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A CENTRAL LIMIT THEOREM FOR THE RENORMALIZED
SELF-INTERSECTION LOCAL TIME OF A STATIONARY
VECTOR GAUSSIAN PROCESS!

By SiMmEON M. BERMAN

New York University

Let X(¢) be a stationary vector Gaussian process in R™ whose compo-
nents are independent copies of a real stationary Gaussian process with
covariance function r(#). Let ¢(z) be the standard normal density and, for
t > 0, e > 0, consider the double integral

e TTo(e7H(X,05) = X,(6) ) do s,

which represents an approximate self-intersection local time of X(s), 0 < s
< ¢. Under the sole condition r € L,, the double integral has, upon suitable
normalization, a limiting normal distribution under a class of limit opera-
tions in which ¢ - © and & = &(¢) tends to 0 sufficiently slowly. The
expected value and standard deviation of the double integral, which are the
normalizing functions, are asymptotically equal to constant multiples of ¢2
and ¢3/2, respectively. These results are valid without any restrictions on
the behavior of r(¢) for ¢ > 0 other than continuity.

1. Introduction and summary. Let X(#), £ > 0, be a real, measurable
stationary Gaussian process. For simplicity, take EX(¢) = 0 and EX2(¢) = 1
and let r(¢) = EX(0)X(¢) be the covariance function, which is assumed to be
continuous. For m > 1, let X (¢),..., X,,(¢), ¢t > 0, be independent copies of
X(#), and define the vector process X(¢) = (X,(¢),..., X,,(¢)). Put

1 1
(1.1) 4(2) = 7= op( - 3.

and, for ¢ > 0 and ¢ > 0, consider the random variable

(1.2) a—'nftjtﬁ¢(xf(s) ;Xf(s,) ) dsds’.

070 =1

The following theorem is our main result.
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62 S. M. BERMAN

THEOREM 1.1. Assume

(1.3) [ ri(s)ds <.
Define
9 -m/2
1/ €
(1.4) B(e) = [ (— +1- r(s)) ds,
ol 2
and assume that ¢ - 0 and t - » in such a way that
(1.5) t1/2B(g) - 0.

Then the random variable (1.2), with the normalization

t—3/2 g‘mft tﬁ(b Xj(s) — %) dsds'
070 ;=1 €

-m/2
|

has a limiting normal distribution with mean 0 and variance

(1.7) 8(211-)_mf:{(4 = r¥(s)) " - 27} ds.

(1.6) ,
_t22—m -m /2 1 + —
. ( '

Limiting properties of the functional (1.2) for fixed ¢ and ¢ — 0 have been
actively studied in the context of certain specific classes of processes under the
heading ‘“renormalized self-intersection local time.” The first result of this
type was that of Varadhan (1969) who showed, for Brownian motion in R2
that the random variable (1.2), minus (¢/2m)log(1/¢), converges in L, for
g = 0. Such results have been extended within the context of Brownian
motion by several authors, whose works are too numerous to list here. As an
example of recent results, we mention the paper of Weinryb and Yor (1988).
The results for Brownian motion were extended to other classes of processes
by Rosen, who considered diffusion processes (1987a), fractional Brownian
motion (1987b), and stable processes (1988).

Condition (1.5) does not hide any further restrictions on r(¢). In contrast to
all previous work on the intersection local time for Gaussian processes [see
Cuzick (1982), Rosen (1984) and Berman (1991)], the statement of the theo-
rem is valid without restriction of the behavior of E(X(¢) — X(s))? for
|s — ¢| — 0, other than continuity. This signifies that the theorem holds under
the very wide variety of possible sample function behavior which is character-
istic of Gaussian processes. In the stationary case E(X(t) — X(s))? =
2(1 — r(s — t)) and the local behavior of r enters the limit operation (1.5). If

(1.8) [01(1 - r(s))‘f"/“’ ds < o,

then B(0) < « and (1.5) is always satisfied.
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In most previous work on Gaussian intersection local time, there is a
hypothesis

E(X(t +s) — X(s))® ~L,(¢t)lt|*, fort— 0,

where 0 < a < 2 and L () is slowly varying in ¢ for each s. In the stationary
case and for L (¢) a constant, this condition is equivalent to

(1.9) 1—-r(t) ~clt

In this case, a direct calculation yields the following estimates of the function
B(e), for ¢ » 0:

- B(0) < o, ifa<2/m,
(1.10) B(&){ ~ (constant)log(1/¢), if a=2/m,
~ (constant)e®® ™ ifa >2/m.

Note that, in contrast to earlier work, our theorem includes the case a = 2
in (1.9), where the sample function is mean-square differentiable or may even
by differentiable of any order, almost surely. It also includes the case where
a=0 and 1 — r() is slowly varying, when the sample functions may be
unbounded everywhere, almost surely.

For ¢ — 0, the primary contribution to the integral (1.2) is from points
(s, s") where X(s) is close to X(s’). This set includes points near the diagonal
as well as points bounded away from the diagonal. The former points are not
necessarily self-intersection points, but may possibly contribute to (1.2) as a
simple result of path continuity. We show in Theorem 6.1 that the contribu-
tion of such points is asymptotically negligible, so that (1.2) is a measure of
genuine self-intersections.

The only assumption in the hypothesis of Theorem 1.1 is (1.3), which
represents a mixing condition for the process. The basic idea of the proof of the
main result is that the limiting distribution of the functional (1.2), for ¢ — «
and ¢ — 0, is related to the limiting distribution of the functional

(1.11) ftexp(—%f ij(s))ds,
0 Jj=1

for ¢+ — «. The distribution of the latter for ¢ — «, after suitable normaliza-
tion, is obtained by applying a central limit theorem for integral functionals of
stationary Gaussian processes,

(1.12) jO‘h(X(s)) ds,

as t — o, for a class of functions . The condition (1.3) represents the mixing
»condition that is sufficient for the validity of this central limit theorem. In
Sections 3 and 4, we prove a general theorem of this type for functionals
(1.12), and then apply it to the specific functional (1.11).
Theorem 4.1, stating the general limit theorem for (1.12), is related to, yet
distinct from, results of Breuer and Major (1983) and Chambers and Slud
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(1989). Theorem 1 of the latter paper implies the conclusion of our Theorem
4.1 only in the uninteresting case m = 1. The proof does not extend to m > 1.
Indeed, a key step in their proof is the following: If r € L,, for £ > 1, and if
the spectral density exists and H (x) is the Hermite polynomial of order J =k,
then the pth moment of ¢~/ 2](§H (X(s))ds converges to the corresponding
moment of the normal dlstrlbutlon with mean 0 and variance 2;![5r/(¢) dt.
The complex supporting calculation does not directly extend to the moment of
the corresponding functional which we consider in the proof of Theorem 4.1,
namely,

¢ 'Y Hy(Xi(5)) ds,
i=1

where (j,,..., j,,) are nonnegative integers satisfying j, + -+ +j,, = 2. Our
proof is based on a technique previously used by the author [Berman (1970)]
and which appears to be simpler than the method of moments.

The reader should note that the scaling factor ¢t~2/2 in (1.6) is the same for
all dimensions m > 1.

2. Preliminary formulas. We begin with an elementary inequality.

LeEmMmA 2.1. Let q > 0 be arbitrary. If x and y are such that, for some
c >0,

(2.1) x>c and |yl <c/2,
then
(2.2) I(x —y) " =279 < lylg(c/2) "7

Proor. Elementary calculus yields
(x—y) " —x79 = q‘fy(x —2) 7 dz|,
0
and (2.2) then follows from (2.1). O

LemMA 2.2. Let (£,m) have a bivariate normal distribution with means 0,
and put o2 = Var ¢, 02 = Var n and o, = Cov(¢, ). Then

(2.3) E(cos ¢ cos 1) = exp[ —3(0f + )] cosh o7y,

(2.4) E(sin ¢sinn) = exp[— 3(of + 02)]s1nh O1s.

» PROOF. These formulas are based on the complex exponential representa-
tions of sine and cosine and on the formula for the normal characteristic
function. O

The formula for the bivariate normal density yields the following lemma.
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LEMMA 2.3. Let (&, 1) have a bivariate normal distribution with standard
marginal distributions and correlation p. Then, fora > 0, b > 0,

o35

- _pz)_m[(% "1 —lpz)(% i —lpz) e fzp"’)z}_l/%

LeEmMa 2.4. For arbitrary 0<d <1 and m > 1, there exists K =
K(d, m) < o such that

(2.5)

(2.6) w11 )11 pr T
(l—p) E+1_ 2 §+1_ 2 - 2\2
P p (l—p)
| L+a\(l+b)] ™2
_( )( b ) =Ko,
a

forall a > 0 and b > 0 and for all p such that p?/(1 — p?)? < d /2.

Proor. We repeatedly apply Lemma 2.1 to the factors in (2.6). For x = 1,
y =p? and q = m /2, we obtain

I(]. _pz)—m/2 ~1l < (m/2)p2(2/d)(m/2)+1.
For x=(@ 1+ A =-p2)" D)0 1+0-p»»1H>1 and y =p2/( - p?)?, we

obtain
1 1 \/(1 1 PEE
a 1-p2Jlb 1-)p2 (1_p2)2

1 1 1 1 —m/2
—+ —+
a 1-p2[\b 1-)p2

m p2 92 m/2+1
2 (1-p2) (3)
For x = (1 + a)/a and y = p2/(1 — p?), we obtain

1 1 -m/2 1 -m/2
L) e

<

a 1-p? a
l+a p? )_m/z (1+a;)"”/2
= + 3 —
a 1-p a
m p2 92 m/?+1
< — = :
2 l—pz(d)
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with an analogous inequality with & in the place of a. Here we have also used
the elementary inequalities p? < p?/(1 — p2) < p2/(1 — p?)?, for |p| < 1. The
assertion of the lemma now follows from the inequality p2?/(1 — p?)? <
4p%/(2 — d)?, for p2 <d/2. O

LeEmMA 2.5. Let ¢(2) be the standard normal density function. Let X(t) =
(X,@),..., X, (t)) be an m-component vector process. Then, for every t > 0,
e > 0, the expression

t ot X;(s) —X~(s’))
2.7 m ! L dsds'
(27) =) J§1¢( .

is equal to

2r) ™" me[(fotsin(u,X(s)) ds)
(2.8) ,
+ (fotcos(u,X(s)) ds) ]e_sz'“'z/z du,

where (u, x) is the inner product in R™ and |u|® = (u, w).

Proor. The sum of the squares in the brackets in the integrand in (2.8) is
equal to

[/ expli(u.X(s) - X(s)] dsds'.

Substitute this in (2.8), interchange the order of integration and then apply
- the formula for the normal characteristic function. This leads to (2.7). O

LeEMMA 2.6. Let X(¢) be a vector process whose m components are indepen-
dent copies of a stationary Gaussian process X(t), and let h(x) be a real Borel
function such that

(2.9) [ h(x)p(x) dx <
and
(2.10) [ wh(x)é(x) dx = 0.

For every t > 0, we have
¢ m
Var(f r h(Xj(s))ds)
0j=1 .

(2.11) =2/t = ) {(E[R(X(©O) h(X(s))])"
~(E[R(X(0))])"} ds.
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If r € Ly, then

Var(t‘l/z TTh(X,(s)) ds
(2.12) f"J':l )

= 2[{(ElA(X(O) R(X()])" = (E[R(X(0)])™") ds,
for t — «, and the right-hand member of (2.12) is finite.

Proor. The formula (2.11) is a consequence of Fubini’s theorem, station-
arity and the independence of the component processes.
Let H,(x) be the Hermite polynomial of order n, for n > 0, and put

(2.13) ho= [ h(z)H(x)d(x) dx,
the nth Hermite coefficient of A. Then, under (2.9), & has the expansion
<] hn
(214) h(z) = T H,(x).
n=0 -
By (2.10) and the fact H,(x) = x, we have
(2.15) h, = 0.

Let ¢(x, y; p) be the standard bivarite normal density; then, by the well-known
diagonal expansion in Hermite polynomials [see Cramér (1946), page 290],

1
(2.16) $(x,55p) = d(x)6(y) L —Hu(x)Hi(y)p",
n=0 """
the right-hand member of (2.11), divided by ¢, is equal to
2 ¢ 2 - hz” n " 2m
(2.17) ;fo(t -~ s){ B2 + Ezmr (s)| —h2}ds.

For arbitrary T, 0 < T < ¢, the portion of (2.17) corresponding to the
integral over the subdomain [0, T'] converges, for ¢ — «, to
T = hZ "
(2.18) 2[ B2+ ¥ —Zrn(s)| — K3 lds.
0 n=2

n!

The remaining portion of (2.17) is at most equal to two times

ds.

2 - h%‘ n " 2
hy+ X o (s)| —ho"
n=2 """

(2.19) f:
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Bessel’s equation and the definition (2.13) imply
© h2 ©
(2.20) 3 n—"‘ < | h¥*x)¢(x)dx.
n=2 """ —®

Furthermore, since r € L,, the corresponding Fourier transform f in L, is,
in fact, the spectral density and, thus, also belongs to L,. Therefore, by the
Riemann-Lebesgue theorem, r(¢) — 0 for ¢ —» . Hence, the term

in (2.19), which is dominated by
r2(s) [~ h¥(x)d(x) da,

can be made arbitrarily small uniformly in s by choosing T, the lower limit of
integration, sufficiently large. By a simple application of the law of the mean,
we see that (2.19) is at most equal to a constant times [7r2(s)ds. The latter
can be made small by choosing T sufficiently large.

We have now proved that the variance in (2.12) converges to a finite limit
which is equal to (2.18) with T = . By the Hermite expansion leading to
(2.17), the right-hand member of (2.12) is also equal to the same limit:

[ {(EIA(X©@) R(X(s)])" = (EIR(X()])") ds

_ f:{

This proves (2.12). O

(2.21) - g2 m
K+ Y —nr"(s)) - h%m} ds.
n=2 n!

3. Approximation of a stationary Gaussian process by one whose
covariance has compact support. The results here are refinements and
extensions of those in Berman (1970). Let r(¢) be the covariance function of a
stationary Gaussian process such that r(0) = 1 and r € L,. It has the well-
known representation

(3.1) r(t) = f:ei“f()t) da,.

‘where f is the spectral density and where f € L; N L,. Let b(¢) be a nonnega-
‘tive bounded measurable function with support [— %, 3] and such that

[ br(tyde=1.
-1/2
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Put
p(t) _/ b(t + 5)b(s) ds.

Then p(¢) is even, positive deﬁmte and has support in [—1,1]. It has the
spectral representation

p(t) = [ e™q(2)da,

where
1 o 2
a(A) = %‘f_we”‘sb(s) ds
Put
(3.2) (@ W) = [ 1(x+ e a,
for n > 1, and put
(33) (0 = [ e ) (g, = HO]V
LEmMmA 3.1.
(3.4) Tim f q(y)/ \f A + f()\)‘d)\ dy = 0.

Proor. The inner integral in (3.4) is bounded by 2/~ . f(A) dA, uniformly
in y; hence it suffices to prove that the inner integral converges to 0 for each
fixed y because q(y) is actually a density function.

For arbitrary T > 0, the inner integral is at most equal to the sum of the
terms

(3.5) 2[ f(A) dA
Al>T-y/n
and
T
(3.6) /_T f(A + = ) f(A)|dA.

The term (3.5) can be made arbitrarily small by choosing T' and n sufficiently
large. By the Cauchy~Schwarz inequality, (3.6) is at most

oyl o 2) - reof )

« which, by Parseval’s theorem, is equal to the square root of

T o
— [ lei/m —1Pr2(2) dt,
ﬂ. — 00 ~

which converges to 0 for n — «, O
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LemMma 3.2. lim, , r,(¢) = r(¢) uniformly in ¢.

Proor. The proof is done by the same calculation as in Berman [(1970),
page 723]. Lemma 3.1 fills a gap in the latter proof concerning the convergence
of (g, * f)XA) to f(A). O

LEmma 3.3. lim, ., [ |r,) — r(®I* dt = 0.

Proor. The proof is by the same calculation as in Berman [(1970), page
723]. O

Let X(#) be a real stationary Gaussian process with mean 0 and the
covariance function r(¢) with the representation (3.1). Let W,(A) and W,(A) be
independent standard Brownian motions and put W(A) = $W,(A) + 2iW,()).
Then X(¢) has the stochastic integral representation

(3.7) X(8) = [ eM(£(2)*W(dA).
Define
(3.8) Y1) = [ eM[(qu D] W(d2)

with respect to the same Brownian motion on the same space. Then (X(2), Y,(¢))
is a bivariate stationary Gaussian process with mean vector (0, 0) and

EY,(5)Y,(t+5) = [ e™(q,* [)(A)dA

(3.9)

" = r(t)p(t/n)
(which follows from the convolution formula) and, by (3.3), (3.7) and (3.8),
(3.10) EX(0)Y,(t) = r,(t).

By (3.9), the support of the covariance function of Y,(¢) is contained in
[—n, n]. Furthermore, the process Y,(¢) converges to X(¢) in the sense

lim E(X(t) - Y,(1))" = 0,

uniformly in ¢.

We remark that there does not seem to be a version of this construction in
the case of a discrete-time stationary Gaussian process because the spectral
density has support in [—, 7], and the convolution’operation enlarges the
domain of support.

4. A central limit theorem for a class of integral functionals of a
stationary vector Gaussian process. Let X(¢) be the vector process whose
components X,(¢), j = 1,..., m, are independent copies of X(¢). The following
theorem is the main result of this section.
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THEOREM 4.1. Let h(x) be a function satisfying (2.9) and (2.10), and
suppose r € L,. Then

(4.1) t‘l/z{ftnh(Xj(s))ds —th’g‘}

0j=1
has, for t > «, a limiting normal distribution with mean 0 and variance
(42) 2 {(ELR(X(0)R(X(s)])" - h§") ds,

where h is defined as Eh(X(0)).

Proor. We begin the proof with that of a variant of the theorem. For an

arbitrary m-tuple (n,,...,n,,) of nonnegative integers such that
(4.3) v=n,+ " +n, =2,
consider the functional
m
(4.4) 2 [*Y H,(X,(s))ds,
0 j=1

where H,(x) is the Hermite polynomial of order n. It is a consequence of the
well-known orthogonality property of the Hermite polynomials and of the
expansion (2.16) that

(4.5) Cov| H,(X,(s)), H(X,(s")] = 8,;8,,k!r*(s — s,

i,j=1,...,m, k,l > 0, and where § is the Kronecker §. From this it follows
that the random variable (4.4) has mean 0 and variance

(4.6) Jf:llnjx(z/t)fot(t — s)(r(s))" ds.

By applying the preceding results to the process Y,(¢) defined by (3.8), we find
that for the independent copies Y; ,(¢), j = 1,..., m, the functional

—12 (¢ = .
(4.7) t f()fl:[lHnj(I/j,n(s))ds
has mean 0 and variance
(4.8) ﬁnj!(Z/t)/ot(t —s)(r(s)p(s/n))" ds.
J= N

Since Y; ,(s) has, for each n, a covariance with support [—n,n], the vector
process (Y; ,(s)) is 2n-independent, that is, parts of the process separated by at
least 2n time units are independent, and so the real process I17_, H, (Y} ,(s))
has the same property. A classical theorem of Hoeffding and Robbins (1948)
asserts the validity of the central limit theorem for the partial sums in a
stationary 2n-dependent sequence of random variables under the condition of
the existence of the third moment of the marginal distribution. Their proof
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extends to the integral of a stationary, continuous parameter process. In our
case, the third moment exists so that the central limit theorem holds for the
functional (4.7), for ¢ > © and n fixed. The mean of the limiting normal

distribution is 0 and the variance is the limit of (4.8), which, by dominated
convergence, is equal to

(4.9) 2ﬁnj1j°°(r(s)p(s/n))”ds.
Jj=1 0

Our next step is to estimate the variance of the difference between the
functionals (4.4) and (4.7).

Lemma 4.1, Let (X;(®),Y; () j =1,...,m, be independent copies of the

bivariate process (X(t) (t)) defined at the end of Section 3. Then, for every
t>0andn =1,

Var{t_l/zf I1H,(X;(s))ds —t~ 1/2/ Z H,( ~,n(s))ds}

0,=1

m

(4.10) <2 ][] nj!{f:w(s) —r (s) ds j:[2r2(s) +2r2(s)] ds}1/2.

Proor. By the reasoning used to establish (2.11), the left-hand member of
(4.10) is equal to

(20 /(¢ = )| T B[H,(X(O) H,(X(5)]
-2 B[ H, (X(0)Hy (%,())

« T B[ A, 1,0, (5(5))]  as,
which, by (4.5), (3.9) and (3.10), is equal to [Tn! times
(@11 (@2/0) [t =){[r()]" = 2[r()]” + [r(s)e(s/n)]"} ds.
The expression (4.11) is at most equal to ‘
(412) 2[ [lr())" = [ru(s)]"| ds
plus

(4.13) 2[ lr()]" = [r(8)p(s/m)]" | ds.
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From the elementary identity A* — B” = (A — BY(A*"! + A”"?B +
-+ +AB”"2 + B”"1), we deduce

(4.14) |A* — B*| < v|A — BI|(|Al + |BI),
for |A| < 1 and |B| < 1. It follows that (4.11) is at most equal to

2yjo°°|r(s) — r()I(r(s)| + Ir(s)]) ds,

which, by an application of the Cauchy—Schwarz inequality, is at most equal to
© © 1/2
2v{] Ir(s) = ru(s)I* ds [ [2r%(s) + 2r(s)] ds} . D
0 0

Next we show that the functional (4.4) has a limiting normal distribution
with mean 0 and variance

(4.15) Zﬁnj!/w(r(s))vds.
ji=1 0

Let J(¢) and o/, (¢) represent the functionals (4.4) and (4.7), respectively. By
the limit theorem for (4.7), sketched following (4.8), J,(¢) has, for ¢ — » and
then n — «, a limiting normal distribution with mean 0 and variance equal to
the limit of (4.9), for n — «, namely, (4.15). Next we note that the right-hand
member of (4.10) converges to 0 for n — o; this is a consequence of Lemma
3.3. It follows from Lemma 4.1 that sup,Var(J(¢) — J,(¢)) = 0, for n — ,
and, as a consequence, J(¢) has, for ¢+ —» », the same limiting distribution as
does J,(¢), for t = « and then n — «. The last assertion can be verified by
using the general result of Dynkin [1988), Lemma 1.1].

Finally, we show how the validity of the central limit theorem for the
functional (4.4) implies its validity for the functional (4.1). For m > 1, the
function A(x,) - -+ h(x,,) has the Hermite expansion

m m n H n (x J )
@16)  TIh(x)=hy+ T TI|—==2,
j=1 ni+ o +n,=2J=1 nj:
where the summation is over all (n,...,n,,) satisfying n, + - n,, > 2, and
where (k) is defined by (2.13) and &, = 0 by (2.15). If h(x) is a function with
a finite Hermite expansion, that is, £, = 0 for all but finitely many n, then the
product expansion (4.16) has finitely many terms. It follows that the random
variable (4.1) is a linear combination of the random variables (4.4), for various
m-tuples (n, ..., n,,). Furthermore, for distinct (n,,...,n,,)and (n,...,n,),
the corresponding random variables (4.4) are orthogonal; this is a consequence
of (4.5). From this orthogonality and the validity of the central limit for each of
sthe terms (4.4), we deduce the statement of Theorem 4.1 for a function h(x)
with a finite expansion. Furthermore, (2.21) indicates that (4.2) is the variance
of the limiting distribution. The statement of the theorem for the case of a
general function A now follows by the well-known L,-approximation of
172 1h(x;) — h§ by the partial sums of the series in (4.16). O



74 S. M. BERMAN

As an application of Theorem 4.1, with hA(x) = exp(— 3x?), and Lemmas 2.3
and 2.4, we obtain the following corollary.

COROLLARY 4.1. The random variable
(4.17) t-1/2[/‘exp(—§IX(s)l2) ds — t2"”/2]
0

has, for t — «, a limiting normal distribution with mean 0 and variance
1 2
.2 -m/2
2/ (1 - r¥(s)) [( _r2(s))

O NN I
(1- r2(.<s))2 ’

where the integral is, by simple algebra, equal to that in (1.7).

(4.18)

5. Proof of Theorem 1.1. In this section we use the symbol “Lim” to
denote the limit operation ¢ — 0, ¢ — o, restricted by (1.5):

(5.1) Lim=  lim
e—0,t—>o,

B(e)t~1/2-0

The first step in the completion of the Proof of Theorem 1.1 is the following
lemma.

Lemma 5.1. Under the condition r € L,

2
(5.2) Limt—wf E(ftsin(u,X(S)) ds) e <!lu*/2 gy = 0.
0

R™

Proor. Apply Lemma 2.2 to ¢ = (u,X(s)) and n = (u,X(s"), for s # s’;
here Var ¢ = Var n = |ul® and Cov(¢, ) = |u|?r(s — s') so that the expression
under the limit sign in (5.2) is equal to

2

(5.3) 2t7%/2 j:(t —s)meexp —|u|2(1 + %”sinh(lum(s))duds,

which, by the elementary formula [*_ exp(—yZ2c)dy = (mw/c)/?, is equal to
. -m/2

t'a/zw’"/zf(t —s)[(— +1- r(s))

(5.4) 2 e
—(% +1+ r(s)) ]ds.
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By the argument following (2.20), r(¢) — 0 for ¢ — ; hence inf, r(s) > —1,
and, for any ¢ > 0, sup(r(s): Is| > ¢) < 1. It follows that, forany 7,1 < T < ¢,
the portion of (5.4) corresponding to the integral over the subdomain [0, T'] is
at most equal to

82 —m/2
t‘1/277-’"/2{B(e) + fT(? +1~— sup r(s)) ds
1 1<s<T

2

-m/2
+'/(')T(% +1+ ixslfr(s)) ds},

and the latter converges to 0 under the limit operation (5.1).

Now we consider the portion of (5.4) corresponding to the domain [T, ¢]. If
T is sufficiently large, then |r(s)| in the integrand may be assumed to be
arbitrarily small. Thus, by an argument similar to that used in the proof of
Lemma 4.1, we see that the expression (5.4), with [ in the place of [/, is at
most equal to a constant times ¢~ /?[flr(s)|ds. By the Cauchy-Schwarz
inequality, the latter is at most equal to ([7r%(s)ds)!/2, which is small for
large T. O

LeEMMA 5.2. Under the condition r € L, and the limiting operation (5.1),
the random variable

2 2|u|2
~3/2 t — $2p u? _f
(56.5) ¢t me[(fo cos(u, X(s)) ds) t%e ]exp( 5 )du
has the same limiting distribution as

(5.6) 2t71/? me[/Otcos(u,X(s)) ds — te"“'z/z]exp(—%(l + &%)lul*) du.

ProOF. By the simple identity A2 — B2 = 2B(A — B) + (A — B)?, with
A= ftcos(u,X(s)) ds, B =te n"/2
0

we see that (5.5) is equal to (5.6) plus

2 2|u|2
-3/2 g — to—mi?/2 _°f
(5.7) ¢t me[fO cos(u,X(s)) ds — te ]‘exp( 5 )du.

~ Thus, for the proof of the lemma, it suffices to show that

B

2 2u2
(5.8) t-3/2f E[[’cos(u,X(s))ds—te—l“|2/2] exp(al | )du
R™ 0 .

2

converges to 0 under (5.1).
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Lemma 2.2 implies that (5.8) is equal to

t'3/2f
R™

which, by a change of order of integration and the formula

2

2[(:(15 - s)[cosh(lulzr(s)) - 1] ds}exp(—lulz(l + %

)du,

f cosh(|u|2r)e""“‘2du = %wm/z[(c —r) " 4 (e + r)_m/zl,
Rm

for ¢ > |r|, is at most equal to

-m/2

am/2¢=3/2 /:(t - s)[(a—; +1- r(s))

62 -m/2
(5 1) }

(5.9)

The expression (5.9) is identical with (5.4). As shown in the proof of Lemma
5.1, the latter converges to 0; hence, the expression (5.8) also converges to 0. O

LEMMA 5.3. The random variable (5.6) is representable in the form
27 \™?| .4 1X(s)I? 1+82\"?
.10) 2t~ 1/2 —-—— -t .
(6.10) (1+82) [j;)exp( 2(1 + &?) ds (2+82)

Proor. This is a consequence of the application of the formula

1 2 . 1 2
f cos(u,x)exp(— —clul ) du = f exp[z(u,x)]exp(— —clul ) du
27T)m/2 |X|2
N (T P\ " e |

LeEMMA 5.4. Consider the difference between the random variable in the
bracket in (5.10) and the one obtained from it by putting € = 0:

t |X(S)|2
fo[ex"(_ 2(1 + &%)

Zm/z
_y 1+¢ _g-ms2|.
2 + &2

forc>0and x € R™. O

- exp( - %|X(s)|2)“ ds

(5.11)
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The variance of this difference is equal to

2 (- s){(l =) "

1 1 )2 r2(s) e
X z Tt 2 - 2
1+e 1—-r2(s) (1 - r2(s))
5.12 +(1-r¥(s)) "1+ )2 R "
( . ) r (S)) 1 — r2(8) (1 _ rz(s))2

1 1
1162 ' 1—r2(s))(1+ 1—r2(s))

~ r?(s) e 4
(1-r¥(s)) i

-2(1 - rz(s))_m/z[

Proor. A simple calculation shows that the expression (5.11) has the
expected value 0; hence, the variance of (5.11) is equal to

¢ X 2 )
2fo(t - s)E{'exp(— %) - exp(— %|X(S)| )}
X(0)/2 1
X [exp( - %) - exp( - EIX(O)Iz)]} ds

m/2 2
_t2l: _ 2—m/2] .

The formula (5.12) is obtained from this by several applications of Lemma 2.3
,with ¢ = X,(0) and n = X;(s),for j=1,...,m,and e = 1,1 +¢” and b = 1,
1+¢% 0O

1+ g2
2 + €2

LEMMA 5.5. The expression (5.12), divided by ¢, converges to 0 under the
double limit operation t — ©, ¢ = 0.
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Proor. By simple algebra and the identity
1 1 2+ &2 r2(s)
z T 2 = z T 2 )
l+e 1—-r2(s) 1+e 1-r2(s)

the variance (5.12) is equal to the sum of

t 9 ol (2 + €2 r2(s) 2
2[()(15—3) (1 -r?(s)) /[(1+32'+ l—rz(s))

(5.13) () o B (2 +2)\ " .
(1-rs)) reer) [7
and

¢ 9 —m/2 "2(3) ’
2/0(15—3) (1 -r3(s)) 2+1———r'7(s_)

(5.14) e
___<>_} P
(1-r(5))

minus twice the term

t w2l (2 + €2 r2
e ofa- o (L2520

r2(s) r3(s) o
(5.15) X (2 1o r2(s) ) - (1- rz(S))z}
_gomp[2tE o d
( 1+ 82) >

Let us now divide each of the preceding expressions by ¢ and, for arbitrary
fixed T' > 0, consider only those portions of each integral from 0 to T. Then,
under the limit operation ¢ — ®, ¢ — 0, each of the corresponding portions of
(5.13), (5.14) and (5.15) converges to the common limit

2 —m/2
T 9/ N\ —m/2 r?(s) r(s) -m
2[0 (1 -r(s))™™ [(2 + T 2(5) ) - - r2(s))2} - 27" ds.

Hence, the corresponding sum of (5.13) and (5.14), minus twice (5.15), con-
verges to 0.
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In order to complete the proof, we will show that each of the terms (5.13),
(5.14) and (5.15), after division by ¢ and the replacement of the lower limit of
integration by T, can be made arbitrarily small by choosing T sufficiently
large and then letting ¢ — «, uniformly in &. For example, let us estimate the
corresponding version of (5.13):

. s N R OIS
ZfT(l—;) (1 =r%(s)) /[(1+32+1—r2(8))

__"_@_J_M i
(1-r2(s))

By Lemma 2.4, this integral has a bound of the form K[5r%(s)ds, where K is
a constant that does not depend on ¢ or ¢. [For the application of the lemma, it
is necessary to use the simple identity preceding (5.13).] The integral is small if
T is large. The same reasoning applies to the other terms, (5.14) and (5.15). O

We now complete the proof of Theorem 1.1. By Lemma 2.5, the random
variable (1.6) is equal to the sum of

(5.16) t=3/2(2) " [Rm(jot sin(u, X(s)) ds)ze_52|“|2/2 du

and

(5.17) t-3/2[(277)‘”‘ me[(j:cos(u,X(s)) ds)2 - tze_"”z]e_‘°‘2'“'2/2 du].

By Lemma 5.1, the random variable (5.16) converges to 0 in probability. By
Lemmas 5.2-5.5, the random variable (5.17) has the same limiting distribution
as the random variable (4.17), times 2(27)~™/2. An application of Corollary
4.1 now completes the proof. O

6. Negligibility of the contribution to (1.2) of points (s,s’) in any
neighborhood of the diagonal.

THEOREM 6.1. For every T > 0, the conclusion of Theorem 1.1 is not
changed if the random variable (1.2) in (1.6) is replaced by

(X(s) X(s))dsds’.

(6.1) e [ Tle

0<s,s'<t, J=
|s— s|>T
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Proor. First we show that the complementary integral

(X"(s) ;Xj(s,))dsds’

m
(6.2) e [ Tle
0<s,s'<¢t, /=1
ls—s'l<T

has an expected value of order ¢, for ¢ — «. For simplicity and without loss of
generality, we take T = 1. Then, by stationarity, the expected value of (6.2) is
at most equal to twice the quantity

B [ CAGELICY

Since Xj(s) — X,(s") has a normal distribution with mean 0 and variance
2(1 — r(s — s"), the expression (6.3) is equal to

dsds'.

(6.4) @m)™ [([1[2(1 = r(s = s)) + 2] " ds'ds.
070

For arbitrary T > 0, write the integral (6.4) as the sum of

(6.5) @m) "2 [T ['[2(1 - r(s = 5)) +&2] " ds'ds
070

and

(6.6) (2m) " [ [l2(1 = r(s - 8)) + 2] " ds'ds.
T°0

Under the limit operation (1.5), the integral (6.5) is of smaller order than ¢!/
On the other hand, since r(¢) - 0 for ¢ — », the integrand in (6.6) can be
made arbitrarily close to (2 + £¢2)~™/2, uniformly on (s, s") € [T, t] X [0, 1], by
choosing T sufficiently large. Hence, the expression (6.6) is approximately
equal to

(2m) " *t27m /2,

for t » », ¢ - 0.

The random variable (6.2) is the difference between the random variables
(1.2) and (6.1). Since it is a nonnegative random variable whose expected value
is of order ¢, and since the factor ¢#~3/2 multiplies it in (1.6), this random
variable may be ignored in the conclusion of Theorem 1.1, so that (6.1) may be
used in the place of (1.2). O
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