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ALMOST SUBADDITIVE EXTENSIONS OF KINGMAN’S
ERGODIC THEOREM

By KLAUS SCHURGER

Australian National University

Based on two notions of almost subadditivity which were introduced by
Derriennic and Schiirger, two a.s. limit theorems are proved which both
generalize Kingman’s subadditive ergodic theorem. These results, being
valid under weak moment conditions, are obtained by short proofs. One of
these proofs is completely elementary and does not even make use of
Birkhoff’s ergodic theorem which, instead, is obtained as a by-product.
Finally, an improvement of Liggett’s a.s. limit theorem is given.

1. Introduction. Kingman’s [4] a.s. subadditive limit theorem is a com-
plete generalization of Birkhoff’s ergodic theorem. In the present paper it is
shown that similar a.s. limit theorems can be obtained if Kingman’s subaddi-
tivity hypothesis is replaced by a weaker condition. In Derriennic [1] and
Schiirger [10] two suitable notions of ‘“almost” subadditivity have been intro-
duced. In the sequel let X =(X;) and U=(Uy), U,; >0, J €_F, be two
families of real random variables defined on a common probability space
(Q, &, P), the index set being #={[i,jl: 0<i<j, i,j integers} where
[i,jl={reR: i<r<j}. Weput X; ;=0 — DX, i [i, jl€ £ We will
say that X is DS-subadditive w.r.t. U provided
(DS) Xiiowt <Xy, it Xy, et Uy, e 0<i<j<ek.

In particular, X is called additive if
X[l,k[=X[l,j[+X[j,k[’ Osi <j<k.

We will say that X is AS-subadditive w.r.t. U provided
k
(AS) Xyuoug < EI(XJi +Uy,)
im
for all disjoint sets o, ...,dJ, in # such that J; U - -+ UJ, € _F.

Note that (AS) is weaker than (DS). Condition (DS) was introduced by
Derriennic who was the first to prove strong almost subadditive limit theorems
(see, e.g., [1], Theorem 4). Condition (AS) is a special case of an almost
subadditivity condition which was introduced by Schiirger [10] in the multipa-
rameter case. In Section 2 we derive an AS-limit theorem (Theorem 1) and a
DS-limit theorem (Theorem 2) which hold under weak moment conditions. In
particular, Theorem 2 shows that in Derriennic’s a.s. limit theorem for
processes X which are DS-subadditive w.r.t. U ([1], Theorem 4), the moment
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1576 K. SCHURGER

condition on U can be considerably relaxed (in fact, E[U ,;] may be allowed to
grow almost linearly).

Theorems 1 and 2 are obtained by short proofs. Moreover, the proof of
Theorem 1 is completely elementary and does not even use Birkhoff’s ergodic
theorem which, instead, is obtained as a by-product. Motivated by Shields [11],
Steele [12] recently obtained a short and very elegant proof of Kingman’s a.s.
subadditive limit theorem, which is based on a certain recursive (‘‘algorithmic’’)
procedure of constructing random decompositions of sets in _#. Applying
Steele’s algorithm in a more general situation, we derive a certain inequality
[see (2.3)] which will be used in various ways to prove the desired AS-limit
theorem. The proof of our DS-limit theorem is based on the key observation
that each DS-subadditive process can be represented as a sum of an additive
process and a certain DS-subadditive process (Z,;) such that (Z, ;) is decreas-
ing. Finally, we obtain an improvement of Liggett’s [6] a.s. limit theorem
under a condition corresponding to (DS) (see Theorem 3).

2. Almost subadditive limit theorems. We will say that X and U are
Jointly stationary if the finite-dimensional distributions of the random vectors
(Xy,4,Uy,1), J €_F, do not depend on k2 > 0 (here, J + k= {j + k: j €J)).
Let R” be the space of all families (x;), J € _Z#, of real numbers (R* being
endowed with the usual o-algebra of Borel sets). The indicator function of a
set A will be denoted by 1,.

LemMMA. Let X be AS-subadditive w.r.t. U and assume that
(2.1) Xipr+yt U, ey < 0, k=0.
Let 1 <m,; <my,< --- be a fixed sequence of integers. Define, for a given
nonpositive measurable mapping ¢: R* — R, the events D(K), j 20, K > 1,
by
(2.2)  Dy(K) - {1$12K(XU’“"‘~[+ Ty sem) > $(X) + a},
where a > 0 is fixed. Then we have

m,—1

(2.3) X[O»mnls amn+¢(X)(mn_mK_ Z ]'DJ(K))’ KZ l,nZ 1.
j=0

If, additionally, X and U are jointly stationary and if ¢ has the property that
(2.4) o((X504)) = 0((X,)) as, k21,
then

(le(K))jzo is stationary, K > 1.

Proor. Let K> 1,n > 1and o € Q be fixed. Using Steele’s [12] recursive
procedure, we decompose [0, m [ into sets in _# (depending on w) as follows.
Let 0 <j < m, — 1 be the smallest integer not belonging to any of the random
sets constructed so far.
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CasE 1. w € D(K). Take [j, j + 1[ as the next set.
If, however, w ¢ D,(K), then there exists some 1 < k < K such that
(2.5) X jamy(@) + U, jemy(@) < mp($(X(0)) +a).

Choose any such k.
CASE 2. j + m; <m,. Take[j, j + m,[ as the next set.

CasE 8. j +m, > m,. Take[j, j + 1[ as the next set.
Let n; = n(w) denote the number of sets constructed according to Case i
(i=1,2,3).If ky,..., k,, are the numbers of integers contained in the sets

constructed according to Case 2, we clearly have

m,—1
n1+n3+k1+ cct +kn2=mn, nIS Z ]'DJ(K) and n3SmK—1,
Jj=0
which implies
m,—1
(2.6) k1+ tee +kn22mn_mK_ Z ]'Dj(K)'
j=0

From (AS) we get, taking into account (2.1), (2.5), (2.6) and the nonpositivity
of ¢,

ny mn—l
Xom<(#(X)+a) L k;<am, +¢(X)|m, —mg— X lpul-
i1 Jj=0

The last assertion of the lemma is a consequence of (2.4), (2.2) and the joint
stationarity of X and U. O

Using the above lemma, we can prove the following AS-limit theorem (we
put a*= max{0, a}, a € R).

TureoreM 1. (i) Let X and U be jointly stationary and let X be AS-subad-
ditive w.r.t. U. Assume that

(2.7 by €LL, UcLi.

Let 1 <m; <mgy < --- be a sequence of integers such that
(2.8) lin':linf)_{[o,ﬂmn[ > ]in’;inf)?lo,mn[ a.s.,j=1,
and

(2.9) li'rln l-jlo,mn[= 0 a.s.

Then

(2.10) li'fln)_([o,m,,ﬁ &, existsa.s.,
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where
(2.11) —o0 < <® a.s.
(i) If additionally,
(2.12) li'llnE[X[o,m,,[] =y exists and is finite
and ‘
(2.13) lian[U[o,mn[] =0,

then (X ,, ) also converges in L.

REMARkS. (i) Note that (2.8) is satisfied if m, = n, n > 1, or if, for almost
all w € Q, there are constants c(w) € R such that X, .y (®) — X , (@) =
c(w),n>1

(ii) Let m, = n, n > 1. It has been noted by Kingman ([5], Theorem 1.8)
that (2.10) and (2.11) hold if X satisfies the hypotheses of the first part of
Theorem 1 in the case where U is the identically vanishing process.

(iii) Let m, =n, n > 1. Theorem 1 shows that Theorem 3.2 of [10],
restricted to the one-parameter case, holds under weaker moment conditions.

(iv) It has been shown by Derriennic and Hachem [2] that a stationary
integrable process X = (X ), J € _#, satisfying the subadditivity condition

(DHS)
+
E[(Xonii—Xiou—Xinnsn) | Sc(n+k), n=21k=1,

where (¢(n)) € R, has the property that (X, ) converges in L' provided X
and (c¢(n)) satisfy certain additional hypotheses. In [2] the question is posed to
find an analogue of (DHS) on which an a.s. limit theorem for (X, ,) can be
based. Let us say that a process X = (X;) c L' is BS-subadditive w.r.t.
U= (U, cL, J e g provided

k
(BS) XJIU oo UJk S E XJi + UJIU UJk

i=1
for all disjoint sets Jy,...,d, in _# such that J, U ---UJ, € £ If X is
BS-subadditive w.r.t. U, clearly (DHS) holds provided we put c(n) = E[Uj /],
n > 1. It is clear that X is BS-subadditive w.r.t. U iff (X, — U,) is AS-subad-
ditive w.r.t. U. Hence Theorem 1(i) implies that (X, ,) converges a.s. to some
random variable £, such that —» < £, < ® a.s., provided X and U are jointly
stationary, X is BS-subadditive w.r.t. U, and U[o,n[" 0as.as n — oo,

ProorF oF THEOREM 1. (i) Let us first consider the case when X and U
additionally satisfy the inequalities

(2.14) X kryutUpp k4= 0, k=0.
Putting
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we have
(2.15) £&i=¢6 as,j=1.
In fact, since, for j > 1, n > 1,
Xio, jmat = Xo, jtt Uo, 1t Xj, jamat T Ul jtm i

the Jomt stationarity of X and U combined with (2.8) and (2.9) implies ¢; > £,
a.s., j > 1. Since ¢, and £, have the same (possibly defective) distribution,
@. 15) follows. Now, let A, (K, a) be the event obtained from the event D, (K)
in (2.2) by putting ¢(X) = max{—a, &,} for @ > 0. Dividing both sides in (2 3)
by m, and letting n — », we get, for a > 0,a > 0and K > 1,

(2.16) limsup)_flo,mn[sa + max{ —a, ¢,} +aS(a,a,K),
n
putting
m,—1
(2.17) S(a,a,K) = hmsup— Zo AK,a)"
noj
Suppose that
(2.18) liIr{nS(a,a,K) =0 as,a>0,a>0.

Then, by (2.16), first letting K — « and then a — 0 and a — «, we see that
(X0, ) converges a.s. To prove (2.18) keep a > 0 and a > 0 fixed. Since

S(a,a,1) > S(a,a,2) > -, liII{nS(a,a,K) = S(a,a) existsa.s.
Thus (2.18) is equivalent to
(2.19) E[S(a,a)] =0.
To prove (2.19) first note that, for e > 0 and K > 1,
k-1
(2.20) E[S(a,a,K)] <e+P sup - Y lak,a) > €|
k j=0

To obtain an upper bound for the probability in (2.20), keep also K > 1 fixed
and apply (2.3) to the additive process Y given by
Y,=- Y% L4k, ay J e /g,
JEJINZ

and the sequence m, = n, n > 1. Note that, by (2.15), Y is stationary. Let
e > 0. Replacing in (2.2) X, U, K> 1, a > 0 and ¢, respectively, by Y, the
identically vanishing process, L > 1, 8 > 0 and the function identically equal
to —B — ¢, we get, by taking expectations on both sides of (2.3),

—nP(A(K,a)) <pn — (B +¢)
(2.21) n_L_nP{ lkleA(K a)<e})

X
1<k<L k
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for L > 1, n > 1. Dividing both sides in (2.21) by n, we obtain, letting n — «,
B—0and L — x,
1k-1
P{ sup — " E lyk,ay> &) < —P(AO(K a)).
k

Since, by (2.9), P(A (K, a)) — 0as K - x, (2.19) follows from (2.20) and the
dominated convergence theorem. If, however, the inequalities (2.14) are not all
satisfied, we consider the decomposition

(2.22) XJ = VJ - WJ’ J E/
given by
(2.28) Vi=X,— X (X jeut Uyjen)  JES
je€JINZ,
(2.24) Wy=— X (X(jeut Ujjen) JESL
jednz

and apply the a.s. convergence result obtained above to V and W: It follows
from Fatou’s lemma that the a.s. limit of (W, ,,, ) is integrable by (2.7) and the

joint stationarity of X and U. Thus (2.10) and (2.11) also hold in the general
case.

(ii) First note that the additive process (WJ) (W, given by (2.24)) is
uniformly integrable. Hence (W[0 ) converges in L!. It therefore suffices to
show that (V], ,, ) converges in L. It follows from (2.12) that

limE[V[0 . [] = ¥ exists and is finite.

Let lim V[0 m= fo a.s. Fatou’s lemma implies E[§0] > 7. In order to show

that E[£,] <9, fix N> 1 and write m, = k,my +r, where k, > 0 and
0 <r, <my. Since, for n > 1,

k,—1

Vio,mat < ZO (Viimy G+ omat+ Uimp i+ mat) + Vikam, mot + Utk pmosmot
-

(putting V,, = U, = 0) and (by the Borel-Cantelli lemma)
ll'l‘ln m_nV[kn'nN,mn[= ll’in m_nl][knmN'mn[= 0 as,N=>1,
we get
E[é—O] SE[‘_,[c’r’nN[-l-l_][or’nN[]’ NZ 1.
Therefore (2.13) implies E[fo] = ¥ which, in turn, shows that
— - — A\ — -
E[W[o m [—§o|] = ZE[ V[o m [—fo ] - E[V[o m [—fo]

tends to zero as n — » (note that the random variables (V[O ml -t n=>1,
are uniformly integrable). O
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ExampLEs. (i) Let II denote a Poisson point process (intensity 1) on R?2,
and denote by II(A), A c R? the set of points of Il contained in A. Let
(R x [0,1]) = {ny, ny, ...}, the points 7, being indexed in any systematic
order. Let p;,py, ... be an iid. sequence of nonnegative random variables
which is independent of II. We introduce an undirected random graph I’
without loops and multiple edges as follows. The vertex set of I' is II(R X
[0, 1]). Two vertices n, and 7; (i # j) are adjacent in I iff lIn; — n,ll < p; + p;
(Il - Il denotes the Euclidean norm). Let I;, J € _#, denote the following sub-
graph of I': The vertex set of I, is II(J X [0, 1]) and two vertices of I, are
adjacent in I, iff they are adjacent in I'. Define the random variable X,
J € _Z, to be the number of vertices belonging to those connected components
of I’; which contain an even number of vertices. Finally, we define U, J € 2,
to be the number of vertices x of I'; for which there exists a vertex y €
(R \ J) X [0, 1] such that x and y are the end vertices of a certain path in
. It is easy to see that X = (X ) is AS-subadditive w.r.t. U = (U;). In the
case where p; has a density which is strictly positive on some interval [0, c]
(¢ > 0), it is easy to verify that there do not exist constants a € R and b > 0
such that (X; + aU,) or (-X; + aU,) is DS-subadditive w.r.t. (bU;). Let us
show that X and U satisfy the hypotheses of Theorem 1(@i) in the case where
m,=n,n >1,and 0 < p, <r, as. for some constant r, > 0. Clearly, for all

J €/,
X, <I(J x[0,1]) € L%, U, < ITI(J % [0,1]) € L,
(JA| denoting the cardinal number of a set A). In order to verify Condition
(2.9) (for m,, = n, n > 1), put
7 =min{m > 0: II([3mr,, 3(m + 1)re[ x[0,1]) = @}
and, for n > 1,
7, = min{m > 0: II([n — 3(m + 1)ry,n — 3mr,[ X [0,1]) = &}.
Clearly,

m+1

P{r>m} =P{r,>m} =(1-exp(—-3ry)) , m=0,n2>1.
Using a Borel-Cantelli argument we obtain that a.s.
7, < ¢(ry)log n for all sufficiently large n
where c(ry) = —2(log(1 — exp(—3r,)))~ L. This implies that a.s. for all suffi-
ciently large n,
U, i< ITI([0, 87rg[ X [0,1])| + ITI([ — 87,7, n[ X [0, 1])l
< [TI([0, 37ro[ X [0,1]) + ITI([n — 8ryc(ry)log n, n[ X [0,1])I.

Hence (U,) satisfies (2.9). By Theorem 1(i), S}_([O, o) converges a.s. Since
X0, ny< TI(0, n[X[0, 1DI, n > 1, the sequence (X}, ,) is uniformly integrable
and therefore also converges in L!. Similar remarks apply to the process
Y = (Y,), where the random variable Y, J € _Z, is defined to be the number of
vertices belonging to those connected components of I'; which contain an odd
number of vertices.
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(ii) Derriennic (see [1], page 676) has given an example of processes X =
(X,)cL and U=(U,)), U;>0, J €2, such that X and U are jointly
stationary, X is DS-subadditive w.r.t. U and

(2.25) PU,>t} <27, t>0,Jef.
It follows from (2.25) that
supE[ U, ] < .
n
Hence Derriennic’s almost subadditive limit theorem ([1], Theorem 4) applies
and gives that
(2.26) imX, =& €L, existsas.,
n
which is the a.s. part of the Shannon-McMillan-Breiman theorem of informa-

tion theory. On the other hand, (2.26) also follows from Theorem 1. In fact, by
(2.25),

f P(T > e} <w, £>0,
n=1

and hence U, ,,— 0 a.s. as n — .
We can now prove the following DS-limit theorem.

THEOREM 2. Let X c L' and U c L% be jointly stationary and let X be
DS-subadditive w.r.t. U. Assume that

(2.27) ix’}fE[}_(w’n[] > —oo
and
(2.28) lim E[ T, /] = 0.
(1) Suppose that, for some integer p > 2,
(A,) li’llnl7[0’pnk[= 0 a.s,k>1.
Then
(2.29) li’zn)?[o’ o= &0 existsa.s.andin L'.

(ii) Assume that, for some & > 0,

asn — x©,

(2.30) E[U[o,n[] =0 1+8

log n(loglog n)
Then (2.29) holds.

ReMARK. Using a rather difficult proof, Derriennic obtained a limit theo-
rem for processes X which are DS-subadditive w.r.t. U ([1], Theorem 4). In
particular, he assumed that

(2.31) supE[Uj, ] < .
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Part (ii) of Theorem 2 shows that the conclusion (2.29) in Derriennic’s limit
theorem remains unaffected if condition (2.31) is replaced by (2.30). On the
other hand, part (ii) of Theorem 2 shows that the monotonicity assumptions in
Theorem 3.3 of [7] are unnecessary if the processes (X,, ,) and (Y, ,) are
assumed to be jointly stationary. In [7] and [8] a.s. limit theorems were
obtained under certain stationarity assumptions weaker than joint sta-
tionarity.

Proor oF THEOREM 2. (i) In order to prove that ( )_([0, n) CONVErges a.s. we
use the decomposition (2.22). Since Theorem 1 applies to the process W given
by (2.24), it suffices to show that (V|, ,/) converges a.s. [V given by (2.23)].
Clearly, V is DS-subadditive w.r.t. U and

Vit kst Uppsy <0, k20

Since this implies that (V}, ;) is decreasing, it follows from Theorem 3.2 of [7]
that it suffices to show that

(2.32) LmVj, ny=m, existsas, k> 1,
n

and

(2.33) n,=m as,k>2.

By Lemma 3.1 of [7] we have

(2.34) E[limninf(ﬁo,nﬁﬁlo,,,[)] >y,

where y equals the (finite) limit
(2.35) EmE([V, ] = v

(the existence of the limit in (2.35) is a consequence of Lemma 3.1 of [7]). On
the other hand, it is easy to show [see the proof of Theorem 1(i)] that

E[limsupV[O,n[] SE[V[O’N[] +E[I_I[O’N[], N=>1,
which, by (2.35), (2.28) and (2.34), implies
(2.36) E

lim sup‘_/[O,n[] <v< E[liminf(l_/_'lo’n[+l7[0’n[)].
n n

Clearly, (2.32) and (2.33) follow from (A,) and (2.36). In order to show that
(X[o, ;) converges in L', one can use the same argument as in the proof of
Theorem 1(ii).

(ii) Note that (2.30) implies

Y E[Tg | <® k21,px2.
n=1

Hence (A}) holds for all p > 2 and (ii) follows from (i). This completes the
proof of Theorem 2. O
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REMARKS. (i) The proof of (2.34) (given in [7]) is relatively short but uses a
less elementary compactness argument. This leads to the question whether
(2.34) can be obtained by an elementary covering argument similar to that in
the proof of (2.3).

(ii) Using a construction of Durrett [3], Liggett [6] obtained a new version of
Kingman’s [2] subadditive limit theorem in which the subadditivity and sta-
tionarity assumptions are relaxed without weakening the conclusions. Since
Lemma 3.1 of [7] is also based on Durrett’s construction, it is straightforward
to verify that, in Theorem 2, (DS) and the requirement that X and U are
jointly stationary can be replaced by the following weaker hypotheses [the
proof is based on the decomposition (2.22) where, in the definitions of V; and
W, X[ ;4q is replaced by X[; ;. j = O

(237) X[O,n+k[ = X[O,n[+X[n,n+k[+(][n,n+k[’ n = 1; k = 1’

the processes {X|,; (,+14> 7 = 0}

(2.38) .
and {U,,,5, (n+ 14> # = 0} are stationary for each & > 1; .
and
the joint distributions of
n+m—1
(2.39) Xim,ntmi T Upm,ntm(— Z (X, j+u+ Uy jey)n 21
j=m

do not depend cn m > 0.

[Let us note that the proof of Lemma 3.1 of [7], applied to V and U, does not
really use conditions (3.4) and (3.6) of that lemma but, instead, only uses the
condition

E["[m,n+m[+Uim,n+m[] = E[V[O,n[+(][0,n[]’ m = O’ n = 1’

which, in turn, follows from (2.38) and (2.39).] It is, however, not clear
whether there exist interesting processes X and U which are not jointly
stationary and fail to satisfy (DS) but do satisfy conditions (2.37)-(2.39). If,
however, condition (A,) of Theorem 2(i) is replaced by a suitable stronger
condition on U, then it is possible to obtain an improvement of Liggett’s [6]
a.s. convergence result. In fact, the following result (not mentioned in [7]) is a
consequence of Lemma 3.1 of [7].

THEOREM 3. Let X c L' and U c LY. be processes satisfying the following
assumptions:

for each k > 1, the distribution of X, ,, .y as well as that of

(2.40) Ui, m+#; does not depend on m > 0;

the joint distributions of {X,, mirt Upm, m+ap * = 1} are

(241) 44 same as those of {Xjo st Upo, s & = 1} for each m = 1;
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for each k > 1, the processes { Xk nrppy =0} and
(U, (n+1pp 1 = 0} are stationary;

(2.43) Xionraf < Xion( T XnntrTUpnnsny n2Lk21

(2.42)

(2.44) ing[X'[O’n[] > o0;
(2.45) lim E[ T | = 0;
and "

(2.46) li’rln Up,n=0 a.s.
Then

()_([0,,4) converges a.s. and in L.

Proor. It follows from Lemma 3.1 of [7] that
h,{nE[Xlo,n[] =7

exists and is finite.
Proceeding as in the proof of Theorem 2(i) we obtain

E[lim sup)_([o,n[] <y< E[liminf()_([o,n[-'-l_j[O,n[)] )

which, by (2.46), implies the desired conclusion [note that, by (2.43) and (2.42),
the sequence (( Xy ,)*) is uniformly integrable]. O

Finally, we would like to mention that Durrett’s [3] construction has been
used in [9] to obtain subadditive limit theorems for stochastic processes with a
multidimensional parameter.
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