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REPRESENTATION OF MEASURES BY BALAYAGE FROM A
REGULAR RECURRENT POINT

By J. BERTOIN AND Y. LE JAN

Université Pierre et Marie Curie

Let X be a Hunt process starting from a regular recurrent point 0 and
v a smooth probability measure on the state space. We show that T' = inf{s:
A, > L}, where A is the continuous additive functional associated to v
and L the local time at 0, solves the Skorokhod problem for v, that is, X
has law v. We construct another solution which minimizes E(Bg) among
all the solutions S of the Skorokhod problem, where B is any positive
continuous additive functional. The special case where X is a symmetric
Lévy process is discussed.

0. Introduction. Let X be a Markov process with state space E. The
problem of representing a probability measure on E by the distribution of X
taken at a suitable stopping time (often called the Skorokhod problem), has
been considered by many authors including Skorokhod (1965), Dubins (1968)
and Root (1969) when X is a one-dimensional Brownian motion and Rost
(1971) for general Markov processes; see Dellacherie and Meyer (1983) for
further references. Usually, the stopping times that solve this problem are
constructed by approximation [some explicit solutions are known when X is a
one-dimensional Brownian motion, but they are specific to this case; see, for
example, Azéma and Yor (1979)]. We show here that there are simple and
direct solutions when the starting point 0 € E is regular and recurrent. One of
our solutions is optimal, in the sense that it minimizes the expected value of
any positive continuous additive functional (p.c.a.f.) taken at this time among
all the solutions of the Skorokhod problem. When we specialize our results to
the case when 0 is a holding point, we partially recover the Skorokhod-type
representation of Azéma and Meyer (1974) for transient Markov processes.
The case of symmetric Lévy processes is of special interest and is discussed in
the Appendix.

Our approach relies on excursion theory and on the correspondence between
measures and additive functionals. Of course, things are simpler when E is
discrete and the reader only concerned with continuous-time Markov chains
will find the solutions in the examples below the statements.

1. Statements of results. Henceforth, we consider a Hunt process X
with a reference measure on a locally compact space E with a countable base.
We assume that 0 € E is a regular recurrent point for X. We denote the local
time at 0 by L [cf. Blumenthal and Getoor (1968)], its right-continuous inverse
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BALAYAGE REPRESENTATION OF MEASURES 539

by L™, the characteristic measure of the corresponding excursion process by
n [cf. It6 (1972)] and the first hitting time of 0 by £. If ¢ is the delay coefficient
at 0, then the measure u

(1) [fan = [dn[*F(X,)ds + cf (0)

is invariant; see Getoor (1979). For every positive continuous additive func-
tional B, we call the Revuz measure of B, the measure y given by [fdy =
1 /0E,(f§ f(X,) dB,); see Revuz (1970) for the correspondence between p.c.a.f.
and measures. We denote by V( fxXx) = E,(f§ f(X,) dB,) and simply V(1y) by
Vx.

We consider a p.c.a.f. A with Revuz measure v and we assume that v gives
no mass to {0}. Our claim is:

THEOREM. Introduce the stopping time T = inf{t: A, > L,} and denote the
Po-distribution of X1 by m, that is, Po( X, € dx, T < ) = n(dx).

(1) If v is a subprobability measure, then T solves the Skorokhod problem
for v, that is, v = m. Moreover, E(Ly) = .

(i) If v(E) > 1, then Eo(Ly) = 1/a, < ®© and for every nonnegative Borel
function f, we have

ffdu = f(f+ aV(fv))dn.

REMARK. Monroe (1972) also considered passage times of additive function-
- als to solve the Skorokhod problem when X is a symmetric stable process in
dimension 1. However, he has no explicit solution.

ExaMPLE. Assume that E is a discrete space. Then X is determined by its
transition probabilities P(x,y) and its holding time expectation 1/g(x). As-
sume that 0 is recurrent and that Po(X hits x) = 1 for all x € E. We denote
by P' the transition matrix of X killed at its first return to 0 and let
m(x) = 8o(x) + £5_,(PN*0, x). This measure is uniquely determined by the
two properties: © , . z P(x, y)m(y) = m(x); and m(0) = 1. For every x € E, we
denote (q(x)/m(x)) o ;1(x,—) ds by L(x,?). Let v be a subprobability mea-
sure on E that gives no mass to 0 and

T= inf{t; Y L(x,t)(x) > L(O,‘t)}.
x€E .
Then Py( Xy = x, T < ) = v(x) for all x.

When v(E) < 1, the solution of the Skorokhod problem for v that is given
by the theorem is attractively simple. Nevertheless, T is often not optimal
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because E,(L) is always infinite. Consider the hypothesis:

Hyporuesis 1. There is a bounded Borel function Vv such that for every
Revuz measure x, ([Vvdy = [Vxdv. We set Ay = [|VV]|..

We state:

COROLLARY. Assume that v is a probability measure and let B be a p.c.a. f.
with Revuz measure y, B # 0. We have:
(1) If Hypothesis 1 is fulfilled, then for every A > A,

T()) = inf{t: A/Ot(A - Vv(Xs))_ldAs > Lt}

solves the Skorokhod problem for v and Ey(Byp,,)) = [(A — Vv) dx lin particu-
lar, Eo(Ly,y) = Al. Furthermore, for every solution S of the Skorokhod prob-
lem for v, Eo(Bg) = [(Ay — Vv)dy.

(ii) If Hypothesis 1 is not fulfilled, then for every solution S of the
Skorokhod problem for v, Eo(Bg) = c.

_ Remark. The probability measure v is a cocapacitary measure, that is,
Vv = Ay, v as, if and only if T'(A,) is the first hitting time of the fine support
of v.

ExampLE. The hypotheses are the same as in the example following the
theorem. Assume now that v is a probability measure on E and introduce

Vr(x) = L v(9)E,(L(x,0)),

y€E

where ¢ = inf{t: X, = 0}. If A, = sup{Vwv(x): x € E} < o, then

T(A,) = inf{t: Y Ao(Ao — Vv(x))_lL(x,t)V(x) > L(O,t)}
x€E

solves the Skorokhod problem for v and Eo[L(x,T(A )] = Ay — Vu(x) for

every x € E. Moreover Ey(L(x, S)) > E,(L(x, T(A,))) for every solution S of

the Skorokhod problem for v.

2. Extension to transient Markov processes. It is interesting to note
that this corollary enables us to recover the Azéma and Meyer (1974) theorem
for transient Markov processes by the argument below. Let X' be a standard
Markov process on E \ {0} with initial distribution « and a.s. finite lifetime.
Take for X the recurrent extension of X' with excursion measure n = P} and
such that 0 is a holding point with parameter 1 for X. Denote by g = inf{s:
X, # 0} the first exit time from 0 and by A" the additive functional of X' given
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by Al(6,w) = A, (@), t < {(8,0). Applying Lemma 2 in Section 3, we find

61 [{7(x) aat) - [rav,

that is, A" is the additive functional associated to (v, P}) by Azéma’s theorem
[see Azéma (1973), page 491]. Clearly, every solution of the Skorokhod problem
for v and X is larger than g. Recall that g = L, has an exponential distribu-
tion with parameter 1. Thus, when Hypothesis 1 is fulfilled, the stopping time
T'(A¢) occurs during the first excursion of X from 0 if and only if A, = 1 [this
is easily seen to be equivalent to Rost’s (1971) balayage condition with regard
to X']. In this case, if . is an independent exponential r.v. with parameter 1
and

Tt = inf{t: f’(1 - VV(X;))_ldA*s > &},
0

then the P/-distribution of X' at time T'' is » (this is the Azéma and Meyer
solution of the Skorokhod problem for X' in an expanded filtration). By the
corollary, if Hypothesis 1 is not fulfilled or if A, > 1, then there is no solution
of the Skorokhod problem for v and X'. Of course, this method immediately
extends to subprobability measures, and, by change of time, to transient
Markov processes with infinite lifetimes.

Another interesting consequence of the corollary is that it yields the solu-
tion of the Skorokhod problem in the natural filtration when the starting
point is regular but not recurrent. Denote by X' a standard transient Markov
process on E, starting from a regular but not recurrent point 0. For simplicity,
" assume that X' has lifetime £ < » a.s. Let L' be the local time at 0 and A
the p.c.af. associated to the smooth probability measure v [»({0}) = 0] by
Azéma’s theorem, that is,

e [(x)ary) =), 3| ffr(x)aat) = [rav.

Let A be a cemetery point and consider the following recurrent extension X of
X1 At the lifetime of X', X is sent to A during an independent exponential
time of parameter 1 and then it is resurrected at 0 (and so on). The local time
L at 0 for X is the extension of L' and one easily checks that the Revuz
measure w.r.t. X of the extension A of A' is still v. Let L* be the time spent
by X at A. If Hypothesis 1 is not fulfilled, then E,(L§) = » for every solution
S of the Skorokhod problem for » and X, and there is no solution of the
Skorokhod problem for » and X'. If Hypothesis 1 is fulfilled, then
the’ stopping time T'(A,) occurs before X visits A if and only if Eo(L%, A = 0.
By the corollary, this is equivalent to A, = Vv(A), that is, [Vxdv < Vu(A) for
every smooth probability measure y on E (of course, this is just a reformula-
tion of Rost’s balayage condition). In this case, a solution of the Skorokhod
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problem for » and X' is
. t A -1
" - mf{t: [ (0 = V() " > Lz}.

If Hypothesis 1 is fulfilled but A, > V»(A), then there is no solution of the
Skorokhod problem for » and X". '

8. Proofs. The key point is an elementary result on Lévy processes with
bounded variation and no positive jumps. Consider a subordinator S with no
drift and Lévy measure IT and set Y, = ¢ — S,. Denote the law of Y by P and
its characteristic exponent by ¥: For every a > 0,

E,(expaY,) = expt¥(a), VY(a)=a+ ];0 oo)(e""y - 1I(dy).

Clearly, ¥ is a convex function on [0,®) with lim, ¥ = . Furthermore, if
[yT1(dy) < 1, then ¥'(0 + ) > 0, ¥ is a bijection on [0, =), and we denote its
inverse function by ¥~ If [yI1(dy) > 1, then ¥'(0 + ) < 0, there is a unique
positive root @, of the equation ¥(a) = 0, ¥ induces a bijection from [a g, %)
into [0, ) and we denote the inverse function by ¥~ ': [0, ) — [a, ®).

Set 7(y) = inf{t > 0: Y, = y} = inf{¢ > 0: Y, > y} (y = 0). The optional sam-
pling theorem applied to the martingale exp{aY; — t¥(a)} yields
(2) Eo(exp{ —a7(y)}) = exp{-y ¥ *(a)}.

We will need the following:

LEMMA 1. Set o = inf{¢: Y, < 0}. For every bounded Borel function ¢, we
have

B [(o(Teetdt) = ["o()exs(-y¥ (@) dy.
0 0
Moreover 1/Ey(c) = ¥~10) = a,.

ProoF. Set ¢ =0 on (—,0). Since Y has no positive jumps, we have
E([o(Y)e™* dt) = Eo([§@p(Y,)e”* dt). By the Markov property, we rewrite
this last quantity as E,(1 — e " ) E([op(Y)e ¢ dt). First assume that I1

has a finite total mass, so the graph of Y is a.s. a discontinuous broken line
with right slope 1. Thus :

[e¥yeetdi = [ “dye(y) [ e dl,

where 17 = card{0 < s < ¢: Y, = y}. By the Markov property and (2), we have
EO([ o(Y,)e o dt) = [ dy e(y) Eq(expf —aT(y)})EO(f eat dl?)
0 0 0

-/ “dy o(y)exp{—y¥~(a)}/Ey(1 — e™*®).
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By approximation, the above equality also holds even if [T has an infinite mass
[with [(1 A y)T1(dy) < =]. Taking ¢ = 1 ., we get Eq(e %) =1 — a/¥ Ya);
s0o Ef(o) =1/¥~X0). O

Now, recall the notation for excursions, additive functionals and so on. We
rewrite v in terms of the excursion measure n: »

LEMMA 2. For every nonnegative continuous function f, we have
14
[fdv = fdnfo f(X,)dA,.

ReEMARK. When 0 is a holding point, say of parameter 1, then n is the law
of a transient Markov process. This lemma links the Revuz (1970) and Azéma
(1973) results.

Proor. Indeed, by (1), for every a > 0, we have

[fdv = [Eu( [0 “ae~ef(X,) dAt)
= f dn fo ‘[EX(S)( [0 “ae~f(X,) dA,) ds + c[EO( fo “ae~Uf(X,) dA,)
~ [dn [0 ‘ee* ds [‘ae'f(X,) dA,

¢ —a({-s ®  -a
+ (c + [dnfo dse ¢ >)[EO([O ae f( X,) dA,)
(by the Markov property for n and the strong Markov property for P)

= [dn['(1 - =) f(X,) da,

+ (c + fa'l(l — e %) dn)[EO(j:ae_“tf(X,) dA,).

Since [(1 A {)dn < »[recall that n({ € -) is the Lévy measure of the subordi-
nator L], fa™(1 — e~*¢) dn converges to 0 as a 1. Letting a go to infinity
in the above formula, we find that

[fav = [dn[*(X,)dA, +ef(0),

where ¢’ = lim, ,,, cEy(/;ae™* dA,). Since v does not charge 0, ¢' = 0. O

We are now able to give:

ProoF OF THE THEOREM. Denote by A~! the right-continuous inverse of A,
and by G the set of left endpoints of excursion intervals. By the definition of
T, s € G(w) is the left endpoint of the excursion interval straddling T if and
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only if s < T and u < A,(6,0w), where u = L () — A(w). In this case, T = s
+ A, %(0,). Introduce

¢(u) = [l(u <Ag)f(X(A;1)) dn.

Using Maisonneuve’s exit system identity for the second equality below, for
every b > 0,

Eo(exp{ —bL7} f(Xr))

= [Eo( Z l(ssT)exp{ —bL}f o X(s + Agl(esw))l(u<A;(08w)))
seq@

Go{ [ dL, exp( ~BL.}o( L, - A)|

[Eo(foodt exp{ —bt}p(t — A- L‘l(t))),

where o = inf{¢: + < Ao L™%#)}. Recall Lemma 1 and the corresponding nota-
tion with Y, = ¢ — A o L™ !(¢). We rewrite the above quantity as

[ o(u)exp(~ ¥ (b)u} du = [ dn [*exp{— WX (b)u}f(X(A " ()))du.
0 0
Putting the pieces together, we obtain
¢ —
(8)  Eo(exp( ~BLr}F(Xp)) = [ dn [ exp(~¥~1(5) AJF(X,) dA,.
For every a > 0, introduce the measure 7,:
¢
ffdna = fdnf exp{ —aA,} f(X,) dA,.
0
Recall that V(fvXX,) = n([}f(X,)dA,F,) for ¢t < {, and rewrite exp{—ad,}

as 1 — aflexp{—aA}dA,. By Fubini, we get [fdn, + a/V(fv)dn, =
[dnf§f(X,)dA,. Applying Lemma 2, we deduce that

@ [(F+aV(fv))dn, = [fdv.

By (3), the Py-distribution of X is n =7, , where a, = ¥ ~1(0). According to
Lemma 1, 1/a, = E(0) = Eo(L;). Finally, the Lévy measure of the subordi-
nator Ao L™' is Tl(dy) = n(A; € dy). By Lemma 2, [yI[l(dy) = »(E) and
a,=0if and only if »(E) < 1. O

‘REMARK 1. An alternative proof can be given using the following easy fact:
If @, is the semigroup of X° A~! and if f and g are such that f(X,) —
/08(X,) dA, is a local martingale, then @, . 4 f(X,) + [¢@Q; _4 8(X,)dL, isa
local martingale up to time T'.
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REMARK 2. When v(E) > 1, ¥~1(0) = a, > 0 and (3) shows that 7 is the
law of X o A~!(.), where ¢ is an independent exponential time with parameter
Q.

REMARK 3. Assume that the a-resolvent kernel of X o A~! is absolutely
continuous with respect to v, with densities u (x,y). We easily deduce from
(3) that

Eo(exp{ —aLr}lXp =y) = (¥7'(a) = a)uy-14(0,).

Assume henceforth that v is a probability measure. It is now very natural to
consider the following problem:

Find a positive Borel function p, p <1, such that
inf{t: A, > L,} = T’ solves the Skorokhod problem for
v, where A, = [{1/p(X,)dA,.

For every a > 0, introduce the measure 7/,:
’ £ ! ’
[fdn, = [dn [ exp{-ad}f(X,) dA,.
0

We rewrite (4) as

) f L) an. - jLa.

By the theorem, the P-distribution of X is n' = 7/, for a certain a = . It
follows from (4) that if n), = v, then a [V(gv)dv = [(1 — p)dgv for every
Borel nonnegative function g. Consequently, if Hypothesis 1 holds, then we
" should take p = 1 — aVv.

f+aV

PROOF OF THE COROLLARY. (i) Assume that Hypothesis 1 is fulfilled; take
A>Ad,and p=1-2A""Wv. So T' = T(A). Writing f= (f/pX1 — A~Vv), we
get [(f/p)dv = [(f + A"WV({(f/p)v)) dv. Note that for [f(x) =
E.(J§ exp{—AT"AYR(X,) dA), f+ A"V({(f/p)v) = V(hv) (by the generalized
resolvent equation). Comparing with (4'), we deduce that 7} ,, = v. In particu-
lar, n},,(1) = 1, that is, A™!' = [dn(1 — exp{—A"'A'({)D). This means that
A~!=d), s0 m' = 7n},, = v, and by the theorem, Ey(Ly,) = A.

Clearly, T(A) decreases to T(A,) as A | A, Since X is right-continuous,
T(),) solves the Skorokhod problem for v and Eo(Ly,,) = Ag-

Take for B a p.c.a.f. with finite Revuz measure x and such that Vy is
bounded. One easily checks that Vx(X,) + B, — x(1)L, is a local martingale. If
S is a stopping time that solves the Skorokhod problem for v, the optional
sampling theorem and Fatou lemma imply that x(DEy(L,) > [Vxdv =
[Vv dx. We deduce that Ey(L,) > A,. Moreover, the same martingale argu-
ments show that E(B,) = [(E,(L,) — Vv(x)) dx(x). This equality extends
immediately by monotone convergence to any positive continuous additive
functional B. Indeed, finite lifetime implies the existence of a positive function
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with bounded potential [cf. Blumenthal and Getoor (1968), Chapter 4].
Apply this fact to X killed at 0 and time-changed by B~'. It follows that
Eo(Br,) < Eo(Bg).

(ii) When Hypothesis 1 does not hold, the very same arguments as above

show that F,(Lg) = «, and more generally that E,(Bg) = © whenever B # 0.
: O

APPENDIX

Symmetric Lévy processes. Let X be a symmetric real Lévy process,
such that 0 is regular and recurrent. We denote its characteristic exponent by
®, that is, exp — t®(p) = E (exp{ipX,}). For simplicity, we assume that there
is a measurable family (L(a,?): a € R, ¢t > 0) of local times such that ¢ —
L(a,t) is continuous for all a €.R. See Getoor and Kesten (1972) for (usually
satisfied) sufficient conditions. In particular, [71/P(p)dp < .

In this situation, it is interesting to know when there is a solution of the
Skorokhod problem with finite first moment.

ProposrtioN.  Consider v, a probability on R\ {0}, and introduce Fv(p) =
[eP* dv(x), u(x) = ($)E,(L(x, 0)). We have:
(i) Hypothesis 1 holds if and only if

Judv = [((1~ Fv(p))/(p)) dp < .

(i) Eo(T(Ay)) is finite if and only if Hypothesis 1 holds and
1 - Fv(p)
®(p)
is nonnegative and integrable. Then Ey(T(Ay)) = [(u v — u)dx.

.

)=u*v—u

Proor. (i) Let v, (x,y) = E,(f§e ** dL(y, t)) be the a-resolvent kernel for
X killed at 0 and set u (x) = E,(Jge **(dL(0, ¢) — dL(x,t))). Then

1
Ful(p) = ) +a 5o(p)fm dq

and
1 - Fv(p)
fuadv=f—-——q)(p) . p

Moreover, one easily checks the identity v, (x,y) = u (x) + E,(e *)u(y) —
y (x — ¥). In particular, v,(x,x) = (1 + E,(e"*)u(x). We deduce that u ,(x)
increases to u(x) = ($)v(x, x) as a | 0, and that the Green function of X killed
at 0 is

(5) v(x,y) = u(x) +u(y) —u(x—y).
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Since Vv(x) = [v(x, y) dv(y) < [u(y,y) dv(y) = 2fudv, Vv is bounded when-
ever [udv < o,

Conversely, we first assume that v is symmetric and we set 1,_, ,» = v,.
Note that [udv, < « and that

(Ua = Uaxv,)(%)

1 1 ) . .
(3w matemen s e - 2oy vy dp
a

-Jf aa%:*z sin( 5| dv,(a) dp.

By the Lévy-Khintchine formula, ®(p) > (cp?) (p = 0) and by dominated
convergence, we get

(u—w,mp)(x) = ~2f [ (D(lp)eipx sinz(%) dv,(a) dp,

which tends to 0 as x goes to infinity. By (5), lim,Vv, = [udv, and since
v, T v, Vv cannot be bounded unless [u dv < «. Finally, we remove the sym-
metry hypothesis on v by noting that Vv(x) + Vv(—x) = 2Vi(x), where 7 is
the symmetrization of v.

(i) By (i), Hypothesis 1 means that % (u ,v — u) is integrable. Since

Eo(T (X)) = fR(AO — Vv)dx = jR(,\O — fudv + (u,v - u)) dx,

as soon as lim, u v — u = 0, Eo(T'(A,)) cannot be finite unless A, = [[Vv|l.. =
Judv, or equivalently u ,v — u is nonnegative and integrable. The converse is
obvious. O

Finally, let us specify our results when X is a one-dimensional Brownian
motion. The potential kernel for the Brownian motion killed at 0 is v(x,y) =
x| + |yl — lx —yl. We deduce that [[Vvl, = 2fx* dv) vV @Qfx~ dv) = A,.
Hence Hypothesis 1 is equivalent to v having a first moment. In this case,
introduce

2[ (¢ —x)dv(a), forx =0,
p(x) ={ 77
2[ (x —a)dv(a), forx<O0.

Then
T(Ag) = inf{t: AofL(x, t)p~Y(x)dv(x) > L(0, t)}

solves the Skorokhod problem for v and E,(L(0, T'(A,))) = A,. Furthermore,
u v — v is positive if and only if v is centered and then integrable if and only
if v has a second moment.
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Note also that when v is centered, A, = [|x| dv(x) = E,(IX(T(Ay)]). Accord-
ing to the Tanaka formula and Dellacherie and Meyer [(1975), Theorem 1.21],
|X| is then uniformly integrable on [0, T'(A,)]. If furthermore » has a finite
second moment, then X is a square-integrable martingale on [0, T(A,)] and
Eo(T(Ay)) = [x2dv.

Acknowledgment. We would like to thank P. Fitzsimmons for pointing
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theorem.
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