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ON CHOQUET’S DICHOTOMY OF CAPACITY
FOR MARKOV PROCESSES

By P. J. Frrzsimmons! AND MaMORU KANDA

University of California, San Diego and University of Tsukuba

Following Choquet, the capacity associated with a Markov process is
said to be dichotomous if each compact set K contains two disjoint sets
with the same capacity as K. In the context of right processes, we prove
that the dichotomy of capacity is equivalent to Hunt’s hypothesis that
semipolar sets are polar. We also show that a weaker form of the dichotomy
is valid for any Lévy process with absolutely continuous potential kernel.

1. Introduction. In two papers concerning the fine potential theory
associated with a “regular’ kernel u(x,y), Choquet [3, 4] has remarked that if
points are strongly polar in the sense that u(x,x) =« for all x, then the
capacity C associated with u(x, y) is dichotomous: For each compact K and
each ¢ > 0 there are disjoint compacts K, and K, contained in K such that
C(K,)) = C(K) — &, i = 1,2. Unfortunately, the proof of this assertion is only
hinted at in [3]. A proof of the dichotomy for the Newtonian capacity was given
by Feyel [7]. At about the same time Hansen [12] deduced the dichotomy
property in the context of balayage spaces from a detailed study of semipolar
sets. (Actually, both of these authors consider an ¢ = 0 form of the dichotomy.)
Hansen showed that if points are polar, then the dichotomy property is
equivalent to Hunt’s hypothesis:

(H) Semipolar sets are polar.

Subsequently Feyel [8, pages 50-51] extended the result of [7] to cover the case
of certain capacities associated with Hunt potential kernels. Also see Bucur
and Hansen [2] for a development similar to [12] in the context of standard
H-cones.

Our object in this note is to give a new proof of Hansen’s characterization of
the dichotomy of capacity in a very general context. Namely, if I' is the
Getoor—Steffens capacity associated with a transient Borel right Markov pro-
cess and a given excessive measure m, then T is dichotomous if and only if
semipolar sets are m-polar. It should be noted that when X is a standard
process and m is a reference measure relative to which X has a standard dual
process, then T' (restricted to compacts) agrees with Hunt’s capacity as dis-
cussed in [1, Section 6.4].

The dichotomy property is closely related to the notion of capacitance
scissipare [5], which plays an important role in the theory of semipolar sets.
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Indeed, our proof of the dichotomy relies heavily on a characterization of
semipolar sets due to Mokobodzki [14] and developed in Dellacherie, Feyel and
Mokobodzki [6].

We also present a related result concerning Lévy processes. Suppose that X
is a transient Lévy process in R? whose potential kernel is absolutely continu-
ous with respect to Lebesgue measure. Using a result of Zabczyk [15] we prove
that if G is a bounded open set then there is a Borel set B ¢ G with I'(B) =
I'(G\ B) = T(@). This variation on the dichotomy is valid even if (H) fails. In
view of the equivalence of (H) to the dichotomy property, this last result lends
moral support to Getoor’s conjecture that (H) holds for “most” Lévy pro-
cesses.

2. Main result. Throughout the paper we shall work with a Borel right
Markov process X = (X,, P*). Thus X is a strong Markov process with right
continuous paths and Borel measurable transition semigroup (P,). The state
space E of X is homeomorphic to a Borel subset of a compact metric space,
and & denotes the Borel o-field on E. The potential operator of X is denoted
U = [§P, dt. We assume that X is transient; this means that there is a strictly
positive Borel function f on E such that Uf is bounded. As a rule our
notation is consistent with that found in [1].

A measure m on E is excessive provided it is o-finite and mP, < m for all
t > 0. Since X is transient, given an excessive measure m there is a sequence
of measures (u,) on E such that u,U 1 m setwise. The capacity I' associated
with X and m is defined by

I'(B) = tlimu,Pgl, Bed&.
n

It is easy to see that I' does not depend on the particular approximating
sequence (u,U). The set function I': &— [0,] is monotone increasing,
strongly subadditive, countably subadditive and

(2.1) (A)cé,A,TA = T(A,)1T(A),
Ae & = dcompacts K, K,,... contained in A
with I'(K,)1T(A).

For proofs of these facts see [9, Section 10] and [11]. If, for example, X is
Brownian motion in R® and m is Lebesgue measure, then I is the familiar
Newtonian capacity.

It should be noted that in the approximation w,U 1t m one can always
arrange that u, < m for all n. It follows that

(2.3) T,=Tgae P* = T(A)=TI(B).

A set B € & is m-polar provided P™(Ty < ») = 0. Evidently B is m-polar
if and only if I'(B) = 0. We say that B € & is m-semipolar if P™ (X, € B for
uncountably many #’s) = 0. It is known [10, (6.13)] that a Borel set is m-semi-
polar if and only if it can be written as the union of a Borel semipolar set and
an m-polar set.

(2.2)
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We now introduce the class
% = {B € &: B is finely closed and I'( B) < »}.

In the “classical”’ context considered in [1, Section 6.4] every compact set lies
in 4. Consider now the conditions:

(H,) Semipolar Borel sets are m-polar.

For each B € # and each £ > 0 there are disjoint compacts
(D,) K, and K, contained in B such that ['(K,) > I'(B) — ¢,
i=1,2

( D#) For each K € # there are disjoint Borel sets A, B C K
m)  such that I'(A) = T'(B) = I'(K).

We call a point x € E regular provided {x}" = {x}. (Recall that if A € &, then

={x € E: P(T, =0) =1} denotes the set of regular points for A.) Using
(2 2) it is easy to see that (D ) = (D,,). Thus our main result (Theorem 1)
shows that the three conditions (H,,), (D# ) and (D,,) are equivalent when the
set of regular points is m-polar. Note that when m is a reference measure, if
points are polar then the set of regular points is necessarily empty.

THEOREM 1. (a) If the set of regular points is m-polar, then (H,) im-
plies (D}).
(b) (D,,) implies (H,,) and that singletons are m-polar.

ReEMARKS. (a) Using a binary splitting argument (cf. Hansen [12, Section
4]) one can show that if the set of regular points is m-polar and (H,,) holds,
then the following holds:

For each K€ # there is a family {K,, 0 <u <1} of
(DY) disjoint Borel subsets of K such that I'(K,) = T(K) for
all u

The key point here is that the capacity C introduced in the next section
“descends’’ on compact sets (in the Ray topology). In fact, the sets K . In
(D} %) can be taken to be (Ray) %, sets. For a simpler version of (D %) see
Proposition 2.

(b) To illustrate the gap between points (a) and (b) of Theorem 1, let X be a
compound Poisson process on R whose jump distribution is absolutely continu-
ous. Let m be Lebesgue measure, so that m is excessive but not a reference
measure. Evidently singletons are m-polar and since each point is regular,
(H,,) holds. However, it is easy to see that for any Borel set B, I'(B) > 0 if
and only if m(B) > 0. Therefore neither (D!) nor (D,,) can hold.

(c) The gap in Theorem 1 also raises an interesting open question: Does
(D! ) imply that {x: x is regular} is m-polar?

(d) The g-subprocess of X has transition semigroup P7 = e %'P,, where
g > 0 is a constant. Since m is excessive for X, it is also excessive for X7, and
we have the associated g-capacity I'?. The process X7 is always transient, )
Theorem 1 applies to X7 and m.
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3. Proof of Theorem 1. Let X be a transient Borel right process and m
an excessive measure as in the last section. For the proof of part (a) of
Theorem 1 it will be convenient to work with a second capacity C closely
related to I'. To this end we fix a probability measure v equivalent to m, and a
strictly positive Borel function g such that the excessive function A = Ug is
bounded by 1. Such a function g exists since X is transient. We now define

C(B) = vPyh = Pv(f;g(x,) dt), Beé&.

It is easy to see that C has all the properties ascribed to I" in the last section.
Moreover C(E) = v(h) < v(1) = 1 and, because of (2.3),

C(B)=0 < TI(B)=0, VBed&.
Recall now the first entry time Dy = inf{t > 0: X, € B} and the asso-
ciated kernel Hy(x,dy) = P(X, €dy; Dy <®). If x & B\B’, then
P*(Dg =Tg) =1 and Hg(x,- ) = Pg(x,- ). The excessive measure m charges
no semipolar set, so »(B \ B") = 0. Therefore,

C(B) = vHzh = Pv([:g(x,) dt)., Be&.

Finally, if A ¢ B and C(A) = C(B), then clearly T, = Ty a.s. P*. Invoking
(2.3) we see that for A, B € &,

(3.1) A CB, C(A)=C(B) = T(A)=TI(B).

Our proof of part (a) of Theorem 1 relies on the following special case of a
theorem of Dellacherie, Feyel and Mokobodzki. This theorem was proved in [6]
in case the state space of X is compact. The extension to the case of a Lusin
state space considered here is an easy exercise in the use of the Ray—Knight
compactification.

LEMMA 1. Assume that {x € E: x is regular} is m-polar. Let B C E be a
Borel set and suppose there is a finite measure u on E such that u(A) =0
implies T(A) = 0, for all compact sets A C B. Then B is m-semipolar.

The following result is the main step in the proof of Theorem 1. For the
statement of the proposition we introduce the ‘“capacitary measure’ relevant
to the capacity C:

vg(A) = vPg(14h) = vHg(1,h), Aeé.
Note that vy is carried by the fine closure of B and'charges no m-polar set.

ProposITION 1. Assume (H,;) and that the set of regular points is m-polar.
Given K € %, there is a Borel set A c K with C(A) = C(K) and vg(A) = 0.

Proor. Let 8 = sup{C(B): B € &, B © K, vg(B) = 0} and choose an in-
creasing sequence of Borel sets (A ), each contained in K, such that C(A,)1 8
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and vi(A,) =0 for all n. Set A= U,A,, so that C(A) = § and vg(A) = 0.
To see that C(A) = C(K) put B = K\ A, ¢ = vg(B N {P,h < h}) and com-
pute

C(K) = vg(K) = vg(B) = vg(B N {Pyh = h}) +c.
Since h is excessive, so is P,h; hence

Thus C(K) < C(A) + ¢, so we must show that ¢ = 0. Since vy does not
charge m-polars, it is enough to prove that D = B N {P,h < h} is m-polar. So
let us assume that D is not m-polar and try to reach a contradiction. Then
(H,,) implies that D is not m-semipolar, so by (the contrapositive of) Lemma
1 there is a compact set F c D with vix(F)=0 and C(F) > 0. Clearly
P,h < P, ph, and if the finely open set {P4h < P, yph} were v-null (= m-
null), then it would be m-polar. But A = P, ,zh on F" and F c {P,h < h} by
construction, so F" c {P4h < P, ph}. Also, F\ F’ is semipolar, hence m-
polar because of (H,,); consequently F” is not m-polar. Therefore v(P4h <
P, ,rh) >0, s0

C(A) = vP,h < vP,,gh=C(AUF).

But this contradicts the construction of A since A UF c K and vx(A U F) =
0.0

ProOF OF THEOREM 1. (a) Assume (H,,) and that the set of regular points
is m-polar. Fix K € %. By Proposition 1, there is a Borel set A C K such that
C(A) = C(K) and vg(A) = 0. In particular, I'(A) = I'(K) by (3.1). Moreover,
setting B = K\ A we have

C(B) < C(K) = vg(B) = P*(h(Xp,); Xp, € B)
< P*(h(Xp,); Dx = Dg) = P*(h(Xp,); Dg = D)
< P*(h(Xp,)) = C(B)

and part (a) is proved.

(b) Assume (D,,). It follows immediately that singletons are m-polar. Now
suppose that (H,,) fails. Then there is a non-m-polar, semipolar set B. In fact,
since X is transient, a result of Mertens [13] tells us that each semipolar set
can be expressed as a countable union of strictly thin sets. Thus we can
assume in addition that B is strictly thin: There is a constant 0 < § < 1 such
that Pzl < & on B. Furthermore, replacing B by B N {Uf > b} (where >0
is, m-integrable and b > 0 is sufficiently small) we can assume that I'(B) < .
Now given A € &, define an excessive function A 4:

ha(x) = PX( £ L(X).

t>0
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Choosing potentials u,U 1 m, we define a measure 7 by

As in the definition of T, the R.H.S. is independent of the particular approxi-
mating sequence (u,U); see, for example, [9, (7.2)]. Since B is strictly thin,

hy=Y (P)"1< ¥ 8"P,1=(1-8)"'Pl, VACB,

n>1 n>0
so m(A) < (1 — 8)"I'(A) < » if A c B. Since h, > P,1 we therefore have
(3.2) I'(A) <m(A) <(1-8)"'T(A), VACB.
Now fix an integer n > (1 — 8)~!. By repeated application of (D,,), given
e > 0, there are disjoint compacts K, K,, ..., K, contained in B such that
[(K,) > T(B) — ¢ for i = 1,...,n. Using (3.2) we have
(1-8)7'T(B)

l

> m(B) > 17( U K,) = L 7(K,) 2 L I(K;) = n(T(B) - ¢).

Letting ¢ = 0 we obtain (1 — 8)'I'(B) > nT'(B), which contradicts the choice
of n since 0 < I'(B) < ». O

Proposition 1 has other interesting consequences. For example, under the
hypotheses of Proposition 1, given a Borel set B and a measure u on E, one
can find a Borel set A ¢ B such that I'(A) = I'(B) and u(A) = 0. This fact is
an immediate consequence of the following result whose proof is adapted from
[8, pages 51-52].

PROPOSITION 2. Assume (H,,) and that the set of regular points is m-polar.
Given B € 4, there is an uncountable collection {A,, i € I} of disjoint Borel
subsets of B such that T'(A,) = I'(B) foralli € I.

Proor. It suffices to prove the proposition with I" replaced by C. Consider
the class of collections {A,} of disjoint Borel subsets of B with C(A;) = C(B)
and vg(A,;) = 0 for all i. This class is nonempty because of Proposition 1; by
Zorn’s lemma it has a maximal element {A,;, i € I}. Suppose that I is
countable. Then A = U,.; A, is a Borel set contained in B with v3z(A) = 0.
Let L = B\ A. Then as in the proof of Proposition 1 we have C(L) = C(B).
By Proposition 1 there is a Borel set F contained in L with C(F) = C(L) and
v;(F) = 0. This forces vz(F) = 0; indeed since F c L C B,

vg(F) = P*(h(Xp,); Xp, € F) = P*(h(Xp,); Xp, € F; Dy =Dp)
< VL(F) = 0.

As F is disjoint from each A;, we have contradicted the maximality of {A,,
i € I}. Thus I is uncountable and the proposition is proved. O



348 P. J. FITZSIMMONS AND M. KANDA

4. A dichotomy property of Lévy processes. In this final section we
prove a weakened form of the dichotomy property that is true for Lévy
processes with absolutely continuous potential kernels. Hypothesis (H) is not
assumed. This result could be deduced from a proposition of Feyel [8, page 51],
but the direct proof given below has its own interest.

The notation of previous sections is followed in this section, but X is now a
transient Lévy process in R? and m denotes Lebesgue measure. We assume
that m is a reference measure for X. Thus the potential kernel takes the form
U(x,dy) = u(y — x)m(dy) and the density u is lower semicontinuous. Of
course, since m is a reference measure, ‘“‘m-polar’ is the same as ‘“polar.”
Referring to [1, Section 6.4] we see that any bounded set B has a cocapacitary
measure mg. That is, if u,U 1 m, then u, PgU 1 wzU. The measure my is
carried by B U B and has total mass equal to I'( B). In what follows, if A is a
Borel set then Pj1(x) = P*(e~T4).

Theorem 2 is based on the following result of Zabczyk [15].

ProprosITION 3. There is a non-semipolar m-null Borel set.

TueoreM 2. If G c R? is a bounded open set, then there is a Borel set
B c G such that T'(B) = I'(G \ B) = I'(G).

Proor. By Proposition 3 we can choose a non-semipolar set L with
m(L) = 0. Then L N L" is also non-semipolar. Translating L if necessary, we
can assume that L N L” has a non-semipolar intersection with each neighbor-
hood of the origin in R?. Let {x;} be a countable dense subset of the bounded
open set G; set B = U,{x; + L} N G. Since P}1 is lower semicontinuous,
given ¢ > 0, there is an open neighborhood V of L N L” on which P}1 > 1 — .
But G= U,{x; + V)N G, so PA1>1—¢ on G because X is translation
invariant. It follows that Pil =1 on G, hence G c B". Consequently the
cocapacitary measure 7, which is carried by G U G”, does not charge R? \ B".
Thus

I(G) = m(R?) = mo(B") < mg(Pal) < T(B),
where the second inequality follows from the inequality P;Pgl < Pgl. We
have therefore shown that I'(B) = I'(G). As for G \ B, note that B\ (G\ B)”
is a finely open subset of B and is therefore empty since m(B) = 0. Thus
B c (G\ B)', so if K is any compact subset of B we have

[(K) = mg(Pg\pl) <T(G\B).

Now (2.2) allows us to conclude that I'(B) < I'(G \ B). Since we have already
shown that I'(B) = I'(@), we obtain I'(B) = I'(G \'B) as desired. O
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