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ON THE BEHAVIOR OF SOME CELLULAR AUTOMATA
RELATED TO BOOTSTRAP PERCOLATION!'

By RoBERTO H. SCHONMANN

Universidade de Sdo Paulo

We consider some deterministic cellular automata on the state space
{0, l)zd evolving in discrete time, starting from product measures. Basic
features of the dynamics include: 1’s do not change, translation invariance,
attractiveness and nearest neighbor interaction. The class of models which
is studied generalizes the bootstrap percolation rules, in which a 0 changes
to a 1 when it has at least / neighbors which are 1. OQur main concern is
with critical phenomena occurring with these models. In particular, we
define two critical points: p,, the threshold of the initial density for
convergence to total occupancy, and ,, the threshold for this convergence
to occur exponentially fast. We locate these critical points for all the
bootstrap percolation models, showing that they are both 0 when / < d and
both 1 when [ > d. For certain rules in which the orientation is important,
we show that 0 < p, = 7, < 1, by relating these systems to oriented site
percolation. Finally, these oriented models are used to obtain an estimate
for a critical exponent of these models.

1. Introduction. The fields of interacting particle systems, mathematical
statistical mechanics and percolation have benefited very much from their
interrelations. Here we study a family of models which has arisen in the
interface among these areas.

Cellular automata, such as those studied in this article, may be considered
as interacting particle systems [see Liggett (1985) for a survey of this field].
The relations between the models that we consider and percolation will become
clear in many of the proofs given, but can already be guessed from the fact
that some of these systems are known as ‘“bootstrap percolation.” Finally,
relations with statistical mechanics, while not so explicit in this article, were
clearly present, for instance, in the article by Chalupa, Leath and Reich (1979),
where bootstrap percolation was introduced in connection to disordered mag-
netic systems. Also in Aizenman and Lebowitz (1988) the motivation for
studying these systems came from the (nonequilibrium statistical mechanics)
problem of metastability.

Our main concern in this article will be with the critical behavior of our
models, that is, how their behavior changes qualitatively as some parameters
cross certain values (critical points). As usual, one of the main tools in the
analysis of such phenomena will be a sort of renormalization procedure by
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which we compare systems with different values of the parameters when we
modify the scales of length and time. In our case, due to the simplicity of the
models, this scheme will be accomplished in a very straightforward fashion, so
that our examples may give an idea of these techniques even to a reader who is
not familiar with this approach.

The article will be essentially self-contained, but for motivations and re-
views on cellular automata we refer the reader to Griffeath (1988), Toffoli and
Margolus (1987), Vichniac (1984), Wolfram (1983, 1986). In the next section
we introduce the models and the problems and explain how the rest of the
article is organized.

2. The models and problems. The models considered in this article are
defined on the lattice Z¢, where Z is the set of integers and d = 1,2,... is the
space dimensionality. The systems evolve in discrete time £ = 0,1,2,... . To
each element (site) of Z¢, x, we associate at each instant of time ¢ a random
variable 7,(x), which can assume the values 0 and 1. We say that the s1te x is
empty (resp. occupied) at time ¢ if 7,(x) = 0 (resp. 1). 7, € {0, 12 will
represent the function that associates x € Z? to 1,(x). Elements of {0, 1}*" are
called configurations. The system will be always started at ¢ = 0, from a
translation invariant product random field; that is, the random variables
(%), x € Z¢ are iid. with P(ny(x) =0)=gq, Pno(x)=1)=p=1-gq.
p €10, 1] is called the initial density. The system evolves then according to the
following sort of deterministic rules:

1. If n(x) = 1, then 7,, (x) = 1 (1’s are stable).
2. If m,(x) = 0 and 7, belongs to a certain set <, (the sets €., x € Z?, specify
the model), then 7, (x) = 1; otherwise 7,, (x) = 0

In this article the sets €, will always obey several restrictions. (a) Transla-
tion invariance. We define 6,m by (6, y) = n(y — x) and we assume that
€, = {n: 0_.m € €,}). In particular the set €, == € specifies the model. (b)
Nearest neighbor interaction. We define /#, ={y € Z%: |lx — y|l = 1}, where
I -l is the /; norm on Z° (lxll = lx,| + -+ + del). We assume that if » € €,
and 7n(y) = n'(y) for every y € .#,, then 7o' € €,. Informally, each site is
influenced only by its nearest nelghbors at each step of the evolution. (c)
Attractiveness. We define on {0, 1}2° the partial order given by n <7’ if
n(x) < 7'(x) for every x € Z¢. We assume that if 7 € €, and 7 </, then
n' € €,. Informally, the more 1’s we have at time ¢, the more 1’s we will have
at time ¢ + 1.

The set € may be specified by a set 9 of subsets of /= .#, via

9={(AcH:n(x)=1forallx €A =>n € ¢}.

‘ Observe that, by attractiveness, if A € 9 and A c B, then B € 2.
In order to give some examples we define the elements of Z¢, e, =
1,0,0,...,0),...,e; =(0,0,0,...,1). [A| will denote the cardinality of the
set A.
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ExAMPLES.
1. Bootstrap percolation. Take I €{0,...,2d} and set
G={AcH|Al =1}.

A 0 becomes a 1 if at least [ of its neighbors are 1’s.

2. The basic model. This is the particular case of bootstrap percolation with
l =d. In d = 2 this is the model studied by van Enter (1987) and Aizen-
man and Lebowitz (1988).

3. The modified basic model.

9={AcH An{-e,+e}+Dfori=1,...,d}.

In this model a 0 becomes a 1 if in each one of the d coordinate directions
it has at least one neighbor which is a 1.

4. Oriented models. Take (ay,...,a,) € {—1, +1}%. For each one of these 2¢
choices we have one of the oriented models defined by

9 ={Ac A {ae),aze,,...,a.e,} CA}

In case a¢; = +1, for i =1,...,d, we call the model the basic oriented
model.

Given two models defined, respectively, by 9, and 9,, we say that the
latter dominates the former if 2, C Z,. Informally, if a 0 becomes a 1 in the
former, the same occurs in the latter. The following statements are clearly
true. The bootstrap percolation model with ! = I, dominates the one with
l=1,if I, <l,. The basic model dominates the modified basic model and this
one dominates all the oriented models.

On {0, 1} we take the discrete topology and on {0, 1}** and {O,A}de(o' L.}
the corresponding product topologies and Borel o algebras, 3, and 3. Once the
dimension d, the set ¢ and the initial density p are specified, we denote by
P,(-) the probability measure on ({0, 1)2°x0.1,...} 5) corresponding to the
process (n,: ¢ > 0). :

Let .# be the set of probability measures on ({0, 1}%°, ). On .# we define
the following partial order. If u,v € .#, we say that v dommates w and write
pw<vif

[f(n)du(n) < [f(n) dv(n)

for every continuous nondecreasmg function f: {0, 1}2° 5 R (the correspond-
ing partial order on {0, 1}2° is the one defined before). For the properties of
this notion of partial order see Section 2 of Chapter 2 of Liggett (1985).

Let pf = (translation lnvarlant product measure’ with density p) be the
initial distribution on {0, 1z , and u? be the corresponding distribution at
time ¢. Since the 1’s are stable we have

pf<pf <pf< -

Since {0, 1}2* and consequently .# are compact, it follows that u? converges
weakly to a probability distribution u? € .#, which depends on p. w? is clearly
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translation invariant. The asymptotic density is defined as
p(p) = pP{n:n(0) = 1}.

From attractiveness we have also that p, < p, implies u?* < uP2. In particular

p(py) < p(py).
Now we list various questions which can be raised about these systems.

1. For which values of p does the system “fill all the space’’? More precisely,
when is it the case that p(p) = 1? Clearly p(0) = 0 and p(1) = 1, and from
the monotonicity of p(-), it is natural to define

= inf{p € [0,1]: p(p) = 1}.

What can be said about p_?
2. If the system fills the whole space, does it do it exponentially fast? To be
more precise, we define the random time

= inf{¢ > 0: n,(0) = 1}
and ask whether there are y, C € (0, ) such that
P(T >t) < Ce™™.
We can define for every p
v(p) = sup{y > 0: there exists a C <  such that P,(T > t) < Ce‘”}.

y(+) is clearly a monotonic nondecreasing function. It is natural then to
define another critical point

= inf{p € [0,1]: y(p) > 0}.
Clearly p, < m,, Since p(p) = 1 — lim, _,,, P,(T > t). What else can be said
about ,?

3. What is the behavior of the characteristic quantities p(p) and y(p) near the
critical points p, and m? Is it the case that lim , . y(p) = 0? And if this is
true, is there a correspondlng critical exponent v € (0, ») such that y(p) ~
(p—m) as pNw? Is it the case that P (T >¢) ~ ¢t * for a critical
exponent « € (0,) as ¢ » «? If v and « indeed exist, how do they depend
on the dimension? The preceding symbol ~ may either have the strong
meaning f(x) ~ x® iff lim[ f(x)/x*] € (0, ) or the weak meaning f(x) ~ x*
iff lim(log f(x)/log x) = .

4. Is it always the case that p, = m,? Similar questions have been answered
affirmatively for percolation by Menshikov (1986), Menshikov, Molchanov
and Sidorenko (1986) and Aizenman and Barsky (1987), and for ferromag-
netic Ising models by Aizenman, Barsky and Fernandez (1987).

. 5. When 0 < p(p) < 1, u? has a nontrivial structure. It is easy to show that

wP is translation invariant and ergodic w.r.t. translations. Using the meth-

ods of Section 2 of Chapter 3 of Liggett (1985) one can show that u? has
positive correlations. Is it the case that these correlations decay exponen-

tially fast? And how fast does u? converge to u??
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We obtained some partial answers to these questions. Now we summarize
our results and explain how the rest of the article is organized. In Section 3 we
will show that for the modified basic model in every dimension d, p, = 7, = 0
(and hence the same is true for the bootstrap percolation models with [ < d).
This extends results by van Enter (1987), who showed that for bootstrap
percolation with I = 2, p_ = 0 in every dimension. In Section 4 we will show
that the oriented models are closely related to oriented site percolation and
obtain as a consequence that for these models 0 < p, = 7w, < 1. In Section 5 we
obtain results by comparing the systems with the oriented models. If a model
does not dominate any oriented model (as is the case for the bootstrap
percolation models with ! > d), then it is easy to show that p, = 7, = 1. On
the other hand, for models that dominate some oriented model, p, < 7, <1
and we will show that for these models P, (T > ¢) > Ct~¢*! if ¢ > 1, for some
strictly positive constant C. In particular, y(m,) = 0, and if the critical expo-
nent « exists, then x < d — 1.

We make two remarks about notation. The symbols C, C,, C,, C’,
C(e, N),... will always denote strictly positive finite constants, whose exact
value is irrelevant and may even change from line to line. In Section 3, where
we use an induction argument on the dimension, we keep the dimension
explicit in the notation. But in the other sections, where the dimension is
generic but is kept fixed, we omit it in the notation.

3. The modified basic model. In d =1 the modified basic model is
trivial. Clearly

P(T >t)=P,(ny(x) =0forx = —1¢,...,¢)

=q%*! = gexp(—(2log(1/q))?).
Hence p, =7, =0 and y(p) = 2log(1/q). v =1 and « = 0, since for every
t >0,
P (T>t)=1
In d = 2 van Enter (1987) proved that p, = 0 (his proof for the basic model

applies to the modified basic model). We will prove the following theorem by
induction on the dimension.

THEOREM 3.1. In all dimensions, for the modified basic model p, = w, = 0.

The proof of this theorem will be broken into several propositions and
lemmas, some of which are interesting in their own right. In this section we
will use notations which make the dimension explicit as p(d), m(d), T and
v4(p). First we define various subsets of Z:

Qf={xez%lxl<ki=1,..,d}.

Given r €(1,...,d},1<i; <iy < -+ <i,<d and a, € {—1, +1} for each
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s=1,...,r, we define
inl ..... i),(ag,..., ar))(k)
= {x €7%x; =askfors=1,...,rand x| <k forj & {il,...,i,}}.
For each fixed r, let .Z be the set of possible indices above; that is,
F={((iy,.-58,)5(ay,..,a,))il<ip < --- <i,<d

and e, € {—1,+1} foreach s = 1,...,r}.
Set also
d
Sg= U ~Z.
r=1

Observe that for I € £, L¢(k) is a (d — r)-dimensional hypercube of side
2k — 1. [In case r = d, L4(k) is a point.] Also, the collection {L4(k): I € .7}
forms a partition of @¢ \ Q¢_,. In particular

Q- @i, U (U Li).
Ie s

We will define now various dynamics related to the modified basic model. In
each of them 1’s will never change and 0’s may change to 1’s according to the
state of the neighboring sites. The d-dimensional dynamics restricted to a set
I' c 72 is obtained by freezing the states of the sites outside of I' as 0 and
letting the system inside of I' evolve as the modified basic model. As in
Aizenman and Lebowitz (1988), we will say that a finite set I' c Z¢ is
internally spanned by the configuration n € {0, 1} if starting from the
configuration n' defined by

n(x), ifxel,
0, ifxel,

and letting the system evolve according to the d-dimensional dynamics re-
stricted to I', T" will eventually become completely occupied. Set

(3.1) o (x) = {

R4(N, P) = P(Q% is internally spanned by a random configuration
chosen according to a product measure with density p).

For every I € £ and k, the (d — r)-dimensional dynamics restricted to L¢(%)
is obtained by freezing the states of the sites outside of L%(%) as 0 and letting
the system inside of L%¢(%) evolve like a (d — r)-dimensional modified basic
model. More precisely, inside of L%(k) a 0 changes to 1 when it has at least one
qccupied neighbor in each one of the (d — r) different directions defined by the
vectors +e;, j & {iy,...,i,}, where I = ((iy,...,i,),(ay,...,a,). We say that
the set L¢(k) is internally spanned by the (d — r)-dimensional dynamics by a
configuration 1 € {0, 1)2° if, starting from nZ7® and letting the system evolve
according to the (d — r)-dimensional dynamics restricted to L¢(k), L¢(k) will
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eventually become completely occupied. Observe that

P(L4(k) is internally spanned by the (d — r)-dimensional
(3.2) dynamics by a random configuration chosen according to
a product measure with density p) = R?~"(k — 1, p).

Lemma 3.1. If QF_, is completely occupied in the configuration n and
for each r €(1,...,d — 1} and I € £, L4 k) is internally spanned by the
(d — r)-dimensional dynamics by 7, then Q¢ is internally spanned by 7.

Proor. First we have to observe another fact about the geometry of the
sets LY(k). If x € L4(k) for some I = ((i),(a)) € #, then the site x — ae, is
in Q¢_; and if x € L¢(k) for some I = ((iy,...,i,),(a,,...,a,) €% for
some r € {2,...,d}, then all the sites of the form x — a; &,8=1...,r are
in UJe/r_lL‘f,(k).

From the first observation above and the hypothesis of the lemma, it follows
that each time that a 0 becomes a 1 in the (d — 1)-dimensional dynamics
restricted to some L%(k), I € 4, the same occurs with respect to the d-
dimensional dynamics restricted to @¢. Hence U ;. JIL‘}(k) will eventually
become completely occupied in this latter dynamics, at a random time 0,. At
the time ©,, the configurations in the regions L%(k), I € %, obviously
dominate the configurations in these regions at time 0, so that these sets will
be internally spanned by the (d — r)-dimensional dynamics by the configura-
tion at time @,. As above, by the second remark in the first paragraph of this
proof, U ;. JL (%) will then become completely occupied by the d-dimen-
sional dynam1cs restricted to Q¢ at a random time ©,. Proceedlng by induc-
tion in the same fashion as before, one can show that U -} (U ;. /Ld(k)) will
become completely occupied by the d-dimensional dynam1cs restricted to Q¢ . at
an almost surely finite random time ®,_,;. But then it is easy to see that at
time ©,_, + 1, Q¢ will become completely occupied by the same dynamics,
completing the proof. O

ProposITION 3.1. For the modified basic model, v,(p) <v,;_p) and
m(d) > 7 (d - 1).

Proor. Consider the (d — 1)-dimensional space {0} X Z¢~! c Z¢. As be-
fore, consider the (d — 1)-dimensional dynamics restricted to this space, in
which a 0 becomes a 1 when it has at least one occupied neighbor in each one
of the (d — 1) directions different from the one defined by +e;. If a 0 changes
to 1 by the action of the d-dimensional dynamics at a site of {0} X Z¢~!, then
the same change occurs under the (d — 1)-dimensional dynamics. So for
each ¢,

P (T 1> 1t) <P(T¢>1t),

from which the proposition follows immediately. O
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PrOPOSITION 3.2. For the modified basic model,

Ydif)N),

1-R%N,p) < C(p)exp(—
where C(p) < © may depend on the dimension.

Proor. The proposition is easily verified in d = 1. We suppose now that it
holds in dimensions 1,2, ...,d — 1 and will show that it holds in dimension d.
If y,(p) = 0, there is nothing to be proven, so we suppose also that y,(p) > 0.
From Proposition 3.1, then,

(3.3) yi(P) = v2(p) = - = v4(p) > 0.

Set M = | N /4] and let Fy be the event that for every 2 > M and r =1, ...,
d — 1 each one of the sets L%(k), I € £, is internally spanned by the
(d — r)-dimensional dynamics when the system starts from a random config-
uration chosen according to a product measure with density p. From (3.2),
(3.3) and the induction hypothesis,

c d-1 'Yd—r(p) N
. V) ) < C, xp| - ————|.
(3.4) P((Fy)°) < El (p)e p( 2 )

Let Gy be the event that Q% becomes completely occupied by the d-dimen-
sional dynamics restricted to Q% when the system starts from a random
configuration chosen according to a product measure with density p. Now we
use the fact that since the interaction is among nearest neighbors, ‘‘the effects
travel with a maximum speed 1.” To be more precise, define for x € 79,

r(x) = min{n: x € QZ}.

Now, for x € Q¢, if x is vacant at time ¢ < N — r(x) in the d-dimensional
dynamics restricted to Q¢ and started from nQN then x is also vacant at this
time ¢ if the system is started from 7 and evolves according to the dynamics of
the modified basic model. [This can be proven easily by induction on the value
of N — r(x).] Using translation invariance, we obtain

P((Gx)) =B U () = 0}

*<EQY
(3.5) < Qi - P(ny_u(0) = 0)
< Co(p)exp(— 7"(2”) N).

., Now from Lemma 3.1, it follows that
(3.6) 1 - R%(N,p) < P((Fy)°) + P((Gy)°).

Equations (3.3)-(3.6) show that the proposition will hold then in dimension d,
if it holds in all smaller dimensions. O
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LEmMA 3.2. For the modified basic model, if w,(d — 1) = 0, then for every
p>0,

lim R¢(N =1.
Jim RY(N, p)

Proor. We say that the origin is a good site in the configuration 7, if
1n(0) =1 and for every £ =1,2,..., r=1,...,d—1 and I € 7, the set
L%(k) is internally spanned by the (d — r)-dimensional dynamics by the
configuration 7. We say that the site x is a good site in the configuration 7, if
the origin is a good site in the shifted configuration 6_,n defined by (6 _,nXy)
= n(y + x). From (3.2) we have

a(p) = P(the origin is a good site in a configuration 7
chosen randomly according to a product
(3.7) measure with density p)
w d—1

=pI1 TT(R"(k,p))*“",
k=1r=1

where C(d, r) is the cardinality of . in dimension d. But from Propositions
3.1, 3.2 and the hypothesis 7 ,(d — 1) = 0, it follows that for every p > 0 and
r=1,...,d — 1,1 — R"(k, p) goes to 0 exponentially fast as & goes to infin-
ity. Hence (3.7) implies that

(3.8) a(p) > 0.

Let Fy and Gy be defined as in the proof of Proposition 3.2. Then it follows
from Lemma 3.1 and the fact that M < N/4 that

P(Gy) = P(there is a good site inside of Q% in a configuration 7
(3.9) chosen randomly according to a product
measure with density p).

From (3.8), (3.9) and ergodicity,

(3.10) Al,im P(Gy) = 1.
From the hypothesis and Proposition 3.1, (3.4) holds and implies that
(3.11) I\IIim P(Fy) = 1.

The proposition follows from (3.6), (3.10) and (3.11). O

Define now the “correlation length”
£4(p) = inf{N: R4(N, p) = 1 - 1/(2(2d - 1))}.

I;ROPOSITION 3.3. For the modified basic model,

Ya(P) = Cy/é4(P),
where C, is a positive constant which does not depend on p.
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Proor. We suppose that ¢,(p) < «, since otherwise the proposition is
trivial. The proposition will be proved using a renormalization procedure. First
we show that for large enough p, there are y(p), C(p) € (0, x), such that

(3.12) P,(T? > t) < C(p)e 7"

For this we use a relation between the modified basic model and site pércola-
tion [see Kesten (1982) or Grimmett (1989) for more on percolation]. Let €,(0)
be the vacant cluster of the origin at time ¢; that is,

%,(0) = {x € 7¢: for some n there are 0 = x, x,, ..., x,, = x such that
lo; — %44l =1,i=0,...,n — Land n(x;) = Ofor j = 1,...,n}.
Set
D, ={x<z%|xll =k}
and
R,(0) = sup{k: €,(0) n D, # &},

with the convention sup @ = —®. R,(0) is the radius of €,(0). It is easy to see
that R, (0) < R,0) — 1. Indeed, if R,(0) = &, then all the sites in €,(0) N D,

have d occupied neighbors, one in each direction, and hence they will become
occupied at time ¢ + 1. So

(3.13) P,(T%>t) < P,(Ry(0) > t).

For p >1—1/(2d — 1) we can use now a simple Peierls type of estimate.
Since the number of self-avoiding walks with length [ starting from the origin
~ is not larger than (2d — 1)'~! - (2d), for ¢ > 1,

(3.14) P(Ro(0) > t) < T gti(2d - 1)'"}(2d) < Ce,
l=t

Equation (3.12) follows when p > 1 — 1/(2d — 1) from (3.13) and (3.14).

The renormalization procedure will be introduced now. It is essentially the
same renormalization scheme introduced by Aizenman and Lebowitz (1988)
[see their derivation of relation (4.4) in that article], except that here we are
also concerned with the time scale. Recall the definition of @% = {—N, ..., N},
and consider its translates

Q% ,={x€z%x-k(2N+1)€Qy}, kezs

These hypercubes form a partition of Z¢. Each one of them is thought of as a
site of the renormalized lattice. We say that a site %2 of the renormalized lattice
is occupied if in the original lattice all the sites in Q,‘f,, ; are occupied. The state
of occupancy of the renormalized sites evolves in a way that in the proper time
scale dominates the evolution of the modified basic model. To see this, observe
that if at time ¢ the renormalized site & has at least one occupied renormalized
neighbor in each one of the d different directions, then at time ¢ + 2dN + 1
this renormalized site will be occupied. This is not hard to prove, and a formal
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argument will be given in a more general setting in Lemma 5.1. We define the
renormalized time 7 by

(3.15) = (2N +1)?+ (2dN + 1)7.

The motivation for the shift (2N + 1)¢ is the following. To know whether a
region I' € Z? is internally spanned by a configuration 7 it is enough to wait
IT'| units of time. This is so because if after |I'| units of time 7 is not internally
spanned, then there is a time ¢ < |T'| so that from time ¢ to ¢ + 1 no change
occurred in the configuration and then the final configuration has been
reached. Using attractiveness we see now that if in the original lattice we start
from the product measure with density p, then at the renormalized time » = 0
lie., ¢ = (2N + 1)?), the distribution of the state of occupancy of the renormal-
ized sites dominates the product measure with density R4(N, p); at the
renormalized times 7 = 1,2,..., this distribution will dominate the evolution
of this product measure under the dynamics of the modified basic model in 7
units of time. In conclusion,

(3.16) P(T? > t) < Pgacy »(T? > 7).
But choosing N = £,(p) we have, for every p > 0, R4(N,p) > 1 — (1/2(2d —
1)) = p,, and from (3.16), (3.12) and (3.15),

P,(T? > t) < C(po)exp(—¥(po) - |(t — (2N + 1)?/(2dN + 1))])

< C'(p)exp(—(Ca/é4(P)) - t).
This completes the proof. O
ProoF oF THEOREM 3.1. From Lemma 3.2, if w,(d — 1) = 0, then £,(p) < =
for every p > 0. Now from Proposition 3.3, y,(p) > 0 for every p > 0 and,

* hence, m(d) = 0. The theorem follows then from the fact that 0 < p(d) <
m(d) and that (1) = 0, as remarked in the beginning of this section. O

From Theorem 1(i) in Aizenman and Lebowitz (1988), we have that there
are 0 < C; < C, < = such that
ecl/p S §2(p) S eCZ/P.

So ¢,(p) diverges much faster than a power of 1/p. For higher dimensions,
this theorem in Aizenman and Lebowitz (1988), combined with the arguments
used to prove Proposition 3.1, imply that for a constant C,; € (0, «),

- £4(p) = eC/P.
@

Our results and methods are nevertheless compatible with a much faster
divergence of ¢,(p) as p = 0.

ProBLEM 3.1. In d > 3, how fast does £,(p) diverge as p — 0?
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This is a relevant question in part because in simulations, as those quoted
in the following, a certain asymptotic form for the relation between ¢,(p) and
p is usually assumed (finite size scaling).

From Proposition 3.1 and the computations in d = 1 it follows that in all
dimensions

va(p) < 2log(1/q).

In particular, lim, _,,v,(p) = 0, and if the critical exponent v exists, then
v > 1 in all dimensions. In the opposite direction we only proved in Proposi-
tion 3.3

Ya(P) = Ca/€4(P),
which is compatible with a very fast convergence of y,(p) to 0.

ProBLEM 3.2. How fast does y,(p) = 0 as p - 0?

After this article was finished, Enrique Andjel seems to have given a partial
answer to this question in the two-dimensional case, showing that if v exists,
then v < 2. -

Since the basic model dominates the modified basic model, it is clear that
also for the former, in any dimension, p, = m, = 0. Therefore, our rigorous
result contradicts predictions made for the basic model in three dimensions
based on simulations. Kogut and Leath (1981) simulated the system on finite
cubes, the largest one having side 44, and concluded that there was a discon-
tinuous [in p(p)] transition at p, € [0.091, 0.104]. Adler and Aharony (1988)
made simulations on cubes of sides up to 50 and concluded that p, €
[0.094, 0.114]. Manna, Stauffer and Heermann (1989) simulated the system on
cubes of sides between 32 and 704 and found indications that p, € [0.059,
0.069].

4. The oriented models. In this section we will explore the strong
relation which exists between the oriented models and oriented site percola-
tion. The dimension is arbitrary and will not appear in the notation in this or
the next section.

Oriented site percolation is defined on the lattice Z%. We say that
(x4, %y, ..., x,) is an oriented path in 7% if x, € Z%,i=1,...,n and n = 1, or
x;.,— % €fey,...,es,i=1,...,n — 1. Given a random field {a(x): x € Z%,
where a(x) €{0,1}, we say that x is occupied (resp. vacant) w.r.t. « if
a(x) = 1 (resp. 0). The oriented occupied cluster of the site x wrt a is the
random set

C2(x) = {y € Z¢: there is an oriented path (x,...,x,) such that
x=4x,y=x,and a(x;) =1fori=1,...,n}.

Observe that if a(x) = 0, then C2(x) = &. The oriented vacant cluster of the
site x w.r.t. a, C%x), is defined analogously, with the condition a(x;) =0
replacing the condition a(x;) = 1. The range of C¥(x), u = o, v, is defined as 0
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if C¥(x) = & and otherwise as

d
Ai(x) = sup{l + 2 ly —xliy e C¥(x)).
i=1
We say that oriented percolation of occupied (resp. vacant) sites occurs in «
if A°(0) = = [resp. AY(0) = x].
Let B, be a product random field on Z¢ such that PB(x)=1)=p=1-
P(Bp(x) = 0) for every x € Z%. Now we define

0“(p) = (A';;p(O) = oo), u=o,v.

Clearly 6(p) = 6°(1 — p). 6°(p) [resp. 6°(p)] is a monotonic nondecreasing
(resp. nonincreasing) function of p. We define

= inf{p € [0, 1]: 6°(p) > 0}
and
p? = sup{p € [0,1]: 6°(p) > 0}.

Then p; =1 - p?2. It is well known that in d =1, p? =1, p? =0, but in
d>2,0<p?<land0<p?<1.

In the next proposition we consider the basic oriented model, but it is clear
that an analogous statement holds for other oriented models. For the basic
oriented model set

T(x) = inf{t > 0: n,(x) = 1}.

ProposITION 4.1. For the basic oriented model,

T(x) =A% (x).

Proor. Consider first the case A} (x) = «. In this case there is an infinite
sequence Xx = X, X,,... of sites of Z¢ such that for i = 1,2,..., x,,, — x; €
{ey, ..., ez} and n4(x;) = 0. Hence, by induction on ¢, n,(x;) = 0fori = 1,2,...
and in particular T(x) = .

If A7 (x) = 0, then ny(x) = 0 and T(x) = 0.

Flnally, to discuss the case 1 < A} (x) < oo, set

L(x,k) = {y €7% (y;— %) + - +(yg—x4) = k}
and for every random field a,
B,(x,k) = CY(x) N L(x, k).

Now B(x,k) # & if and only if 0 <% < A%(x) — 1. Therefore, every site
y.€B (x A;(x) — 1) has all its neighbors of the form y +e,, r=1,...,d,
occupled at time ¢ and, hence, 7,,(y) = 1, so that A} (x) <A} (x)— 1. On
the other hand, if A? (x) > 2, then there must be a s1te 2 e B, (x A% (x) - 2)
such that one of 1ts neighbors of the.form z +e,, r= 1 d belongs
to C;(x) and, therefore, is vacant at time ¢. Hence n,+1(z) 0, so that
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A7 (x) = A} — 1. In conclusion, A} decreases by exactly one unit each unit
of tlme until it reaches the value 0 at the time 7T'(x). This concludes the proof.
O

As a corollary we have the following proposition.

ProposiTiON 4.2. For the oriented models

@ p(p)=1-6"(p)=1-6°Q — p).
(i) p, =m, =p!=1-p?
(iii) If p > m,, then the following limit exists:

1
v(p) = lim — ;logP(T>a) > 0.
@1v) p(p,) =0

Proor. (i), (ii) and (iii) follow from the previous proposition and the fact
that in all dimensions, by the methods of Aizenman and Barsky (1987) or of
Menshikov (1986) and Menshikov, Molchanov and Sidorenko (1986), if p > pc ,
then P(Aj (O) > a) decays exponentially with a. The existence of the limit in
(iii) follows from standard supermultiplicity arguments [see, e.g., Durrett
(1984)]. (iv) follows from (i) and (ii)) and the fact that in any dimension
6°(p?) = 0, which can be proven by a straightforward adaptation of the
methods of Bezuidenhout and Grimmett (1990). O

Soin d >2, 0<p,=m, <1 The region 0 <p <p, is also worth study
and, in particular, one can ask what properties the measure w” has and how
fast the system converges to this measure. All these questions can be trans-
lated, thanks to Proposition 4.1, into related questions for oriented site
percolation. For instance, in d = 2 one knows from Durrett and Griffeath
(1983) [see also Durrett (1984); the adaptation from bond to site percolation is
trivial] that if p < p?, then P(a < A} (0) < =) decays exponentially with a. It
follows that the convergence to w? occurs exponentially fast in this regime.
The same can also be proven in higher dimensions, using the methods in
Bezuidenhout and Grimmett (1990). Further information, for instance on
critical exponents in two dimensions, can be extracted from Durrett,
Schonmann and Tanaka (1989a, 1989b); the concept of graphical duality used
there was adapted to oriented site percolation by Wierman (1985).

5. Results obtained by comparison with oriented models. In this
section we will use techniques from the two previous sections to show that the
oriented models can be used to divide the models defined in the Introduction
into two classes with qualitatively different behaviors and to study their
properties. The criterion for this partition is the property of dominating one of
the oriented models. Again, in this section the dimension is arbitrary and is
omitted in the notation.



188 R. H. SCHONMANN

ProrosiTiON 5.1. If a model does not dominate any oriented model, then
for this model p, = 7, = 1.

Proor. Recall the definitions
Qk = {x (S Zd: lel Sk,l = 1,'..,d},
T = inf{t > 0: 1,(0) = 1}.
Suppose that in the configuration 7, the cube @ is completely vacant. The
neighborhood .7, of each site x € Q3 intercepts (Q;)° in a subset of a set of
the form {a,e;,...,aye,}, where a, € {—1, +1} for r=1,...,d. Since the
model does not dominate any oriented model, we will certainly have Qg
completely vacant also in the configuration 7, ,. By induction on ¢, 1, leaves
Q5 completely vacant at all ¢ > 0, provided it does it at ¢ = 0. So for all p < 1,

P,(T = ®) > P,(ne(x) = 0 for every x € @3) = ¢*? > 0. ]

Theorem 3.1 and Proposition 5.1 can be used to locate the critical points p,
and 7, of all bootstrap percolation models on Z¢. In case I < d, the model
dominates the modified basic model and, hence, p, = w, = 0. If [ > d, then the
model does not dominate any oriented model and, therefore, p, = 7, = 1.

We turn now to the models that dominate some oriented model. First we
give some definitions. As in Section 3, we define the (d-dimensional) dynamics
restricted to a set I' € Z? by freezing the states of all sites outside of I' and
letting the states inside of I' evolve with the rules of the model we are
considering. We will say that A c I" is completely covered by the dynamics
restricted to I' by the configuration 7, if starting from the configuration n'
[defined by (3.1)] and letting the system evolve according to the dynamics
restricted to I', A becomes eventually completely occupied. As we explained in
Section 3, we only have to wait |I'| units of time to know whether this happens
or not. Set

S(N, p) = P(Qy is completely covered by the dynamics restricted to @,

by a random configuration chosen according to a product
measure with density p).
For fixed N, S(N, p) is a nondecreasing function of p; this motivates the
definition
b, = inf{p € [0,1]: limsupS(N, p) = 1}.
N-ow
Our main result in this section is the following.

THEOREM 5.1. If a model dominates one of the' oriented models, then for
this model:
* () m,=p,<1.
(ii) There is a positive constant C, which may depend on the dimension, so
that for t > 1, i
P (T >t)>Ct™ 4"
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Observe that for the models that do not dominate any oriented model,
P (T >t)=P(T >¢) =0 and hence (i) is false for these models. On the
other extreme, for models such that =, = 0, as the modified basic model,
P_(T > t) = 1, which is much stronger than (ii). Result (ii) implies for the
models for which it applies that if the critical exponent « exists, then k < d — 1.

In the proof of Theorem 5.1 we will use a renormalization procedure similar
to (but somewhat different from) the one used in Section 3. As before, we fix a
space scale N and to each site 2 € Z¢ in the renormalized lattice we associate
the cube

Quvi={x€7%x—- (2N + 1)k € Qy}.

Again we say that the renormalized site & is occupied if all the sites of @y ,
are occupied in the original lattice. The renormalized time scale 1 now will be
defined by

t = 1Qunl + (2dN + 1)7 = (4N + 1)% + (2dN + 1)7.

The cardinality of @,, appears in this definition because we want to give a
chance for each cube @y ; to become completely occupied by the dynamics
restricted to the cube QN r of side 4N + 1, concentric with Qy ,,

Quvir={x€2%x— (2N + 1)k € Q,y}.
Set

1, if @y, becomes completely occupied by the dynamics
(5.1) B(k) = restricted to QN’k by e,
0, otherwise.

The random variables B(k) are identically distributed, with

but they are not independent. Anyhow, they have only a finite range of
dependency structure, which is sufficient for our purposes. Indeed, if
ki, kg, ..., k, are such that ||k, — k|l > 2d (where | - || is the I; norm), for
every 1 <i <j < n, then the random variables B(k,),..., B(k,) are mutually
independent, since they depend on what happens in disjoint regions of the
space and 7, is a product random field.

By hypothesis we will consider a model that dominates some oriented model
and with no loss of generality we can suppose that the dominated model is the
basic oriented model. It turns out then that if the renormalized site k£ has at
the renormalized time r all its neighbors of the form &k +e;,, i =1,...,d,
occupied, then at the renormalized time 7 + 1 it will be occupied (the renor-
malized dynamics also dominate the basic oriented model). A formal proof is
provided now.
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LEmMA 5.1. For a model that dominates the basic oriented model, if at
t = 0 the regions Qy  k €{e;, i = 1,...,d} are completely occupied, then at
t = 2dN + 1, Qy o will also be completely occupied.

Proor. Define the regions
S;={x€Qyo:x;+ - +xy=1}.

These regions are nonempty for / = —dN,...,dN and @y , is equal to their
union. Now observe that if x € S;, thenfor i = 1,...,d,

d
x+e €8, U ( U QN,k)'
k=1

Therefore at time ¢ > 1, all the sets S;, { =dN, dN — 1,...,dN + 1 — ¢, will
be completely occupied and, in particular, at time 2dN + 1, @y, will be
completely occupied. O

Proor oF THEOREM 5.1. As observed above, we suppose that the model
dominates the basic oriented model. From the results in Section 4 it is clear
that 7, < 1, so to prove (i) we have to show that

(53) wc = l_)c'
Given p > m,, there are y > 0 and C < « such that
(5.4) P(T>t) <Ce.

But the argument used to prove (3.5), based on the fact that the effects travel
with a maximum speed 1, can be used also here, giving

1=S(N.p) < B[ U {naw (=) = 0})
(5.5) x€Qy
<1Qyl - P,(T > N).
From (5.4) and (5.5) we obtain
I\l{iian(N,p) = 1.

Therefore, p > 7, implies p > p,; that is,
(5.6) P, < m,.

To prove the complementary inequality we will use the renormalization
procedure. Given p > p, and ¢ € (0, d29), there is:N < o such that

(5.7) S(N,p)>1—¢.

Consider the renormalized process constructed with this N. By attractive-
ness and the remarks made before the beginning of this proof, we know that
at the renormalized time 7 the state of occupancy of the renormalized sites
dominates the state at time 7 of the basic oriented model started at r = 0
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from the random field (B(k): k € Z?), defined by (5.1). So, if m =
[(¢ — (4N + 1)) /(2dN + 1)), then from Proposition 4.1,

(5.8) P(T > t) < P,(A%(0) > m).

But if A%(0) > m, then there is an oriented path (x;, ..., x,,) with x; = 0 and
B(x;) =0,i=1,..., m. From the remarks made after the definition of g, the

random variables B(x,), B(%;194), B(X144a)s-- -5 BX14|m 24124) are mutually
independent, and since there are d™ ! oriented paths as above, we have, using
(5.2) and (5.7), |

59 P,(4%(0) > m) < (P,(B(0) = 0))

< m/20-1gm=1 = O(p, N)(sV/2d)
Since ¢ < d~%, (5.8) and (5.9) imply that if p > p,, then p > m,; that is,
(5.10) Te < De-

(i) follows from (5.6) and (5.10).

To prove (ii) we suppose, using (i), that p, = =, > 0, since otherwise there is
nothing to be proved. Set &, = d~2¢/2. If there is N such that S(N, p,) >
1 — &,, then by continuity there is a p <p, such that S(N,p) > 1 - ¢,
[observe that for each fixed N, S(N, p) is a polynomial function of pl. But
then, from the arguments above used to prove (5.10) we would have 7, < p <
P,, in contradiction with (5.6). So, for every N we have

(5.11) S(N,m,) <1 —&,.

Equations (5.5) and (5.11) are enough to prove a weaker form of (ii), with ¢~¢
replacing ¢~?*1. To prove the statement we made we need to strengthen (5.5).
Set

lm/2d]dm_1

t/(2dN+1)

Dy ={x € Qy:x;=N forsomei € (1,...,d}}.

Dy, is the union of d of the 2d faces of Q. If Dy is completely occupied at
time ¢, then @, will be completely occupied at time ¢ + (2dN + 1), since we
are assuming that the model dominates the basic oriented model. So @y in
(5.5) may be replaced by D, and we obtain

(5.12) 1~ 8(N,p) <d(2N + 1)*'P,(T > N).
From (5.11) and (5.12), for every integer N > 1,
€9
P(T>N)z——75,
= ) d(2N +1)%!

which implies (ii) and completes the proof. O

We end this section with the following remark, which provides an alterna-
tive way to describe the two classes into which the models have been divided.
From the proof of Proposition 5.1 it is -clear that for a model that does not
dominate any oriented model, finite clusters of vacant sites can persist forever.
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On the other hand, if a model dominates one of the oriented models (let us say
the basic oriented model), then each finite cluster of vacant sites will eventu-
ally become completely occupied, since the sites of the cluster that maximize
the sum of the coordinates at time ¢ will become occupied at time # + 1. In
this case only infinite clusters can survive.
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