|}.
Then
(2.1.16) Py > Y= lr* > ¢t] =0
(by a.s. continuity of the sample paths), and so
(2.1.17) PllYA] < xlr* > t] > PV < xlr* > ¢].
Also
(2.1.18) Py, ((2) = P[IYA| <ylr* <¢t]P[r* <]
+ Pl < tlr* > ¢]P[+* = ¢], i=1,2.
Now

(2.1.19) P[IYA] <ylr* <¢,Y.,7%] = P[IY?2] <ylr* <t,V,u,7*]
by the strong Markov property. So conditioning on the values of 7*, Y+,
(2.1.20) PllYA] < ylr* < t] = PIY2 < ylr* < ¢].

Therefore, p, ,(2;) > p, (2,) and hence
st

(2.1.21) (1), < (s),- O

LEmMMA 2.1.2. Suppose f, g are positive functions: R*— R U {«} such that
f@)<g®), vt lIf

(2.1.22) (¢, f) = distribution of [IX,|Ir;>t, Xy ~ u],
then

st.
(2.1.23) gzt ) <u(tg).

Proor. The idea of the proof is as follows.

We will consider two processes run “‘on the events” [, > ¢, 7> ¢] and
[r, > ¢, 7; < t] simultaneously, and will prove a coupling inequality for sample
paths where the two processes coincide at some time after the latter hits f for
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the last time before ¢. This will follow from the Markov property for X. The
“remaining sample paths” satisfy an a.s. inequality due to the a.s. continuity
of the two processes.

Denoting by u(¢, f)(-) the distribution function corresponding to u(¢, f),

(2.1.24) (2, 8)(¥) = ar(¢, f)(9) + (1 - )P[IX,| <ylr, > ¢, 7, < ¢],
where
B P[Tf> t]
P[Tg > t]
because 7, < 7,. Define a function ~ by
h(s) =f(s) on(u,¢]
=&(s) on[0,u],

and let {%, s > 0} be a filtration rich enough to carry mutually 1ndependent
processes, Z 1 Z2%, 7% and X', where

(2.1.25)

Z' =g Xlrg > t,mp<t], ZP=g[Xir,>t], Z°=5[Xlr,>t¢],

where the conditional processes are defined in the following way.

Let Z be a process generating a filtration {#,, s > 0}. Formally we define a
probability space {Q, 4,, s > 0, '} for the conditioned process {|Z,| |A], 0 <
s < t}, where A € £, and P(A) > 0, as follows.

Suppose B € 4, then

P[BNA]

P'[B] PIA]
Also we assume here X' is an independent copy of X, and all processes are
assumed to start at the same initial value y. We also denote by {£,, s > 0} the
filtration generated by Z2, and let 5# be the o-algebra generated by {Z?, Z2, X;
0 < s < t}. Also the stopplng times, 7.(X"), 7,(X") and 7,(X"), will denote the
hitting times, 7;, 7, and 7,, as deﬁned earher for the specific process X1.

We want to prove Law(|Z} |)> Law(|Z2)). Z® and X' are only used for
comparison. Define for any X -# adapted Y, Y; and Y,:

(2.1.26) 7(Y) = sup{s < t; Y| > f(s)}
and
(2.1.27) (YL, Y?) = inf{r > #(YY), [V} = Y2} A t.

Now 7' and 7" are not stopping times and so we must take care about the
preservation of the strong Markov property.

Clearly for 7"(Z', Z%) = ¢t, |Z}| > |Z2| a.s. due to the almost sure continuity
of Z, and Z,, so we concentrate on the case 7"(Z', Z2?) < ¢.
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Note that
P[Zj<y|Z3=x,A], v<w,
=P[Z3<ylZi=x], VYVAegZXH.
Consider the events, defined for any &#X 5% adapted Y:
A(Y) = IV <f(s),s <v; 1Y, <IZY,u <s <v;
(2-129) 2y _ fu); 120 = 1Y, 12N < f(s),u<s<t], u<v,
AyY) = [IYl <f(s),u <s <t;1Y,| = f(u);
1Z2| = IY,I; 1Y, > 122, u <s <v], wu<v.
Clearly A(Z?3), A2(Z§) € 4, X #’; moreover, we can rewrite A; and A, as
A(Y) = [7(ZY) =u,(Z,,Y) =],
AyY) = [7(Y) =u, (Y, Z%) =v].
Also by definition
P[Z3 <y|Z? = x, A(Z%)] = P[ X} < yIX} = x, 7,(X1) > £, A(XV)],

vw,

(2.1.28)

(2.1.30)

and clearly
[7a(X1) > v] D A(XY),
[7/(X?) & (0,0)] > A(XY).
So
Pl X} <yIX) =x,7,(XY) > t, A(XY)]
= P[ X}, <yIX) =2, 7,(X") > t, A(X")]
= P[Zi <ylv(ZY) =u,r(Z',2%) =v, 22 = x],

tzw>v=>u,

(2.1.31)

by the definition of Z2.
Similarly we can show that

P[Z} <y1Z] = x, Ay(2%)]
=P[X} <ylX!=x,7, >t Ay(X"Y)]
=P[Z} <yIr'(Z") = u, (2", 2%) =v, Z} =],

u<v<w<c<lt.

(2.1.32)

So (2.1.28) gives us :
P[22 <ylz? = x,7(Z") = u,r"(Z',Z%) = v < ]
(2.1.33) =Pz} <yIZ} =x,7(Z") = u, (2", 2%) = v < ],
v=<w<lt,
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and by the continuity of X and hence of Z1, Z2,
(2.1.34) (2, Z%) =t = |Z}| = |1Z}| as.
So
P[Z3 < y1Z3 = x, (2", Z%) = ¢]

(2.1.35) > p[|z}| < y|1Z} = =, (21, 22) = ¢]P[I1Z}] < y] — P[IZ2| <y]

= P["(2", 2%) = t]| (P2} < ylr"(2", Z22) = ¢]

—P[IZ2| < ylr"(2*, Z2%) = t])
+ P[r"(21, 2%) < t|(PZ} <ylr"(Z2", Z2%) < t]
-P[IZ} < ylr"(2%, 2%) < t])

= —P["(Z',2%) = t]P[1Z2| <ylr"(Z*,Z%) =t] fory <f(¢)

(2.1.36) < 0. ‘

We have used (2.1.33) and (2.1.34) to get the latter equation. So, for some
a €1[0,1]

(2.1.37) u(t,8)(y) <am(t, f)(y) + (1 —a)r(s, f)(y) =kt F)),
that is,

(2.1.38) (s, f) < Bt g). 0

LEmMmA 2.1.3. Suppose Z is the process obtained by placing a reflecting
boundary at +a for the process X, then if &, is the law of Z,, and the function f
is identically the constant a:

_ st
(2.1.39) B, <§,.

Proor. Let Y, =[Z,r, > t], then Y, = [X,|r, > t] a.s. since
P[Y, hits +a] = 0.
So we can apply Lemma 2.1.2 to [Z,|7,, > t] and [Z,|r, > t] to give the result.
(m]
THEOREM 2.1.4. Suppose n,, the initial distribution of X, has support on
(—a,a)and f=0.

() The distribution of [|X,|Ir, > t] has a limit 8, = 8%, independent of w,,
and this convergence is uniform for all w,.
(ii) 62 satisfies the quasistationary relation

[Py (x) dB2(x) =52(3), Vi,
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Furthermore, 8, satisfies
st. _ st. _
(2.1.40) Ifm <82, thenpu,<82;
st. _ st. _
(2.1.41) ifm <82, then u,>82.

Proor. (i) Let 87 be the distribution of X, at time ¢ given |X,| = x and
7, > t. Then for 0 < x, <x, < a,

(2.1.42) 81(y) = 67*(y) by Lemma 2.1.1.
We need to show that
(2.1.43) 8% (y) — 872(y) >0 ast— o, Vy.
If we consider two processes X*1, X*2 started at x,, x, respectively, and define
(2.1.44) 7 = inf{¢ > 0; X2 = 0},
we can apply Lemma 2.1.3 to the process W,*2 defined by
(2.1.45) W — {Xt"z, t<7,
0, t>1.

Now

P[ X7z hits 0 before tr, > t] = P[|Wr2| < 0|7, > t]
(2.1.46) =P[7 < tlr, > t]

> P[|Y;*2| < 0] byLemma2.1.3,
where Y;*2 is W;*2 with reflecting boundaries at +a. However,
P[IY;*2| < 0] = P[Z?Z hits 0 before ¢]
> P[Z¢ hits 0 before ¢],

where Z*2 is X*2 with reflecting boundaries at +a as in the proof of Lemma
2.1.3 and P[Z¢ hits O before ¢] —» 1 as ¢t — « since Z, has a bounded scale
function and is confined to a compact interval. Then

5:1(y) — 87(y) = P <tlr, > t](P[IX| <ylr’ <t,7,>t]
-PIX72 <ylr’ <t, 7, >t])

(2.1.47)

2.1.48

(2.1.48) + Pl 2 thr, > (| (PIX7] <ylr, > 1,7 = ¢]
-P[XFP <yt 2t 7, > t])

and

(2.1.49) PlIX7 <yl =5 <t,1,>t,|1X5| = x]

=P[IXF | <yl =s <t ,7,>¢]
(by time homogeneity and the Markov property)

<P[IX2,| <yt =s<t,r,> t] by Lemma 2.1.1,
(2.1.50) = P[IXF| <ylr, > t, 7 =s <t],
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and so conditioning on the values of 7' and X3,
(2.1.51) P[IXP| <yl <t,7,>t] — P[IX7 <ylv’ <t,r,>t] <O0.
So
571(y) — 87(y) < P[7' = tIr, > t]
— 0 uniformly for x,,x, € [-a,a]ast - .

This follows from (2.1.46) and (2.1.47).
Now all that remains is to prove that the distributional limit exists for some
initial distribution . We look at {52} and show that it is a stochastically

(2.1.52)

_ st. _ -
increasing function of ¢, that is, 87 <5, for ¢, <¢,. 5)(y) is a continuous
function of ¢ (for ¢ + 0), because
8715:(2) = 82(5)
_ Po[IXp sl <y, >t +88]  PoIX| <y, 7, > ¢]

Po[7, > ¢t + 8¢] Pol7, > 2]

(2.1.83)  (Po[IX, 5l <y, 70 >8] = Po[IX, 5 <y,8 <7, <t+8t])Py[7, > t]
- Pol7, > t1(Pol g > t] — Po[t <7, < t + 8t])

PollX,l <y, 7, > t](Pol7, > t] — Po[t < 7, <t + 6¢])

© Polre > t1(Polr, > t] — Pyt <7, < + 8t])
Since Py[t < 7, <t + 8¢] - 0 as 6¢ — 0, (2.1.53) equals
Po[lX,s5:l <, |1X,| >y, 7, > ¢]Po[7, > £]

2.1.54 o(1
( ) Polr > 21 (1)
as 6¢ | 0. Equation (2.1.54) is bounded above by

PolU,csllXes) <y, 1 Xl 2y, 7, > ¢
(2.1.55) olUrzad el <3, Xl 23,7, > 1] +0(1),

Pol7, > t]

where r runs over positive rationals less than or equal to 8¢. So by the
monotone convergence theorem, (2.1.54) converges as 8¢ |0 to

Po[lth =y, 'Ta > t] _
Pol7, > t] B

(2.1.56)

A similar argument can be used to prove left continuity.
Also, 6.(y) <80,_1)(y), n € R* by induction, since if we suppose the
inequality holds up to n = m — 1, then

59:(3) = [8tn_1s(y) dv(x)

< E?m—l)s(y),
where v(-) is the law of [ X,|X, = 0, 7, > ms].

(2.1.57)
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Here we have applied Lemma 2.1.1 to 8Y.. Clearly the inductive hypothesis
is true for n = 1, so {§2,(y), n € N} is a stochastically increasing sequence.
However, by letting s — 0, and using the ¢-continuity of 82(y), it follows that
{82, t > 0} is a stochastically ordered set such that

__ st. _
(2.1.58) 8) <6, for0 <t <t,.

Since 5? is stochastically bounded above by a point mass at a, &7 therefore has
a limit 8, which is also the limit for all initial distributions. Moreover, this
convergence is uniform by (2.1.52).

(ii) We have

(2.1.59) [Py (%) d82(x) =82, (y), V.

So, taking the limit as s — « (formally the left-hand side is integrated by
parts, and then we apply dominated convergence before integating by parts
back again), we get

(2.1.60) [P, (%) d8(x) =8.y), Vi,
st. _
thus proving the first part. Furthermore, for u < 4,,

Bdy) = [py, (%) dii(x)
(2.1.61)
2 [py,t(x) dgoo(x) = 5oo(y)‘
The inequality above follows from the first part of the proof of Lemma 2.1.1.
The second stochastic inequality follows similarly. O
Note that the existence of 8, (the limit distribution of [ X,|7 > ¢]) is also a
trivial consequence of Theorem 2.1.4. This is clear by considering the first

hitting time of 0, r,, for X. The distribution after 7, will be symmetric, and
Plry > tlr, >¢t] > 0as t - .

COROLLARY 2.1.5.

_ st _
(2.1.62) 82 < 82*°
for ¢ > 0.

Proor. This result follows from Lemma 2.1.2 by taking the limit on both
sides of the inequality:

st.
(2.1.63) i < Rt
[where 72(y) = PIIX,| <ylr, > t]. O
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LEmMA 2.1.6.

st.
Pl7 < tluy] < P[7 < tluy] if &y < o,

where T is a symmetric boundary hitting stopping time (i.e., the hitting time of
a boundary symmetric about x = 0).

PrOOF. Suppose |x,| < |x,|, then P[r < tIX, ~ x,] < P[r < ¢|X, ~ x,] by a
similar argument to that in Lemma 2.1.1.

Define p/(x) = Plr < ¢|X, = x]. Now p,(x) is an increasing function for
x> 0and

Plr <#lui] = [p(%) dEx(%) < [p((%) dEg(x) = P[7 < tlp,].

The inequality follows from the stochastic ordering of u,, u,, and the integra-
tion by parts argument of Lemma 2.1.1. O

2.2. Function-analytic preliminaries. In this section, we will first give a
brief review of the results from Jacka and Roberts (1987) that we will use in
later sections. Then we go on to prove regularity conditions for eigenvalues in
the specific Ornstein—Uhlenbeck case.

Let X, be a time-homogeneous diffusion process, let 7 be the stopping time
for X,

r=inf{t > 0: X, = —b or a},
and define the distributions
8, = lim law[ X |7 > ¢],

t—> o

U, = tlim lim law[ X,|r > s].
—>00 §—>00
The existence of these distributions and expressions for them are given in
dJacka and Roberts (1987) for the case where X is an It6 diffusion. Specifically,
we will write §,(a, a) for the limit law 6, when X is an Ornstein-Uhlenbeck
process with parameters (a, 1) on the interval [—a, a], where the Ornstein—
Uhlenbeck (a, B) process satisfies the S.D.E.,

ng = BdBt - aX, dt.
Also, we write m(a, a) for the exponential decay rate of 7:
P[r > ¢ 1X,| ~ 5(a,a)] = em@ox,

That is, —m(a, a) is the largest eigenvalue of the infinitesimal generator of X.
In this case m is related to the confluent hypergeometric function. Theorem
3.2 gives a proof of the exponential behavior of .

We must establish the following results about the behaviour of m.
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LeEmma 2.2.1.
m(e,8) = 2em(},5(2e)"?).

ProoF. Suppose X is an O.U. (e, 1) process, and
T= inf{t > 0; |1X,| > 8}.
Let
Y, = (26) /X, 5.
Then Y is an 0.U. (3, 1) process, and if
7 = inf{t > 0; Y} > 8(2¢)"%},
then
[7=2¢et] =[r=1¢].
Also it is clear that 63, 8(2£)'/2) = (2¢)'/26 (¢, 8) by this transformation, so
P[r > tIX, ~ 8.(e,8)] = P[7' > 26tlY, ~ 8,(},6(2¢)"%)]

= exp{ —2stm(3, 8(23)1/2)}
— p—tm(e,5).

So m(e, 8) = 2em(3,(6(2¢)'7%). O

Recall from Jacka and Roberts (1987) the following definitions:

1. V(a) = {C? functions constrained to be 0 at +a}.
2. {*,* ) = natural inner product on V(a) chosen to make an operator G
self-adjoint.

In the case G = 1/2d?%/dx2 — (x/2)d /dx,

(f,8)= [ fge™"/2dx.

Now fix a and consider points a + ¢ for small positive e. We will denote by
p, the eigenfunction corresponding to the largest negative eigenvalue,
- m(%’ b ).

Gp, = —m(3,b)py(x) forx € [, b].
Also extend p, to its analytic continuation on [—(a + &), a + €].
LEmmA 2.2.2.

[m(%:a + 3) - m(%: a)](pa, pa+s>a+s = _p:1+e(a + &)pa(a + ‘9)'
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Proor. Now p, & V(a + ¢), and using the inner product on [—(a + &),
a +¢], writing G in terms of its natural scale and speed measures,
G = 3d/dmd/ds.

a+e 1 dzpa
<Gpa’ pa+e>a+e = f ds

—a—eE d82 pa+e

ate 1 dzpa+e 1 , a+e
_a_e'E d82 pa S — §[pa+epa]—a—s

= <Gpa+.~:’ pa>¢z+e - p:z+.~:(a + 8)pa(a + E)’

where p),, (x) is the derivative with respect to s. In our case, of course,
ds(x) = e**/2 dx. The second line follows from two integrations by parts, and
the third uses the even nature of p,, p, ... So

[m(%a + 8) - m(%, a)](Pa,Pa+s>a+€

= ~Pa+re(a@ +€)pg(a + ). - m

(2.2.1)

Now p,(x) = k(b)M(—m(3, b), 3, x2/2), where M is a confluent hypergeo-
metric function and £(b) is an L? normalising constant chosen so {p;, p,) = 1.
So we need the following lemma about M.

LemMmA 2.2.3.

(i) M(a, 8,x2/2) is a continuous function of a for & not negative integer
valued and this continuity is uniform for x € [-A, A] for some fixed but
arbitrarily large A > 0.

(1) M(—m(8,b),8,x2/2) is bounded for (b,x) € [a,a + R'] X [—A, A] for
some constant R’ > 0.

Proor. (i) A power series expansion for the confluent hypergeometric
function [see, e.g., Abramowitz and Stegun (1972)] is Kummer’s expansion,

% (@)
M «a, 63 = o o1 0

( ?) Eo (8):i!

where (B), =B(B+ 1XB +2)---(B+i—1)and (B), = 1.

This series is absolutely convergent for all y and «, provided that & is not a
negative integer. Also the series is eventually monotone for y > 0, since all the
terms in the expansion for which i > max{la| + 1,|5| + 1} have the same sign.

Now fix R’ > 0. We choose I > (§,b) + 1 for all b € [a,a + R']. We can
certainly do this since m(8, b) is nonincreasing as a function of b, so it suffices
to take I > m(§,a) + 1.

Sryi(e): n (et Dy
M(e,8,9) = ¥ 5y (@i L
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We would like to show that
(2.2.2) IM(a,8,y) —M(a —¢,8,y) >0 ase— 0,

uniformly for y € [0, R], for some positive constant R from which assertion (i)
will follow.

The first term in the above expression is a polynomial in y and «, and so
satisfies
’2‘:1 y'((a); — (a —¢);)
i=0 (8):i!
for some polynomial P;.

Similarly, (a); — (a — &); = ea Py(as) for some polynomial P,. So it remains
to consider the terms

= SPI(as,y)

= y(a+1),
T(a,y) = E’I—(a)ii_!—’

T(a,y) - T(a—¢,y) - f. y[(a+1);_;— (f" +1- 5)i—1]
i=I (8):i!
<T(a,R) —T(a—-¢,R) forye][0,R],
since all the terms are positive. Also,
T(a,R) —T(a—¢,R) >0 ase > x,

since the individual terms tend to 0, and T is given by an absolutely con-
vergent series. This establishes (2.2.2) and assertion (i) follows by taking
R > A%/2,

(i) M is a continuous function of @,y and so is bounded on any compact
set. Now m(8, b) is a decreasing function of b, so

m(d,a + R') <m(8,b) <m(d,a) forbe[a,a+R'].

This implies that M(-m(8, b), §, x2/2) is bounded for (b, x) €
[a,a + R'] X [-A, Al. O

LEMMA 2.2.4. 3 &y, ky > 0 such that for b € [a,a + R'],
ki <k(b) <k,.

Proor.
-1/2
k(b) = [ffsz(—m(%,b),%,x2/2)dm(x)} ,

where dm(x) = e"**/2dx denotes the speed measure for the O.U. G,
process. Define

v(6,1) = [° M0}, 2%/2) dm(x).
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Now m(x) is absolutely continuous with respect to Lebesgue measure, so
Lemma 2.2.3 implies that y(b,A) is continuous for (b,A) € [a,a + R] X
[m(3,a + R"), m(3,a)]. So y is bounded in this region and also clearly cannot
be 0 anywhere [this would imply M(—A, 1, x2/2) = 0], and must therefore be
bounded away from 0. Hence the existence of k., k,, since m(-) is nonincreas-
ing. O

DeriNiTION 2.2.1. We call a function f locally Lipschitz in D if for each
point x € D, 3 an open neighbourhood N(x) of x and a constant ¢ > 0 such
that

If(x) —f(y) <clx —yl, VyeN(x).

Lemma 2.2.5. m(3,a) is locally Lipschitz for a € (0, «).

PROOF.
py(x) = —2xk(b)m(3,b)M(—m(3,b) + 1,3,2%/2).
So it follows by a simple argument from Lemma 2.2.3(i) that p}(x) is bounded
for (b,x) €[a,a + R'] X [a,a + R’]. Also, p,(-) is clearly locally Lipschitz
since it is continuously differentiable. So 3 k25 > 0 such that
ph(a + &) < ks
and
lpo(a + €)| < kge

for small enough &. Also, as ¢ |0,
i< pg, poredavel 2 k[ (M(-m(3,a),1,22/2))" dm(x)

> 0.
So for small enough ¢,

|<pa, pa+5>a+e| = k4 > 0, say.

Finally, from Lemma 2.2.2 we see that
2
Im(3,0 +¢) —m(3,a)l < k—ae as required.
4

This proves the right-hand local Lipschitz property. The left-hand property
follows similarly. O

3. The approximate square-root boundary. In order to prove the
main result of this section, it is necessary to look at a geometric partition for
the Brownian motion time (corresponding to a uniform partition of time for
the Ornstein—Uhlenbeck process). This allows us to make approximations
for the approximate square-root case in terms of the exact square-root results
obtained by Breiman (1967). So in this section X, is the Ornstein—Uhlenbeck
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process corresponding to Brownian motion B, and we shall use the two
processes interchangeably.

Recall that c(-) is given in (1.2), and observe that m(c) = m(%, ¢). First, we
need the following lemma.

LeMMA 3.1. Suppose m(-) is the inverse function of c¢(+). Then
(3.1) P[r > t|B, ~ &] = t~™©,
where v = inf{t > 1; |B,| > cVt} and &S is given in Theorem 2.1.4.

Proor. Fix r < 1andlet ¢t = r~" for some positive integer n. Now we will
assume we are conditioning on the event [ > 1, B; ~ §¢] in all that follows:

n
Plr>¢t] = [IP[r>rir>r ¢D]
i=1

n
(8.2) il:ll Plr>r7ir > =60, X 1yi0g, ~ 82] -

= [k(M]”
=¢7¢", say.

We will show that g is a constant function and that P[r > ¢] = ¢4 for all
t > 1. By a similar argument we can show that

P[r>t] =407,
hence g(r) = g(r'/™), over all r < 1, m € N*. So we have
g(r) =g(r™/™) for positive integers m,n.

Now fix arbitrary ¢ > 0. We can pick sequences {s;}, {¢;}, such that for each
i > 1, s; and ¢, can be written in the form r~™/" for some integers m,n and
s;1tand ¢, | ¢. .

(3.3) Plr>¢] <P[r>t¢t] <P[r>s;]
and
(78D < P[r>t] <5787, Vix1l.
So taking limits as i 1 o,
Plr>¢t]=¢t8", Vix1.
But by Breiman (1967), g(r) = m(c). O
Armed with the results of Section 2, we are able to completely describe the

asymptotic behaviour of approximate square-root boundaries under certain
conditions on the boundary.
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DEFINITION. We call f a simple approximate square-root boundary if
f(#) = t*/2a(t), where
(A1) a(?) is asymptotically nondecreasing to a limit a().

(A2) a(-) is differentiable and a?(¢) + ta’(¢)a(t) is asymptotically nondecreas-
ing.

We shall also say that a function p(¢) is O(q(¢)) as t » « if 0 < C; <
Ip(#)/q(#)| < C, < « for constants C,, C, and for large enough ¢.

THEOREM 3.2. Suppose f is a simple approximate square-root boundary, B,
is a Brownian motion and 7 the hitting time,

T= inf{t > 1;|B,| Zf(t)}

Then for any initial distribution
m(3,a(s
P[r>t¢t] = O(exp{—ft(—z—(—)—) ds})
s
as t — », where a(t) = f(£)t~1/2,

PROOF. Assume first that B, = X, ~ 2%, then by Corollary 2.5,

(3.4) s < 520,
Suppose

(3.5) o« = inf{t > 1; |B,| > ct'/?}
and

(3.6) fT= inf{t > 1; |B,| > f(t)}

for f(¢) = a(¢)t'/? and denote by .u,, the law of [ X, ,|.7 > t] and ;u, the law of
[Xy,lpm > ¢], in the usual way. Then it is clear from Lemma 2.1.2 and
Theorem 2.1.4(ii) that

st.

st. _
(3.7) e S agylte < 020

for all ¢ > 1. It is this powerful distributional inequality that allows us to
prove the theorem.
Now let ¢ = r~" for some r < 1. Then

n

(3.8) P[> t] = i]'"[lllﬂ’[fa- > r7iler > rm@D].

But
P[fa' > rier > r'(i‘l)]
(3.9) = P[f‘T > r_ilf‘T > r_(i_l), X(i—l)lnl/r ~f/1r,.—(i—1)] 5

. . —@-1
= P[f’f > r_lIfT > r_(t_l), X(i—l)lnl/r ~ 5g(r ‘ ))]
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from (3.7) and by Lemma 2.1.6. Now define the function a(z) as follows:

a(t), 1<t<r ¢
a(r~¢-D), réb <t <rh

(3.10) a(t) = {

Soa(t) <a(®),1<t<r™ andif f(¢) =a@)?
Pler > roiler > r7@ D, Xy, ~ 8207

(3.11) > P[;T <rHpr > X iy~ ag("‘"'l))]

= pma(r=¢Dy

So

n .
Plyr>t] = TTrmec™™
(3.12) .

n i—
=] |1t""(“(’_(’ "/r = M (t), say.
in

The same argument applies for r*¢, £ < n. So
M = nl:[l p(m@a™)
M (r*t)  iZn-k

and

M,(#) = M,(r*) =1+ TIE5L,rmee™

t(1—rk)M, (%) t(1—rk)

Now choose & = log(1 — 8/t)/log r, for suitable r,

Mr(t) - M. (¢ - 8) -1+ Hl{;—nl_krm(a(r“'))

(3.13)

= —b(r), say.

~b(r) £ 5M,(¢ — 9) 3
Now a(t)1 with ¢, m(a(?))| with ¢ and
1— (1 - 8/¢)™@® o) < 1= (1 = 8/¢)m@=®
é - - é )
Now we define
(3.14) M(t) = liminf M,(2),

and so taking limits as r 11,
—1+(1-58/8)"  M(t) — M(¢ - &)
>
8 = sM(t-9)
1+ (1- s/t)m(a(t—a))
= 5 s

(3.15)

1707
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and now letting & | 0, we see that M'(¢) exists and
M'(t) -m(a(?))

M(¢) = ¢ ’
(3.16)

M) > exp{—fl‘Las(s)—)- ds},
that is,
(3.17) Plpr>¢] = exp{_[l‘&“s(ﬂ ds}.

It remains to show the result holds for all initial distributions u, of X. We will
write P[7 > t|u,] for P[7 > ¢|X, ~ u,] and show that

(3.18) P[7 > tluo] = O(P[7 > tl62®])

for arbitrary u, on (—a(1), a(1)). Now P[7 > t|x] is a nonincreasing function of
x for x > 0. This can be shown by a simple coupling argument. So .

P[7 > tluo] < P[7 > tl0].
Also
P[7 > tlx] = P[r > tlx, X hits 0 before f(-)]P[X hits 0 before f(-), X, = x]
> P[r > t|0]P[ X hits 0 before f(-), X, = x].
But since P[X hits 0 before f(-), X, = x] > 0 and is independent of ¢,
P[> £10] < kP[r > £/62D]

for some positive constant %, proving the result.
For the opposite inequality, we define the following deterministic space and
time change:

X = __E"_(‘)_
‘o g(a(t)’
where g(¢) = t/2a(t) /a(x) and a(-) is the solution of
(8.19) a'(t) = g%(a(t)),

such that a(0) = 1. X, satisfies the S.D.E.
dX, = dB, - X,g(a(t)) g (a(1)) dt,

where B’ is another Brownian motion.
Write r(¢) = g(a(t))g’'(a(?)) and let B(-) be the inverse function of a(-).
Since f is a simple approximate square-root boundary, by (A2), r(¢) is
asymptotically nondecreasing. We may assume that r is always nondecreasing
without loss of generality since we are only interested in the asymptotic
‘behaviour of it. The idea of the proof is to approximate u, by 8, (r(t), a(x)).
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First, assume p, = §,(r(0), a(«)); then r(s) < r(¢), V s < ¢t. We will approxi-
mate with the Ornstein—Uhlenbeck (r(#), 1) process, so

st.
By 2 0y,

where o, = distribution of [ X}y > ¢],
dX,=dB, — Xr(t)ds
and y = inf{¢ > 0; |X]| > a(x)}.
Also
— st. _
8r(t),a(»)) <8(r(0),a(x)),
since r(¢) increases by a transformation similar to that given in the proof of
Corollary 2.1.5, and so by Theorem 2.1.4
st. _
7,2 8,(r(t),a(x))
and so
st. _
(3.20) B2 5.r (1), a()).
Now
P[B(7) > tiXy ~ 8(7(0),a(®)), B(7) > ¢t — €]
<P[B(7) > tB(r) >t —¢, X,_, ~8(r(t —€),a(x))] from(3.2)
<P[B(r) > tIB(7) >t — &, X,_, ~ 8(r(2), a())]
< exp — {m(r(t),a(=))e},
since r(s) < r(¢) for s € [t — &,¢t]. Thus
P[B(7) > ¢t] — P[B(7) > ¢t — ¢] - 1 — exp{ —m(r(2), a(®))e}
P[B(7) >t —¢]e - €

just as in the first part of the proof. So in the limit as ¢ | 0, P[B(7) > t] < M(2),
where M(¢) satisfies

M d
O _ 2 exp(=m(r(t), a(=)s}lemo = ~m(r(2), a(=)),

M(t) ~ ds
with M(0) = 1. So
Plr>¢] < exp — {fo"“’m(r(s), a(x)) ds}.
But m(r(s), a(x)) = 2r(s)m(%, a(x)X2r(s))*/?) by Lemma 2.2.1, so
P[> t] < exp — {[O‘*"’Zr(s)m(g, a()(2r(s))"?) ds}

2(@)ym(3, a()(2r u))?)2r u
=exp_{f‘“( ym (3, a()(2r(B(x))"*)2r(B(x)) du}.

1 ua®(u)

)
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This last step follows the change of variable, u = a(s). Now r(s) = g(u)g'(u)
and

1 a(t) t7%(¢)

g'(t) = 2t1/Z g (w) + (@)
So
2 !
g(u)g'(u) = %Zzg + = f,l:():)(”)
and
(1 2ua’ (1) 1/2)
m|-,a(u)|l + ——
t 2 a(u)
—logP[r > t] 2[1 " h(u)du,
where
h(u) =1+ %;fl
Thus

1
(50000 - (W2ua (@) /(a(w)
—logP[r > ¢t] > f

1 u

du,

where k' is a local Lipschitz constant for the function m(3, - ) around a(x),
which exists by Lemma 2.2.5.
But [{(2k'a/(v))/(a(u)) du converges, so

m l’a u
—logP[7 > t] > constant + ft__(z_u(_)) du.
1

Here we have used that o’ is nonnegative. Therefore,

Plr > ¢] skexp{—fltﬁ-(%—’:(u—))du}

for some constant k.

Now it remains to show that the result holds for all initial distributions, but
this is clear from the arguments in the converse, earlier in this proof, which
show that all starting points yield the same asymptotic behaviour for the
hitting time, thus completing the proof. O

Note that condition (A2) is only needed for the second part of the proof.
That is, the inequality

(3.21) Ppr>¢] = exp{—j;tfzisa(s_)) ds}
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has been proved without (A2). This is important for considering cases such as
1

a'(t) < O(t—2) ast — o,
where (A2) is never satisfied. However, in this and similar cases, Taksar’s
approximation [Taksar (1982)] turns out to be equivalent up to a multiplicative
constant and so gives the converse result. Specifically, we have the following
theorem.

Here and later in the article, we will abbreviate m(3, - ) by m(-).

THEOREM 3.3. Suppose

(3.22)

flmlogtdm(a(t))‘ <o

for some approximate square-root boundary satisfying (Al). Then

P[yr > t] = O(exp{—fltm ds}).

S

Proor. Taksar’s approximation is the following:

P[r > t] < O(t~™@®),
so that

. m(a(s))
[-——

ds = —(logt)m(a(t)) + ftlog sdm(a(s)),
1 1

and

exp{ _It&:”l ds} _ ¢~ exp{fltlog sdm(a(s))}.

1

So clearly if the integral i log¢dm(a(?)) is finite, then this expression is
bounded by multiples of ¢~™“® which is Taksar’s approximation. O

4. Lower-case boundaries. An obvious way to proceed in this case,
since the rate of increase of the boundary function is “relatively small”, is to
look at the approximations obtained by approximating the distribution of the
conditioned Brownian motion itself. This has the added advantage that no
normalizing time change is necessary. However, we can obtain marginally
better results by the natural scaling and its appropriate normalizing time
change, which converts the problem to a constant boundary hitting problem.

DEFINITION 4.1.  f is a simple lower-case boundary if f(¢) f'(¢) is asymptot-
ically nonincreasing to 0.

Note that this implies that a(t) —» 0 as ¢ > «, where a(t) = f(#)t /2
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THEOREM 4.1. Suppose f is a simple lower-case boundary and a is the
solution of

(4.1) o(t) = f*(a(?))
such that a(0) = 1. Let

7 =inf{t > 1; |B,| > of (¢)};
then

1o 0= e - 222 o,

where B(-) is the inverse function of a(-) and
exp{klf’“"r(s) ds} < h(t) < kyt?,
0
where r(t) = f(a(t)) f'(a(t)) and k,, ky, p are positive constants.

Proor. Consider the first inequality first. Let
B
4.2 X, =—0_
42 ‘= Flae)
then

dX, = dB; - X,r(¢) dt,

where B’ is another Brownian motion.

The general idea is to approximate p,, the distribution of [ X,|8(7) > ¢], by
the stationary distribution for the O.U. (r(¢), 1) process with boundaries —a, a
and initial distribution 8,(r(0), a): 6 (r(¢), ).

P[B(r) > 1]
P[B(7) >t —¢]
and assuming X, ~ §,(r(0), a),
P[B(7) > tIB(7) >t — &, Xy ~ 8(r(0),a)]
=P[B(7) > tB(r) >t—¢e, X,_, ~u,_,]
> P[B(7) > tIB(r) >t —&, X,_, ~6(r(t —¢),a)],

= P[B(r) > tlB(r) > t ],

since as in the proof of Corollary 2.1.5 we have §(r(0), a) s; 8 r(t —¢),a), so
by Theorem 2.1.4, §.(r(¢ — &), a)sst. k,_,. Now if X is a process satisfying
X, =X,, <t-—e,
dX,=dB, - r(t)X.ds, t—-e<s<t,
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st.
then Law(|X’|) > Law(IX,|), 0 < s < ¢; see, for example, Roberts (1988). There-
fore,

P[B(7) > tIB(r) >t —¢, X, ~8r(¢ - £),a)]
>Ply>tly>t—e, X, ~8r(t—¢),a)],
where y = inf{t > 0; |X;| > a}. .
Now let 4, be the distribution of [ X;|y > ¢], then &', < §(r(¢), a) since

dr(t—¢),a) ;ng(r(t),a),
by Theorem 2.1.4. So
P[B(7") > tIB(7') >t — &, X;_, ~ 8r(t — €),a)]
> P[B(TI) >tp(r) >t -6, Xi .~ w(r(t)’a)]
= exp{ —em(r(t),a)},
and so as in the proof of Theorem 3.2,
P[B(7) > ¢]
P[B(7) > ¢t —
So P[B(7) > t] = M(t), where

M
W(f% = exp{ —em(r(2),a)},

a > exp{ —em(r(t),a)}.

and M(1) = 0. Taking limits as ¢} 0,
M'(¢)
M(t)
M(t) = exp{—ftm(r(s),a) ds}.
1

However, for small r(s),

= _m(r(t)’a)’

2

m(r(s),a) = % — 0(r(s)).

This follows using a simple argument and an expansion for the confluent
hypergeometric function; see Abramowitz and Stegun (1972), page 510. So

2

P[B(7) > ¢t] = M(¢) = exp{ 8Zzt}exp{klfltr(s) ds}

for some positive constant k. Therefore,

Plr>¢] = exp{— 1728[;(;) }exp{klflﬁ(t)r(s) ds}

gives a lower inequality for A(¢), assuming X, ~ 8.(r(1), a).
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We prove the reverse inequality by using the usual exponential transforma-
tion, X, = e7*/2X,.. Then if p, is the distribution of [ X,|r > e, an application
of Lemma 2.1.2 gives

st. _
B, = 843,a(e’)),
and so we can use a similar argument to that for the previous inequality to
show that

P[r > e'] < M(¢),

where
M'(¢) 1
M@t -n(3.e),
a(t) = tV2f(t)
and

M(t) = exp{—fltm(%,a(es)) ds},

and for small a(s), from Abramowitz and Stegun (1972),
2

M(¢) = exp{—flt(g;(e—s) - 0(1)) ds}.
So

71.2
P[T > tl < exp{—/:ogt(gg(e—s) — 0(1)) ds}
71.2
Skt"exp{—flm—du}

¢ w
=ktpexp{—j;mdu}

1_‘_2
= kt? exp{ - Wﬂ(t)}'

We can now apply identical arguments to those of Theorem 3.2 to show that
these distributional inequalities hold for all initial distributions. O

5. Upper-case boundaries.

LEmMA 5.1.  Recall that m(x) = m(3, x), given in Section 2.2. Then

m (%) = 2r_:(/2) (1 * 0( : ))

as x — o,
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Proor. m(x)]0 as x > «, so we consider M(—b, 3, z) for small positive b.
M(-b,3,2) =1 - 2bF(b,2),

where
d 3
aF(b,z) =M(1-b,3,2)
and
F(b,0) = 0.
Thus

m(a) = 2F(1 — m(a),a?/2)"

Now we are interested in the behaviour of m(a) for large a, so we use an
approximation for M given in Abramowitz and Stegun (1972):

e?z°"PT(B)

M(a,B,Z) = F(a) [1+0(Z_1)],
and so

d e?z P 7121(3) .

T2 = —g—p  [1+ oG]

It follows by a simple integration by parts argument that
ezz—b—1/2l"(%)
I'(1-2»)

and, furthermore, the O(z~!) term is uniformly bounded for & in some
neighbourhood of 0, so

1 —a2/2( a? )1/2+m(a)r(1 - m(a))
Ze S St P
2 (%)
2
e~ /2I(1 - m(a))

= 2m(a)+1 1+0 -2 .
But m(a) is bounded for a € [A, ©) say, so m(a) = o(e™®) and a?™® — 1 =
o(a~2). Also, this implies that

m(a) = O(ae™*'7?),
so that T'(1 — m(a)) — 1 = o(a™2), and

-a?/2

m(a) = 2—‘/—5}‘(%—)(1 +0(a™?))

F(b,z) = [1+0(z7Y)],

2

m(a) (1+0(a7?))

as required. O
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DerFINITION 5.1. A function f is called a simple upper-case boundary if
fe C?% f(t) = a(t)t'/? and the following conditions are satisfied:

(B1) a is asymptotically nondecreasing to c.
(B2) If a(-) is the solution of

o (t) = f*(a(t)),
with a(0) = 1 and

1 a"(s)
() = () F(a(5)) = 55y

then r(s) is asymptotically nondecreasing to .

(B3) Let
Ly 2ud'(u) |2
p(u) =a(u) “atw) |
then p(-) is asymptotically increasing.
wa(u)e P /2 a(u)
B4 — 1] du < o».
(B4) e TR CIO))

THEOREM 5.2. Suppose f is a simple upper-case boundary and {B,, t > 1}
is a Brownian motion with hitting time

7¢(B) = inf{t = 1; B, > f(¢)}.
Then

S

P[r/(B) > ¢t] = O(exp{—fltm—(q@ ds})
ast — o«

Proor. The result is identical in form to that for the simple approximate
square-root boundary and we proceed in a similar fashion.

Let X, = e™'/?B,.. As usual, we assume initially that X, ~ 8,(a(0)) and a(-)
is nondecreasing V ¢ > 0. Under these assumptions,

st.
I, < Law[XtIﬁrg(X) > t] ,
where g(s) = a(t), s < t, and
st.
Law[IXtI T, (X) > t] < LaW[IX,I T, (X) > ¢, Xy ~ Bm(a(t))].
These results follow from Lemmas 2.1.2 and 2.1.1 and Corollary 2.1.5. But
Law[XtI'rg(X) >t, Xy~ m(a(t))] =84 a(t))
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st. _
by Theorem 2.1.4, so i, < §,(a(¢)), and

P[r(X) >t] > kexp — {fotm—(t(ﬁds}

for some constant k, by using similar arguments to those in the proof of
Theorem 3.2 for general initial distributions.

For the other inequality, let Y, = B, /f(a(t)), where « is defined as in
Definition 4.1. We also let B8 equal the inverse function of «. Y satisfies

dY, = dB} — r(t) dt,

where B* is an associated Brownian motion and r(¢) = f(a(?)) f'(a(2)). We
assume in the usual way that r is actually nondecreasing everywhere. Denot-
ing by u, the law of [Y,I7(Y) > ¢], we can follow the proof of Theorem 3.2 to
obtain

st. _
By 20.r(2),1),

P[rs(Y) > ¢t] <exp - {fotm(r(s), 1) ds},
P[7¢(B) > t] <exp — {j;)B(t)m(r(s), 1) ds},

~logP[r/(B) > t] = [Ot—"i%p—(ﬁ du.

Using the transformation a(v) = p(u) [note that this is certainly always
possible by restriction (B3)], we obtain

m(ha)a@)
p Y (a(v)p'(p~(a(v)))
¢+ m(a(v)) a'(v)
> dv,
>y ey 7 a@) ©
since the integrand is positive and (a ™ !p)¢) > ¢. Also, p~la(v) < v, V v, so

tm(a(v)) a'(v)
—logP[7 > ¢t] > /0 " p’(p‘l(a(v))) dv

zk+[0t—n1(—al;(~v—)ldu

—logP[r,>¢t] = f"_l("(t»
0

for some constant &, by (B4) and Lemma 5.1.

The final result for general y, follows in the usual way. Note that the two
inequalities have been proved here using the same initial distribution. This
simplifies the argument for general p,. O
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REMARKS.

(i) The result is most interesting in the case when the boundary is attained
with probability 1, that is, roughly speaking boundaries a such that
a(t) < ((2loglog?)'?)

asymptotically.

(ii) For such boundaries, (B3) will be satisfied unless a exhibits some
oscillatory behaviour. Any attempt to give more explicit expressions for
(B1)-(B4) would only lead to a weakening of the result. However, almost all
cases of interest can be either solved directly or by means of an approximation
scheme.

ExampLE. Consider the boundary

a(t) = y2ly(1)

where /() =log!;,_{(-), log,(-) = log(-). It is easy to check that (B1), (B2)
and (B3) are satisfied. For (B4), we must consider

¢ V2l3(u) ad(u) _ 1) 4
/ uly(u) \p'(p~'(a(w))) *
After much algebra we obtain
d(u) _ w(l(w)(la(w))(ls(w))"?
P(P7a()))  w(l(u))(la(w))(la(x))*

1
u= w(l + —ﬁ)
2w2e¥e”

where

And so

a,(u) u2/2 2
- — — Ofe¢ e U /2u—2 .
P(p ey =0 )
So (B4) is clearly satisfied, and

Plr>¢t]=0

20,(w))? du
exp ft ( 3( )) )
0 uly(u)
Now consider a similar curve

a(t) = y/213(t)(1 + sint) .

In this case (B1), (B2) and (B3) are all contravened while (B4) holds [this
follows from the calculation for /2,(¢) .] However, if we define the function

a(t) = V/2L5(t)(1 + e %(1 + sint)) .
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then a, satisfies (B1), (B2) and (B4), and we can therefore consider a(-) as
lim,, , a4(-) and it is not too difficult to prove

P[7, > t] = })if%ﬂ)[fao > t].

A simple consequence of Theorem 5.1 is the following well-known result, a
generalisation of the law of the iterated logarithm.

CoroLLARY 5.3 (Kolmogorov, Erdos, Feller and Petrowski). Under the
conditions (B1)-(B4),
»a(s)exp{—a®(s)/2} 4

§ = ®©

'rf< ooa.s.@f
0 S

Proor. This follows immediately from Lemma 5.1 and Theorem 5.2. O

6. One-sided boundary hitting problems.

6.1. In this section we consider the behaviour of stopping times 7, such as
r=inf{t > 0; X, > f(¢)},

where X is a diffusion process. We attempt to extend the ideas of Jacka and
Roberts (1987) and Section 2 to the one-sided boundary case. The main
results, giving the asymptotic behaviour of one-sided boundaries for Brownian
motion, are stated in Section 6.3. We give first-order expansions for the
distribution function of the hitting times by considering the four distinct cases
determined by the behaviour of a(t) = ¢~ 1/2f(¢):

(i) Approximate square-root boundaries, that is, boundaries such that
a(t) - a(»), a finite nonzero limit.
(ii) Lower-case boundaries, that is, a(¢) — 0.
(iii) Positive upper-case boundaries, a(¢) — «.
(iv) Negative upper-case boundaries, a(¢) — o.

In Section 6.2 we consider the time-homogeneous problem, that is, we look
at hitting times of the form:

T= inf{tZ 0: Xth}’

where X is time homogeneous. For the applications in Section 6.3 we are only
interested in the case where X is an Ornstein-Uhlenbeck process. In this
particular case, we are able to prove analogous results to those of Jacka and
Roberts (1987). In fact, we can carry out a self-adjoint analysis of the infinites-
imal generator .# of X, but in general this is not possible.

In Jacka and Roberts (1987), the finiteness of the interval on which the
functions in the domain of .# are defined simplifies the problem for three
main reasons:

1. First, the stationary behavior exhibited by X with respect to the hitting
time 7 = inf{¢ > 0; X, = a or b} in the finite interval case does not necessar-
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ily follow in the semi-infinite case. More precisely, if
r, = Law[ X |7 > ¢],

then in the finite case it is always true that u, has a limit which we call 5,
but this is not always the case when a = —,

2. Second, in the finite interval case, at least for well-behaved _#, the spec-
trum of _# is purely discrete on the space S, where

S = {C? functions f on (a, b) such that f(a) = f(b) = 0}.

This allows us to take eigenfunction expansions in terms of an infinite sum,
and, furthermore, the eigenfunctions are always in S.

3. Third, suppose we form the following subspace of S by imposing the
integrability conditions on function in S:

L;={feS; f'(x)m'(x) € L(a,b)},

where m’ is the speed measure of X. The nature of the problem compels us
to work in the space L, since the inherent probabilistic restriction on 8, is
that it integrates to unity, whereas in L, we are able to define an inner
product to make .~ self-adjoint and the eigenfunction expansions are easier
to handle as well as having been more widely studied. Of course, in the
finite interval case, trivially we have S = L, = L,, and so we can work with
whatever structure we choose. However, in the semi-infinite case, L, # L,,
and so in general it is not possible to adopt the self-adjoint approach.

In Section 6.2 we look at the problem of one-sided boundary hitting
problems for Brownian motion. Some of the proofs are similar to those of the
previous sections and so to avoid repetition, parts of these proofs are merely
sketched. Also, the theorems of this section are by no means a definitive
collection of results that can be proved by the methods which are developed in
Section 2. Extensions to higher dimensions and to other diffusions are obvious
examples of areas where the methods can be applied, but also the considera-
tion of different classes of boundaries can yield similar inequalities. An exam-
ple of this is Theorem 6.3.1, where we consider a class of functions of the form
f(@) = a($)t'/%, where a(¢) is asymptotically increasing to a finite limit a(c).
An analogous theorem for the case a(¢#) asymptotically decreasing to a() is
easily derived with all the inequalities running the other way. So in a sense,
the results of this section should be viewed as illustrative of the power of the
techniques used.

6.2. Time-homogeneous problem. Let X,(a) be an Ornstein—-Uhlenbeck
(a, 1) process with a > 0, that is,

dX,(a) = dB, — aX, dt,
and define the stopping time
r = inf{t > 0; X,(a) = b},
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and its distribution function
d(t,x) = P[> tIXo(@) = x].
Then the backward equation for ¢ is

¢
./((X)¢ = E’

where _#(a) is the infinitesimal generator of X(a).

The method of solution which naturally suggests itself, analogous to the
approach of Jacka and Roberts (1987), is taking an appropriate eigenfunction
expansion in a space where .Z is a self-adjoint operator. Proceeding in this
fashion, we define the pre-Hilbert space H = {Ly(b, a),{ -, - )} as follows:

I-,z(b,a) _ C2-functions f such that f_bmfz(x)e-axzdx <o and
f(&)=10
and
b
(frg,= [ f(x)g(x)e " dx.

It is clear that ¢(z, - ) € L, since |¢(¢, - )| < 1 and it is easily checked that
Z(a) is self-adjoint on H. We will need the following results about the
spectrum of -Z(a).

LEMMA 6.2.1. The spectrum of .Z(a) in H is purely discrete.

Proor. Define the pre-Hilbert space H* = {L%,{ -, - )+} as follows:

_ C2-functions f on (—, b) such that f b f2(x)dx < o and
f(b) =0

L;

and

(f.g)= [ fegds.

Molchanov (1953) showed that the spectrum of an operator G = 3d?/dx2 —
a(x) in H* is purely discrete if and only if

. A+
lim ea(x) dx = o,
A-> —xo/yp

for arbitrary positive ¢ and where a(x) is bounded below. Consider the
operator

2 2
Clearly G satisfies Molchanov’s conditions and so has a purely discrete spec-
trum.

1 d2 a a’x?
T2a

), x <b.
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Now f is an eigenfunction of G on H* with corresponding eigenvalue A if
and only if f(x)exp{ax?/2} is an eigenfunction of . in H with eigenvalue A.
That is the spectra of G on H* and .#(a) on H coincide and therefore the
spectrum of #(a) on H is discrete. O

LEMMA 6.2.2. The eigenvalues of -£(a) on H are negative.

Proor. From the proof of Lemma 6.2.1 the spectrum of .Z(a) in H
coincides with the spectrum of G in H*. However, suppose A is a nonnegative
eigenvalue of G in H*. By successive applications of the maximum principle
on intervals [—R,b] as R — », we see that f is either nonincreasing or
nondecreasing. But f(b) = 0 and f € L%(—x,b), so f = 0, giving a contradic-
tion and completing the proof. O

Now by the spectral theorem, the eigenfunctions of .#(«) form an orthonor-
mal basis for H. These results allow us to carry out a self-adjoint analysis in
the manner of that of Jacka and Roberts (1987). We will denote by —n(a, b)
the largest eigenvalue of .#(a) on H and let exp{—ax2/2}e,(x) be its corre-
sponding normalised eigenfunction, that is, e, is the corresponding eigenfunc-
tion for G on H*. The existence of —n(a, b) is clear from Lemmas 6.2.1 and
6.2.2. In this context we can adopt the results of Sections 2 and3, which are
summarised below.

THEOREM A. A process X = lim,_ [ X|r > T] exists as a weak limit and
satisfies the S.D.E.

; e X N
dX,=dB, + dt( i f) - aXt)
for a suitable Brownian motion B.

THEOREM B. The process X has a distributional limit given by
v(dx) = lim Law X, = e **"¢2(x) dx.

t—> o

THEOREM C. Let u, denote the distribution of [ X,Ir > t]. Then the follow-
ing limit exists:

—ax? ey(x) dx

8 dx) = limpu, = €™ 7 oy

and has the following properties:
@
fb o(t,x)8(dx) =e bt Y¢>0.

st. st. st. st.
(i) If po <8, then p, <8, and if py = 8,, then u, > 8,.
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TueoreM D. If 8% denotes the limit distribution corresponding to the
hitting time of b, then

st.
82 <82 fore > 0.

In our particular problem, solutions of
(6.2.1) Z(a)p = Ad
are parabolic cylinder functions and we shall see that the only L, solution of
(6.2.1) can be expressed in terms of a Whittaker function D,(-). First though,

for notational simplicity, we reduce the problem to the case a = 1.

LEMMA 6.2.3.
n(a,b) = 2an(:}, b(2a)1/2).

Proor. This is proved in a similar manner to Lemma 2.2.1. O

For the rest of this section, we shall assume that @ = 1 and we abbreviate
n(3, b) by n(bd).

LEMMA 6.2.4. n(d) is a nonincreasing function of b.

Proor. The proof of this result revolves around the intuitive idea that
since n(b) is the exponential decay rate of the hitting time of b, then it must
be greater for smaller b.

Consider b; < b, and let ¢(¢, x;b,) = P[7(b;) > t|X, = x], i = 1,2, where
7(b,) is the first hitting time of the level b,. Furthermore, denote by 8% the
limit distribution corresponding to 7(b,), i = 1, 2. Clearly

o(t,x;0,) < d(t,x;by),
and by Theorem D,

b st. b
Ot < 0.2,

Using this, together with the fact that ¢ is a nonincreasing function of x, we
see that

e = [o(t,;by) doi()
< f¢(t: X, bz) d8£2(x) = e_”(b2)t,

B st.
since it is clear by Lemma 2.1.3 that 8%2 > 8%, and ¢(¢, x; b) is a nonincreasing
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function of x (which can be seen, for example, by a simple coupling argument).
So

n(by) >n(by), Vb, <b,.
Furthermore, since d8’! is absolutely continuous with respect to Lebesgue
measure, equality in (6.2.2) is only possible when (¢, x; b,) = ¢(¢, x; b,) for
almost all x for each ¢ > 0. But

o(t,x;b,) — ¢(t,x;b,) = P|maxX, € (by,by)| > 0.
s>t
This implies that n(b;) > n(b,), completing the proof. O
To continue our investigation of n, we need to study the corresponding

eigenfunctions and thereby find an implicit characterization of n.
Eigenfunctions of G on H* are solutions of

1 d2%;(x) 1 x? A 0
PR P LS

such that e;(b) = 0. These are Whittaker functions, D,(-); see Abromowitz and
Stegun (1972). So

e,(x) = kDgy (%),

where k is an L} normalising constant, and A; is such that D,,(b) =

Since e,(x) is positive for x € (—, b) this leads to the following characterl-

sation of n. Let 2(A) be the smallest zero of the equation

Dyy(—x) = 0.
Then —n is the inverse function of z. See Abramowitz and Stegun (1972) for a
summary of the properties of the Whittaker function that we have used.

We now extend our notation for the dominating eigenfunction and write e,
for the eigenfunction for G corresponding to the eigenvalue —n(b), on the
interval (—o, b]. We shall also denote by L,(b) the relevant L, space, and by
(-, ) the corresponding inner product.

LEmMMA 6.2.5.
[n(b+e) — n(b)[<es, epidore = —3€44.(b +€)ey(b +6),
where e’ denotes the derivative with respect to s, the natural scale of £ .

Proor. Now e, & Ly(b + ¢), and taking its analytic continuation to the
interval (— o, b + £] and using the inner product on (—, b + ],

b+e 1 d €y
<_/eb7 eb+e>b+e = f 2 d ) eb+e ds

b+el d? €hie 1 b+e
- 2 ds 2+ ebd [eb+eeb] M

1
—e). (b +e)e (b +e).

= <‘/eb+e’ eb>b+e - 2
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The second line follows from two integrations by parts. So
[n(b + &) —n(b)|{eys, e bre = — 3641 (b + £)ey(b +¢). o

We wish to establish continuity results about D,(x) as a function of x in
order to take the limit as £ | 0 in Lemma 6.2.5. Now D, (x) can be written as

n 3 x2)

x2 .
+B EAMl - 4+ =, =, —
) (p)xe ( s t3 93

Lol

2’2 2

where M is the Kummer function and A and B are given by
\ 1 F(/.L/2 + %) —

- ) o)

D,(x) = A(p)e /"M ('

1 T(p/2+1) (—pm
B('U')=_W 9-n /2172 sm( 2 )

Now since n(-) is decreasing by Lemma 6.2.4, and clearly A(A) and B(A) are
C* functions of A for positive A, we can directly apply Lemma 2.2.3 to give the
necessary continuity properties. Furthermore, since the derivative of the
Whittaker function is given by

D/:.(x) = _%xDp.(x) - “D;L—l(x)y

we can derive similar results for D/(x) also. We summarise these results in the
following lemma, which then enables us to state the main result of this
section.

LEMMA 6.2.6.

() D(x) is a continuous function of p for u < 0 and this continuity is
uniform in x for x on compact sets.
() D_g,@4(x) is a bounded function for b and x on compact sets.
(iii) D/(x) is a continuous function of w and this continuity is uniform in x
for x on compact sets.
(v) D'"_,, (%) is a bounded function for b and x on compact sets.

THEOREM 6.2.7. n(d) is a continuously differentiable function such that

, 2
l (D—2n(b)( _b))
2 “D—2n(b)( —x)||2 .

1 2
m(b) = 5 (e(b)) = -

ProoF. Lemma 6.2.5 can be rewritten as
DI—2n(b+e)( -b- 3)D—2n(b)( -b—¢)
2<D—2n(b)’ D—2n(b+e)>b+8

We wish to consider the limit as £/0 in (6.2.3). First, we look at the
denominator.

(6.2.3) n(b+e) —n(b) = —
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We know that n*(b + ¢) = lim, o n(b + ¢) exists since n(b) is decreasing.
It is also clear that D_,,+,(—x) > 0 for x € (—, b) and is not identically 0
(since no parabolic cylinder function is). So D_,,+4(—x) is a nonnegative
eigenfunction of . on (—o, b). This implies that n(b) = n*(d) since if not
then D_,,4, and D_,,+ 4, are orthogonal eigenfunctions on H, and this is
contradicted by taking their inner product since D_,,w is a positive eigen-
function on (-, ). Thus we have proved that n is a right-continuous
function. Now Lemma 6.2.6 ensures that the integrals converge to the ex-
pected limits,

2
<D—2n(b)’ D—zn(b+g)>b+e - ||D_2,,(b)” >0 aselO.

Now we can strengthen Lemma 6.2.6 to say that D_,,,,(—x) is a continu-
ous function of both b and x and we can thus take limits in (6.2.3) to obtain
the required result, since D_,,,(=b) = 0. O

6.3. Time-dependent boundaries for Brownian motion.

THEOREM 6.3.1. Let {Q, 7, %,t > 1,P} be a filtered probabilit:y space on
which is defined a Brownian motion (B, t > 1}. Let f(t) be a one-sided
boundary of the form

f(¢) =a-b()t"?, t=1, a-5b(1) >0,
where b(t) — at~'/2 is asymptotically nonincreasing to a limit b(x) and f(¢) f'(¢)
is asymptotically nonincreasing to 3b()%. Let

T =inf{¢t > 1; B, > f(¢)},

then
Plr>¢t] = O(exp{—fltn—(@- ds}) ast — .
Proor. Let

Xt = e“/zBe:.
Then {7 = ¢} = {r' = log t}, where
7 = inf{t > 0; X, > ae™*/2 — b(e")}.

Let g(¢) = ae /2 — b(e’), and fix T such that g(¢) is nondecreasing
for ¢t > T. Adopting the notation introduced in Section 2, we let n, =
Law{X,|7’ > ¢}, and we assume

MHp ~ Sf(T)-

Then Lemmas 2.1.1 and 2.1.2 and Corollary 2.1.5 show us that

st.
Wy < 65D, t>T.
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Now we define the stopping time 7* as follows:
™ = inf{s > 0; B, > f*(s)},
where

£*(s) = {f(s), s<t,
f (), s>,
for some fixed ¢ > T. Then
P[T’ >t+elr >t up~ 8§(T)] > IF"[T’ >t+elr >t pu,~ 8;‘;'(‘)]
> P[r* > ¢ +elt* > ¢, p, ~ 85

= e 7enE®) t>T.
So

int {(¢—T)/¢)
IP[T' >t >T, pp~ 8£(T)] > exp[-—s Y n(g(T +ie))
i=1

But this is true for arbitrarily small ¢, so by taking the limit as ¢ > 0, in a
similar manner to that of the proof of Theorem 3.2,

P[7' > tr' > T, pp ~ 85] = exp{ft -n(g(s)) ds}, t>T.
T
Also using the standard argument involving the recurrence of Brownian

motion and thus showing that all starting distributions have the same asymp-
totic behaviour for the hitting time (see the proof of Theorem 3.2), we can say

Pl >t >T] = exp{k1 - ftn(g(s)) ds}, t>T,
T
for some constant %, and so
Pl7 > ¢t] =k, exp{ft - n(g(s)) ds}.
0

Now by the transformation s = log u:

fet —n(au™'% - b(u)) du}

Pl7 > t] = k, exp{
1 u

and

ft —n(au~% - b(u)) du}.

Plr>t] > &, exp{
1 u

We have now given a lower bound for the distribution function of 7. The
proof of the upper bound follows in a similar way to that of Theorem 3.1.
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Define the following transformation:
B
Y, = o)
f(a(?))
where « is a time change given by
@(t) = f*(a(t)).
As in Section 3, we obtain the inequality

—n(au% - b(u)) d }
u

u

Plr > ¢t] < kg exp{f

for some constant k5. Note that this uses crucially the existence of a local
Lipschitz constant of n(-).

It remains to show that [{n(au~'/2 — b(u))/u du is asymptotically equiva-
lent to [{n(—b(u))/udu. However, again by the local Lipschitz property of
n(-) around b(«), noting that n(-) is decreasing:

n(=b(u)) — kyau'? <n(au'% - b(u)) < n(-b(u))

for some constant %,. But, © %2 € LX(1, »), and so

. —n(=b ,—n(au=1/2 — b
exp{fl—n(—;ﬂdu} sexp{fl n(au ” () du}

< kﬁ exP{fltM du},

u

thus completing the proof. O

For our result on lower-case boundaries, we need to define a well-behaved
class of functions.

DErFINITION. A function f = t%a(t) € C* if it satisfies:

@@ a(®) > 0as t > o,
(i) f()f'(¢) is asymptotically decreasing to 0.

THEOREM 6.3.2. Suppose f € C*; then for a(t) = f(t)t /2,

Plr>t] = O(exp{—fltﬂ‘s(s—)) ds}).

Proor. In the usual way we derive the inequalities

P[r>t] <k, exp{—fltn—(a;ﬂ ds}
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and
Plr>t] =k, exp{—fﬂ(t)n(r(s), 1) ds},
B(1)

where B(t) = [{1/f%(y)dy, a is the inverse of B and r(s) = f(a(s)) f'(a(s)),
k, and k, are positive constants. Also

Bi;)n(r(s), 1)ds = Lfi;)2r(s)n((2r(s))l/2) ds

= ['n ¢7L2(s)+2$at(s)a’(s))1/2 i+2a’(s) ds
A\

s a(s)

2 , 1/2
y tn((a (s) + 2sa(s)d(s)) ) s

(6.3.1) 1 s
< ftn(a(s)) + kgsa(s)a'(s) I
1 s

< kg(a®(t) — a®(1)) + f:n—(agz ds

<k, + f:n—(as(i))—ds.

Here the equality (6.3.1) follows from Lemma 6.2.3 and the subsequent
inequalities follow from the facts that n is a decreasing function and is
continuously differentiable, and this leads to the existence of positive constants
ks and k4. So

P[r>t] > k5exp{—f1tn—(as(i))— ds}

for some constant k5, completing the proof. O

DEFINITION. [ is a simple positive upper-case function if f(¢)f'(¢) is
asymptotically nondecreasing to .

THEOREM 6.3.3. Suppose f(t) = a(t)t'/? is a simple positive upper-case

function, then
P[r>t] = O(exp{—ftm)— ds}).

1 S

Proor. Since f is a simple positive upper-case function, we derive the
usual inequalities

Plr>t] = k&, exp{—flt&;i))— ds}
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and
Plr>t] <k, exp{—fp(t)n(r(s), 1) ds},
B1)

where r(s) = f(a(s)) f'(a(s)), a'(s) = f%(a(s)) and B is the inverse of a. Again
k, and k, are positive constants. But

a6 en(a(s)(1 + (250(s)) /a(s))”)
f n(r(s), 1)ds>f

s
2fltn(at(S) :Sa’(S)) ds,

and n'(b) is bounded for large b. This can be seen, for example, from Theorem
6.2.7 and the facts that n maps [b,») onto a subset of the compact region
[0, 7(b)] and ey(x) = k3D _,, 4, for some positive constant £3. So, let the lower
bound on n'(b) be —k,:

ftn(a(s) + sd'(s)) ds > ftn(a(s)) s — k4fltn’(a(sl)sa’(s‘) ds

1 s 1

RRICUI

1

— ky(n(a(?)) - n(a(1))).
So clearly,

Plr>t] < k5exp{—f1t@}

for some constant k;, as required. O

Unfortunately, for the negative upper-case boundary, the hitting time be-
comes ‘‘too fast” and conditional distributions change too quickly to allow our
methods to give such good estimates. We can, however, derive the following
theorem which will be stated without proof since the methodology does not
involve any new ideas.

THEOREM 6.3.4. Suppose f is a simple negative upper-case boundary, that
is, a negative square-root boundary such that a(¢)a'(¢t) is asymptotically in-
creasing to . Then its hitting time 7 satisfies

P[r > ¢t] < O(exp{f —w })
and

Plr>t] > o(exp{jo"‘” — n(r(s),1) ds}).
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