The Annals of Probability
1992, Vol. 20, No. 1, 29-60

THE ASYMPTOTICS OF STABLE SAUSAGES IN THE PLANE!

By Jay ROSEN
College of Staten Island, CUNY

In this paper we develop an asymptotic expansion for the &-neighbor-
hood of the symmetric stable process of order 8, 1 < 8 < 2. Our expansion
is in powers of 277 with the nth coefficient related to n-fold self-intersec-
tions of our stable process.

1. Introduction. In this paper we will develop asymptotic expansions for
the area of the ¢-neighborhood of X, the symmetric stable process of order 3,
1 < B < 2, in R2. Our asymptotic expansion as ¢ — 0 is in powers (¢27#)" with
coefficients vy, which are random variables related to n-fold self-intersections
of X.

The e-neighborhood of X, known as the stable sausage, is defined as

(1.1) S.(t) = {y ER? inf |y - X, < e}.

IOSS <t
m(S,(¢)) will denote the area of S,(¢), and c¢,(¢) will denote the B-capacity for
B(0, ¢), the disc of radius ¢ centered at 0. We know that

1
T(B/2)T(2 - B/2)"

2-8

(1.2) co(e) =

THEOREM 1.1. If (4k — 2X2 — B) < 1, then we can find random variables
v,(t) € LAdP), n < k, such that

k
(1.3) m(S,(¢)) = Z_:l(—l)”'lcg(g)yn(t) +o(cg(¢))
a.s., and in LA(dP).

By P we mean P,, the probability for our stable process starting at the
origin.

Theorem 1.1 will be derived from the next result concerning the area of the
stable sausage at a random time. Let { be an exponential random variable of
mean 1, independent of X, and let @ = P ® e~! dt be the measure for (X, ¢).
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30 J. ROSEN

THEOREM 1.2. If (2k — 2)(2 — B) < 1, then we can find random variables
€ L%(dQ), n <k, such that

k
(14)  m(S0)) = L (~1)"ei(e)y, +o(ed(e)) inL2(dQ).

Theorem 1.1 leads to an asymptotic expansion for E(m(S,(¢))), the expected
area of the stable sausage, as ¢ — 0. By scaling, this will give the asymptotics
as t — « for fixed radius. We present the result in this form for comparison
with Port (1990).

THEOREM 1.3. If (4k — 2)2 — B) < 1, then

E(m(Sy(?)))
_ i —00(1) " 1 1-(n—1%2/8~-1
(15) = El[zﬁ sin(%/ﬁ)] fe-m-nes-1n)

+ o(1~k-12/B=D) a5 ¢ o,

We now describe briefly the random variables y,, known as renormalized
intersection local times. Let f> 0 be a continuous function supported in

B(0,1), with [f(x)d?x = 1. Set

1 (x

fe(x) = _Ef(_)7

€ t
so that f, is an approximate ‘‘delta function.” If
(1.6) w0 = [ TH(X, - X, )dE

ie
0<t)< -+ <t,<t
then a, () can be thought of as an approximation to
[ f i]la(xti - X, )di,
0<ty< -+ <t,<t

hence should measure the amount of n-fold self-intersection. However, as
e = 0,a, (t) » ©due to the large number of intersectors near the “diagonals”

{t, =t} To get well-defined random variables, we must renormalize, which in
our case means subtracting terms involving lower-order intersections. The

precise definition is

7 dt) = L (—ho<e>)"‘j(31 G
(1.7) =

f .[dtl f (X Xti—l) dti - hO(e)ati_l(dti))’
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where
(18) ho(e) = [£.(2)Go() &%
and

r(z-p)/2 1
(1.9) Go(*) = = o8 (5/2) 2P

is the 0-order Green’s function for X; hence

1
(1.10) ho(e) = ;2—_Eff(x)G0(x) d%.

Even after our renormalization, we cannot show the convergence of vy, .(¢),
as ¢ = 0, for fixed ¢. Rather, we will show that y, ,({) converges in L*(dQ),
and 7y, of Theorem 1.2 denotes the limit. From vy, we will define the vy,(¢) of
Theorem 1.1, and computing E(y,(¢)) is our main contribution in Theorem
1.3.

We remark that the preceding renormalization will only work for n satisfy-
ing (2n — 1X2 — B) < 2, that is, for larger n, vy, ,({) does not converge in
L%(dQ) [see Rosen (1991)]. This provides a theoretical upper bound to the
order of asymptotic expansion obtainable in the types of theorems we consider.
Our work is based on that of Le Gall (1990), who derived asymptotic expan-
sions to arbitrary order for the area of the Wiener sausage, that is, when X is
Brownian motion.

For more detailed results on the topic of intersection local times of stable
processes and its applications see Rosen (1991), Le Gall and Rosen (1991) and
Le Gall (1987). Dynkin (1988) contains a survey of results on intersection local
times.

2. An approximate renormalized intersection local time. Let
B(y, ) denote the disk centered at y, with radius &. The 1-capacitory measure
for B(y, ) with respect to our process is absolutely continuous with respect to
Lebesgue measure on B(y,¢) and its density can be written as g, (x) =
&o..(x —y) = 0, and has support in B(y, ¢) [Bliedtner and Hansen (1986), page
205 and Getoor (1984), Proposition 2.14]. Let

T, . = inf{s > 0X, € B(y,¢)}.
Then, with G = G;. the 1-potential density,
[G(2,2)8,,.(2) d%2 = E.(e" ")
(?.1) . <1,
= z(Ty,g<§) =1, ifzeB(ye).
This implies that
(2.2) L,  FIl <1 £y, e
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where
L,.f(2) = [G(2,2)g, .(2) f(2) d*.
We also note that .
f(/G(z,z)gy,E(z) d2§) d% = f(fG(z, Z+)80.(2) d2§) d?%y

2.3 —\ 9=
(2:3) = [g0,.(3) d%

=c(e),
where c(¢) is the 1-capacity for the disk of radius ¢. [See Lemma 7.1 for the
asymptotics of c(g).]

We set
(24) Mg® = [ [ T, (X)),
’ 0<t;)< -+ <t,<t
and
(2.5) L) =c (&) L (-1)"7 [a;,(£) d%;
j=1

1, .(t) will serve as an approximate renormalized intersection local time. We
shall need a systematic notation for products of operators. We denote by R,
the set of all ordered products 7(u;v) in the noncommutative variables u,v
which contain n factors of u and m factors of v. Equivalently, R, ,, consists
of all permutations of the n + m factors of u"v™.

LemmaA 2.1. For all x,y,n, m we have

(26) Ez(An,x,e({)Am,y,e(g)) = Z W(Lx,e;Ly,e)l(z)'

n,m

Proor. We suppress ¢ for ease of notation:

Ez(An,x({)Am,y({))

n m

=K 5 X\ di

A ) Hadx)as [ Tle(x,)d

(2-7) 0<s;< -+ <s,<¢ O<t;< - <t,<¢
n+m

= E N =

RZ A S I &.(x,)dr,

e 0<ry * <rpe,<¢

where 7, is either x or y, depending on whether the ith factor in 7(x; y) (from
the left) is either x or y.
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An induction argument based on the following calculation will then com-

plete the proof of Lemma 2.1:

[ (i]jlgm(Xn))F(X,j) dr

E,
O<r<-- <r<{
Jj-1
= Ez f e ( ]-—_—-I]:-g“"t(Xri))e_rjg"TJ(er)F(er) dr
0<r < <r<w» .
Jj-1
=F e X - X d—
F4 / f (i]-:-[lg‘n'i( ",))];J . g‘n‘ ( rj) r
(2.8) 0<r; r,_1<e®
Jj—1
=F e
| Sl (M)
O<r< - <r,_;<w

fwe—Sg,,(Xs °9, )F(X,-6,_ )dsdr")
0 J J-1 J-1

Xe -1
j-1
/f _l:_[lgm(Xri)Lv,F(Xr,-l)dr . ]

O<ry--r,_;<{

Let ©, = {lz — xl|,1z — yl, Ix — y| > 4¢}.

Lemma 2.2. For all 2, n,muwe have
'/"/‘EZ(Aﬂ,x,s({)/\m,y,g(é’)) dzxdzy

(2.9)
- L f@_fw(Lm;Ly,e)l(z) d?’xd® + O(%(¢)).

Consider some m(x;y) € R, . If exactly i y’s precede the first x

Proor.
in 7(x; y) (from the left), then, by (2.2),

[ 7(L.sL,)1(2) d%d?y
ly—z|l<4e

</ d? [d* L} (L, 1)(2).

ly—zl<4e

(2.10)



34 J. ROSEN

We apply (2.3) for the d2x integral, then (2.2) again to bound (2.10) by

L ,1(2) d% <c(e) [

ly— z|<4e

= 0(0(8)82).

If no y’s precede the first x, we first do the dy integral. The cases
|z — x| < 4 or [x — y| < 4¢ are handled similarly. O

(2.11) C(s)fy z| <4e

If m € R, ,,, we denote by m(x}y) the polynomial of degree n + m obtained
from 7 as follows: If m; = m; — 1, then in 7(x3y) the ith factor will be 7, — 1,
for example, if

m(X;y) = XXy XYYy X,
then
m(x3y) =x(x — Dyxy(y — )(y — 1) x.
Recall (2.5).

LeEmMA 2.3. For all x,y,n, m, we have
E (c"(€)l,,($)e™(e)lm, ()

(2.12) -y f/ﬂn-(Lx,sZLy,E)l(z) d%cd?y + O(g%(¢)).
Bo.m c)

&

Proor. This follows easily from the proofs of the preceding lemmas if we
note that

c(&)l,,.(¢)
(2.13) =fay [ f dtlgy,e(th)E]z{gy,e(Xti)dti — 8, (dt)}.

0<t)< - <t,<{
O

We let D, ,, denote that subset of R, ,, consisting of products m(x;y) such
that neither the x nor the y factors are completely separated, that is, such
that in 7(x3y) at least one x factor has been replaced by x — 1 and at least one
y factor has been replaced by y — 1.

LEmMA 2.4. Forall z,n,m and w € D, ,,, we have

(2.14) f/w(L,c L, ,)1(2) d%cd?y = O(e%(¢)).
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Proor. We can rewrite

n+m

(215) (Lo L)1) = [ [ T] Gz 2080 (20) d2

with z, = 2.

35

(L, L, ) differs from (2.15) in that some factors G(z;_y, 2,)&, (z )dz;

xe’

are replaced by
(2.16) G(z;_1, zi)gw,(zi) dz; - azi_l(dzi)'

Let 7 denote the largest i with 7, = x for which we have such a replace-
ment, and let 7 denote the largest i with 7, =y for which we have the
replacement (2.16). Since w € D,, ,, such m, n exist, and we can assume

7 < m. Note that if m = n + m, then (2.14) is zero. Thus, m; = x, m;,;

=Y

T, =X, T =Y, Tms1 =%, T =y and 7 + 1 <m < n + m. Therefore,

n—1

in the expansion of =(L, L, ) we have factors

xe’

(2.17) [G(Z_ﬁ-pzﬁ)gx(zﬁ)dz,—l 2 {32:) | [G (25, 251)8)(2511)]
(218) [G(zm—l’zm)gy(zm) dzm zm 1(dz )][G(zm’ m+1)gx(zm)]
Since both z,_; and z, are in B(x, ¢), by (2.1) the dz, integral of

[G(25-1,27)8.(23) 25 — 8., (d23)|G(, 2541)
is zero, and therefore we can replace the second factor of (2.17) by
(2.19) (G(25,25+1) — G(%,27.1))8,(2a+1)-
Similarly, the second factor of (2.18) can be replaced by
(2.20) (G(zm’zm+1) - G(y, zm+1))gx(zm+1)-
Let
(2.21) 0,G(2) = sup|G(z + a) — G(2)|,

la| <e

then (2.19) is bounded in absolute value by [see (2.24)]
cw,G(x — ¥)8y(2n+1)

and (2.20) by
co,G(x ~ ¥)8:(2m+1)-

We now use (2.12), noting that

/gy(z +1) dz5 = fgx(z +1) d2miq = c(e)
to get
222)  |m(L,. L, )1(2)]| < c(@,6(x = 9))cX(e) Ly, 1(2).
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Say 7, = x. Then

[ [17(L.... L,,.)1(2)| % d?

(2.23)
< cc2(s)fo’El(z)(f (0,G(x — ) d% | d3.
|lx—yl>4e
But we know [Rosen (1991)] that
€
(224) |(x)£G(u)| < Cm, |u| > 48,
hence the inner integral of (2.23) is bounded by
1 1

2 2, _ .2 .
(225) Ce jl.ulzélg"l?m d“u = ce 82(2_ﬁ) ’
hence (2.23) is bounded by [see (2.3)]

ce?[L, 1(2) d% = cc(e)e. D

3. Area of the stable sausage. We clearly have that

(3.1) m(8.(t)) = [z, , <y 4%,

so that

(3.2) E,(m(8.(0))%) = UPZ(TM <¢{ T, <{)d%d?.
LEMMA 3.1.

(3.3) E,(m(S.0) = [[PuT.. <& T, <§)d%d’ + O(e%c(e)).
[C)

€

Proor.

[[ BAT..<& T, <¢)d%d? < [P(T., <{) d2x) d?%y

|lx—z| <4e

J

x—z| <4e

<ce?[P(T.,, < ¢)d%

= cc(e)e?

by (2.1) and (2.2). The case of |y — 2| < 4¢ or |x — y| < 4¢ is handled similarly.
O
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We introduce
(3.4) H, ,f(2) = Ph,o f(2) = E(e”™f(Xr,))-

H, , is known as the first-order hitting operator for B(x, ¢).

LemMA 3.2. For any n, and for x,y such that |z — x| > 4¢, |z — y| > 4e,
lx — y| = 4¢, we have

P(T,.<{T,,<¢)= ¥ (-1)'7 X w(H,,;H,,)1(2)

i,j<n N,
(3.5) - B((H, H,,)" H, A(Xg )i T, < T, <2)

+E,((H,,H,,)" 'H, (X, ); T, . <T,. <),

where N, ; C R, ; is the set of ordered products w(x;y) such that in m(x;y) no

contiguous letters are the same.

REMARKS. (i) The last two terms in (8.5) are error terms which are con-
trolled in Lemma 3.3.
(i) N, ; is precisely the set of products m satisfying

m(x3y) = m(%;9).
We also note that N, ; = Qunless j =i —1,iori+ 1

Proor oF LEMMA 3.2. We again suppress e. For any u,v, we define
inductively

Alu,u = Tu’
A%t,u = Alit,v + TUOBAL v
Ai,v = Ai,u + Tu OBA?, v?
A%tlfv = Ai’f;l + Tu OOA?}:;%
Ai’fjl = A%"fv + T, oBA%.
We first show that
n
P(T,<T,<{)= X P,(A%, <)
=1
(3.6) ’

n

f £ a0y nin <A <0).

The verification of (8.6) proceeds inductively:

(8.7) P(T,<T,<{)=P,(A,, <A’ <{)-P(T, <A, <A}, < {).
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By definition,

(3.8) {4, <42 <¢)={a2,<¢)
and

Pz(Ty <AL, <A, < {) = Pz(Ai,x <A <A < {)

(3.9) —P(T. <A} <Al <A} <)
=P,(A3 2 <{)—P(T. <A ;A = <)
and so on.
We next show, for example,
(3.10) P,(A%t' <{¢)=H, (H, H,,) 1(z).

This is done inductively. It is true for i = 0 by (3.4). The induction step is (we
take, e.g., j even)

exp( ; (XA, ))

E(A] . <& F(Xy ) =B
E (ex (AJ 1y T OAJ 1)]F(XA473’1+Tx°0,£_L))

F4

(3.11)

th

exp(—AJ7}Y) exp(—Tx)F(XTx)}oeAi-xl)

- E(
z(exp( —AJ 1 EXAJ 1(exp( T,)F(Xy, ))
E

(AID < 6 H, F(Xu)),

which yields Lemma 3.2. O
We now control the error terms in (3.5).
Lemma 3.3. If 2k — 1X2 — B) < 2, then

(312) [[E((H,.H,.)" 'H,1(Xg);T,<T,< ¢) dxdy = O(%(¢)),
®€

where @ = inf(2 — (2k — 1)X2 — B), 3(2 — B)) > 0.
Proor. The integrand in (3.12) is the error term in (8.5), hence less than

(3.13) (H,.H,,)"H, 1(2),
by the method of (3.7), (3.8) and the proof of Lemma 3.2.
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Now, by (2.1, if y € B, ,

H, . f(3) <|f1[G(3,%)g.(%) dx

(3.14) < cG(x - Y fl[g.(x) d%

= cc(e)G(x - y)IIfIl;
hence, beginning on the right, (3.13) is bounded by

(3.15) ce(e)* G (z — )G (y - x);
hence (3.12) is bounded by
cc(s)zk“f G(z—y)([ G*(x — y) dzx)dzy
|z—yl|>4e lx—y|>4¢
<ce(e)™ [ G(u)d%u
lul>4e

(3.16) = cc(e)?*! [ 1 d?u + 0(1)

' te<lul <1 uZEPR

- cc(s)z"“(;z-z:—:-—m * 0(l°g(%)))

1
= c(c(e)ez + c(e)zk“log(—)),
t
where log(1/¢) appears only if 2k(2 — B) =

The following lemma summarizes the results of this section.

LemMma 34. If 2k — 1X2 — B) < 2, then

(317) E(m(S8,(0)))= ¥ (- 1)’“[[277( «e Hy )1(2) dzdy

i,j<k
+ O(e“czk(e)).

4. The cross terms. We let S; ; denote the set of ordered prod-
ucts m(x;y) such that at least one of the letters x,y has the property that it
never appears twice in a row. We can refine this further by setting S} (S2 )
to be that subset of S; ; in which x (respectively y) never appears tw1ce in a
row in 7(x;y). We note that

(4.1) S.iN8L; =N,
Recall the definition of A, , , from (2.4).
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LemMa 4.1.  For any n and for any x,y, z such that |x — y| > 4¢, |[x — 2| =
4¢ we have

n+1 .
(4.2) E(T..<&A,,(0))=X (-1)'' L w(H,.;L,.)1(2).
i=1 Sin -

n

Proor. We again suppress ¢’s and define the random measure on R’ :

(4.3) A@B)y=[-] ljlgy(X,l)dt
i BND,

with D, ={0 <¢, <t, < -+ <t, <{}. We use the notation
(4.4) A (B;F)= A (BNF).

n.y n,y
Setting ¢, = 0, t,,,; = ¢, we have
(45) 1(T1<{}/\n,y(§) = Z /\ (tj < Tx < tj+1)‘

Jj=0n,y

As in Section 3 we have

AN <T.<tj)= A(t;<t;+T.00, <t;.,)

n,y n,y
(4.6) j-1
=X AN <T<tit;<t;+T,o0, <t;.),
i=0n,y

and proceeding in this manner we find that

Lir, <tn,»(£)

n+1

@D STy T AN e, <nu)).
i=1 Acf0,1,...,n} n,y ‘keA
|A|=i

We show by induction that

(4.8) E( A ( Nt +T,-0, < t,.+1})) - w(H, L, ,)1(),

n,y ‘i€A '

where m(x,y) € S}, is determined by the fact that its x factors occur
precisely between those ith and (i + 1)th y factors for which i € A.
Assume first that 0 € A, n & A. Set A, = A — {0}. Set

(4.9) B(A) = n {ti+Tx°0ti<ti+1}‘
icA
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We have

£ A 5ap) - 5[ A <0 54|

n,y

=E| [ | s ngy(th) dtj)
=

T . <t;< -+ <t,<{
=Ez / f e—tnlB(Ao),l—[lgy(th)dtj)
(4.10) T,<t,< o <ty<o !

fen{ p miao)n)

—E,|e xEXTx(n/,\y(B(AO))))

= Ez(e_TIWO(Hx,E; Ly,t‘)]‘(XTI))
= Hx,ETrO(Hx,E; Ly,s)]'(z)’

where 7 is obtained from 7 by dropping the first factor.
If n € A,, we proceed similarly, except that in the fourth line we have

eXp[ (. + e th)] lpao-inp
instead of
e rlpiay-
If on the other hand 0 ¢ A, then if also n &€ A, we have
E( A (B(4))

n,y

-E, / e f e_tnlg(A) 1_[ gy(th) dt;
Jj=1

0<t;< -+ <t <o

/ o f et l—[2gy(th) dtj}gy(th) dt,
jo

b <ty< -

[

<t,<wx

eI

= Ly,EWO(Hx

0
-4
. j;)e Eth(

A (B(A-1))

n—1,y

A (B(A-

n—-1,y

e Ly ) 1(2),

}o0.6,(%,)

1))) g,(X,) dtl)

41
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where A — 1 denotes the set of integers obtained by subtracting 1 from each

integer in A.
The case n € A is handled as before. O

LEmma 4.2. If 2k — 1)@2 — B) < 2, then for any n < k we have
B ({ [0(0) &%) m(5.00)]
(4.12) (R+ DAk

=[/ _21 (-1)'"'Y w(H, ; L, ,)1(2) dedy + O(e%c?(¢)).
o, ' Sin

ProoF. As before we have

(4.13) Ez((pn,y,g(;) dy)m(Se({))) = [ [E(Auy,o(9); T < ) d?d?y.

We have
ff Ez(An,y,e(g); Tx < {)dzxdzy
|lx—yl<4e
(4.14) < [Ez(An’y’E(g))(flx-y|<4ed2x) a2y

< ce?[E,(A,,,.(0)) d

< ce®e(e),
as in the proof of Lemma 2.2. The case |x — z| < 4¢ follows similarly, while for

ly — z| < 4¢ we can use the previous lemma and need only control:

(4.15) [ [7(H,, L, )1(2) d%d?,
®€

forme S, 1<i<n+1 .
Using (2.2) and (3.14), our last integral is bounded by

c [f c(s)G(aé —y)dxdy < cc(s)/i‘y_d“edy

(4.16)

ly—zl<4e

< cc(&)e®.
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Finally, we show that if m € S, ,, then

(4.17) [ [7(H, L, )1(z) d’xd = O(e%c™(¢)),
e,

but = € S}, , is only possible if 7(x;y) = xyxy - xyx, that is, m € SZ, | ;.
The analysis used in the proof of Lemma 3.3 then establishes (4.17). O

As in Section 2, we can now state the following.

LEmMa 4.3. If (2k — 1X2 — B), then, for any n <k,

E,(c"(e)l,,(L)m(8.(£)))
(418) _ (nJrZDAk(—l)"‘l Y w(H, L, ,)1(2) dxdy + O(s%c?(s)).
i=1 S,

5. Analysis of stable sausages.

LEmMa 5.1. If 2k — 1)@2 — B) < 2, then

E,

n=

k 2
{m(Se(f)) + Zl(—C(S))"ln,E(Z)} )

- L -y

i,j<k

(5.1) xjj{2 Y [=(L..;L,.)-w(H.iL,.)|1(2)dxdy
Sl .—
®£

i,J

+ Z [W(Lx,e;Ly,e) - W(Hx,s;Ly,e)
N;

-w(L,;H,,)+m(H,,; Hy,s)] l(z)} dxdy + O(e%?*(¢)).

ReEMARK. We will control the terms on the right-hand side in Lemmas 5.2
and 5.3.
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Proor orF LEMMa 5.1. We first expand the square in (5.1), then use
Lemmas 4.3, 3.4, 2.3 and 2.4 to find that

k 2
E, {m(Se(l))Jr gl(—C(s))nln,e({)} )

k
= E,(m(8,(0)°) + 2 gl(—1)"Ez(c”(e)ln,e(z)m(ss(z)))

+ ¥ (-DVE,(ci(e)l;, (£l ()1} (2))

i,j<k
(5.2)
=X (- 1)‘“/ Zw( we Hy ) 1(2) dxdy

i, jsk

+2 X (-0 [ L ow(H,, 5L, )1(2) dedy

i,j<k ssl

+ Y (- 1)’“[ E'n-(Lx &L, )1(2) dedy + O(e%c*(¢)),

i,j<k

and reorganizing gives Lemma 5.1. O

Lemma 5.2. If w € N, ;, then

J[{m(Le Ly = m(H, 5L,

(5.3) >
-w(L, ;H,,)+w(H,,; H,,)}1(z) dcdy

= 0(ec?(¢)).
REMARK. Note the appearance of sc*(¢), as opposed to &2c(e).

Proor orF LEMMA 5.2. Recall that when 7 € N, ; the x and y factors in

m(x, y) alternate.
We first write

{W(Lx E’Ly 6) - 77( x, 89 Ly,s)}l(z)

as a sum of terms, each of Wthh contains one factor L, , — followed

by L, ., or 1. Since (L,, .1 =0 by (2.1), we can extract a factor
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c(e)w,G(x — y) as in the proof of Lemma 2.4. As described there, we can then
bound the integral by

e) [[ G(z-2x)0,G(x-y)dxdy

{z—x=24e
x—yl=4¢
(5.4) 7
< 802(8)(f 1/ur*@ B d2?y + O(1) | + O(ec?(¢)),
de<lul<1

since (2 — B) <1.
Similarly, we write
{m(L, . H,,)-w(H,,;H, )1(z)
as a sum of terms, each of which has a factor L, 6 — H, . However, if

such a factor is followed by H, ., then we cannot immediately extract a

c(e)w,G(x —y). But since, as noted, {L,,— H, }1 =0, we can replace
H, (x,-)by

(55) Hy,e(f") _Hy,s(x’.)'

Now, by (2.1),

(5.6) (H, (%) - H, (. )1 = [{G(Z.5) - G(x.,7))8,.(3) dF,
so that, if (5.5) is followed by H, (7, - ) we can replace this in turn by

Hx,s(y’ ) - Hx,s(y’ ')’

introducing an error term containing the factor (5.6), which is bounded by
c(e)w,G(x — y). We continue in this manner until we reach a factor of the
form L, ., or 1. This completes the proof of Lemma 5.2. O

Lemma 5.3. If w € 8}, — N, ;, then

i, J2

(5.7 [[{m(L,3L,.) — 7(H, 5L, .)1(=) dxdy} = O(ec*(e)).
e,

Proor. We can write the integrand as a sum of terms each of which
contains a factor L, , — H, , followed by L, ,, so that Lemma 5.3 follows from
the first half of the proof of Lemma 5.2. O

Summarizing, we have the following lemma.

" Lemma 5.4. If 2k — 2X2 — B) < 1, then

= 0(s%/%*(¢)),

2

k
(5.8) ”m(Se(Z)) + E_l(—C(E))nl‘n,g({)
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where
a = inf(1 — (2k — 2)(2 - B), 12 - B)).
REMARK. @ < a, since 2 — B8 < 1.

6. Renormalized intersection local times. As in the introduction, let
f(x) = 0 be a continuous function with support in B(0, 1), and [f(x)d?x = 1.
We set f.(x) = (1/£2)f(x/e) and

(6.1) h(e) = ffs(x)G(x) d?x.

We now define

OE él(—h(e))”‘f(ji e

(6.2) n
- / o / dtlz];g(fe(xti - Xti—1) dti - h(g)sti—l(dti))’

0<t;< -+ <t,<t
with a; (¢) defined in (1.6).
LEmMa 6.1. If 2k — 1)(2 — B) < 2, then
(63) ”lk,e({) - Fk,e({)llz =< cea/2,
where a =2 — (2k — 1X(2 — B) > 0.
Applying this to any j < k, we have
1;,,(¢) = T .(£)llg < ce/DE-Ci=1x2=p

(6.4)

= cek=DE@=P) +a/2,
Combined with Lemma 5.4 we have the following corollary immediately.

COROLLARY 6.2. If 2k — 2)(2 — B) < 1, then

< cck(e)ed/2.
2 .

(6.5)

k
‘m(Se(f)) + X (—¢(2) T, o(8)
n=1
In addition, we prove in Rosen (1991) that if (2k& — 1)(2 — B) < 2, then, for
J<k, I () converges in L%(dQ,) and the limits [; satisfy
(6.6) IT; () = Tl < ce?/2+(R=i)2=P)

so that we get the following corollary.
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COROLLARY 6.3. If (2k — 2)2 — B) < 1, then

< cch(e)ed/2,
2

k
(6.7) Hm(ss(;)) + L (=)',

Proor oF LEMMA 6.1. We will recast our lemma in a form which will allow
the reader to see how it follows from the proof of Proposition 2 of Rosen
(1991):

12k, .(£) = T ()3
=E(1} (0)) = 2E(1,, (DT, (0)) + E(LZ (0)),

and we first study each term separately.
By Lemma 2.3,

(6.8)

(6.9) E(12 (0)) = RZ c_2k(s)ffw(Lx’thy’s)l(z) d®xd% + 0(z*).
k,k )

€

Let

1
(6.10) J(m) = T ffw(Lx’&ij,s)l(z) d%xd2y.
0,

We will say that a sequence S ={i,i +1,...,i +1,i}, i=i+1+1, is
elementary for = if

(6.11) m #m_y and m; * m,

for all j, i <j <. This implies that 7, = m,, i <j <.
With such an elementary sequence we associate a function Gg(z) of the 2k
variables

zZ/, J=1,2;i=1,...,k,

12

defined by
1
(6'12) GS(Z) = G(/’ij+1) T G(/{H) Z

where
J -7 _7J
Fi+m _Zi+m Zi+m—1'

Using the fact that [see (2.1)]

fG(z,E)gy,e(E) dz=1, ifzeB(y,¢),
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we find that, with &, (1) = (1/c(e))g, (),

(613) J(m) = [[ dxdyfghx,e(z})hy,e(zf) ](_[)GS(Z) dz,

0,

€

where £(7) is the set of elementary sequences relative to .
We next consider the term

E(T¢ .(9))

2

k
-El| [-] dt1i=]_[2(fs(Xti - X, )dt, — h(£)8,_(dt;))

0<t;< -+ <t,<¢

(6.14)
2
-E [ TLaHTT(fXy - Xy ) dt] - k()8 (dt]))
) o J=1 =2
O<t/<t)< <t <¢
= Y I(D),

where we identify 7 with the ordering 0, t{ as before,

fp) - [ - - T 1%y - l)dt“h(e)atu(i)]

and D runs over the set of orderings of the 2k points ¢/, j = 1,2,i =1,..., &,
suchthat 0 <#{ <tj< - <t{<{ j=12.

We now associate a m € R, , to each orderlng D. Simply set w; =x or y
depending on whether the ith element in D is a ¢! or a ¢2. With this = we
easily check that

k
(D)= f( l] ()| I1Gs(2) dz
6.15) k ,
( = [ [dxdy [h, (Z})R,,.(Z}) I E(/{)](_[)GS(Z) dz
J=1,2‘ e
=I(m) + 0(¢%),
where '

k
(6.16) I(m) = [ [ dxdy[h. (Z})h,,(2]) [11.(+7) [16s(2) dz,

®E
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and the last line of (6.15) follows as in the proof of Lemma 2.2, using

) c
sgpffa(z -a)G(2)d*z < (o)

A similar analysis shows that

(6.17) E[l,, (DT, ()] = X K(m) + O(e%),

Rk,k

where
k
K(m) = [ [ dxdy| (hx,E(Z%) I fe(/i))
(6.18) ®.

X

k
i[Ilhy,s(Z?)) [165(2) dz.

Thus, we consider

J(m) - 2K(w) + I(m)

(6.19) _ . ) .
f@ [ dxay [F. (2)F, (29 T1 6,(2) 42,

where
Bou(2) = ([Tk0(2)] - (m2D TG,

and it suffices to show (6.19) is O(&%).
We expand

k
F,(2)= ¥ (-1)""h,.(Z)
(6.20) m=2

m-—1

X Lljz Ry (Z7) (R, (23,) — F.(43)) El;[ﬂfs(/{)

1

and write (6.19) as a sum of many terms, each of which has a factor of the
form

(6.21) he o (ZY) - 1.(40)
*and also a factor of the form
(6.22) h, (2%) - £.(%);

the proof now essentially follows the lines of the proof of Proposition 2 of
Rosen (1991) if we recall that [f, = [h, .= 1. O
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7. Theorem 1.2.

LeEMma 7.1.

(7.1) keo(e) <c(e) <co(g), forsomek >0,0<¢e<1.

Proor. From the resolvent equation,

0<Gy(x) —G(x) =Gy*G(x)
1 e'P*

" (2n) fp‘*(l +pP)

= V(x)

d?p

(7.2)

is bounded and continuous. Since

1
O inf [ [G(x ~ ) du(x) dn(y),

1
oy~ S [Go(x =) du(x) du(y),

where the inf is over all probability measures u supported on B(0, &), (7.2)
shows that

1 1
(7:8) d(e) = 5 = oy < swp [ [V(x =) du(x) du(y) = O(1).
Thus,
(7.4) c(e) = CO(E)_]W,

which completes the proof of Lemma 7.1. O

We shall need a more detailed estimate for d(¢). We have

5
p
75 V(x) — V(0)| < cx® | ————=d?p,
(7.5) (x) = V(0) /pB(Hpﬂ)A
for any 8 < 1. Thus, for x| < 1,

clx|, ifg >3,

7.6 14 - V(0)| < 5 ,
(7:6) V() = VOl < | | os-25 g s

for any & > 0.
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Now, for any j > 2,
2B-2-6=2-2(2-B) -8
=3(2-(2/-1)(2-B) +1-8+ (- 3)(2-B)
>3(2-(2/ - 1)(2-B)),

for 5 > 0 sufficiently small.
Since, obviously, we also have

1>3(2-(2j - 1)(2 - B)),
we have that, if a =2 — 2k — 1X2 — 8) > 0,
(7.7) [V(x) — V(0)| < clx|*/2+*=DE=H)
Returning to the proof of Lemma 7.1, we have
(7.8) d(e) = V(0) + O(g2/2+k=22=p))
and, comparing k(e) = [f,(x)G(x) and hy(e) = [f,(x)G(x), we also have
(7.9) ho(e) = h(e) + V(0) + O(Ea/2+(k—2)(2—3)).

Proor oF THEOREM 1.2. We have, for |x| < 1,

() - £ o (izd)e

k 1 )
Z (l ~ 1)xz—n + O(xk”_"),

n
i=n

hence from (6.6), (7.4), (7.8) and (7.9) we get, in L%(dQ),

(7.10)

k
2 (=e(e))"Td)

k 1 i
- e | g | P
k B k ienfi—1
= £ (e[ £ (cotwrd) (174 16) + 0fch )
oa |
- £ (ca@)| £ (12 )-a0n 0] < 0 0)
k i i—-1 ;'—n
- £ (e[ £ (121006 = ha(o) "10)] 4 0(ck 0

ar-ll

= ¥ (—cole)) 7..(£) + O(ck*(e)),

i=1
as follows on comparing (1.7) and (6.2).
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Finally, from (6.6) and the preceding, for 2 < i < &,
: 1—1 i—n
%0 - L (225 )y,
(12 g (i

o1 n—1

J[(A(e) = ho)) "L, () = (~V(©) "]

— 0(£(k—i)(2—[3)+a/2),
which, together with (7.11) proves Theorem 1.2 [recall y, ({) =T, () =],
with

i

v+ T (2 ])von . o

n=1
8. Asymptotics for nonrandom times.

Proor oF THEOREM 1.1. The random variables v,, n < &, which appear in
the statement of Theorem 1.2 are constructed as L2(dP ® e~ * dt) limits, hence
only defined a.e. We choose a representative of the L? equivalence class of v,
and denote it by 7,(¢, w). By Fubini’s theorem, we have

(8.1) F(t) = ¥,(¢, w) € L3(dP), fora.e.t,

and we can restate our previous results as

(8.2) fo et

2
dt < cc2*+9)(g),
2

k
m(S.(t)) + gl(—c(,(e))”&n(t)

for some & > 0.
We can assume that %2 > 2 and that % is the largest integer such that
2k — 2)2 — B) < 1. Choosing § > 0 small, we have

(8.3) 2(k +8)(2 - B) > 1,
(84) (k+8)(2-B) <Ll
Taking &; = 1/i2, this implies that
o o k n 2
fo et Zlc(;(k+5)(si) ‘m(SEt(t)) + Zl(—co(gi)) 7. dt
i= n= 2

(8.5)

1 (k+8)X2-B)
) <o,

[e¢] [e2]
<c cb(e) =X (.—2
i=1 Coi=11\1

Therefore, for a.e. ¢, we have

[k/2]
(8.6) 1imc§<k+8)/2(€i)[m(Sei(t))+ > (—co(ei))"?n(t)} =0
L . n=1
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a.s. and in L?(dP). Note that we have simply dropped the terms for n > [ /2],
since § > 0 is small.
By (8.4),

(8.7) lim c5 1973 (e,,1) = ¢g**P3(e;) = 0,

and, therefore, for ¢ as above,

[k/2] —(k+8)/2)
lim  sup Y, (—co(€)) ¥a(2)

172® g, 1<€<¢g; | n=1
[&/2] (k+8)/2)
n— -
- X (—co(s) ¥a(t)| =0
n=1

(8.8)

a.s. and in L%(dP).
Equation (8.6) now shows that

(8.9)  limeg®™%(e,)m(8,(¢)) = oV (ein1)m(S,, (1)) = 0;
therefore, using monotonicity, we have that, for any ¢,,; <e <e¢,,
¢ % (e;)[m (8., (2)) = m(S.(1))]
< eq BT 2(e)m(8,(2)) — g * TV (e )m(S, (1))
< [eg® 2 (e101) — eg® 0 3(e) | m(S.(1)),

hence, for a.e. ¢,
[k/2]
(8:10)  Limeg#02(e) | m(5,(8)) + L (=co#)) 7u(t)| = 0
e n=1

a.s. and in L2(dP), forall 0 <& < 1.
We need (8.10) for all ¢, but we cannot show this directly. Rather, we

redefine the random variables 7,(¢).
Take some s > 0, such that (8.10) holds for ¢ = s, and define

(8.11) Yo7, w) = PYBIO2D (5 ),
where
(8.12) o, (u) =r YPo(ru).

The scaling property of the stable process X. says precisely that o — wr is
a measure-preserving transformation of (Q, dP).
In particular, we see that y,(rs) = v,(rs, ) € LAdP) and

Eli_%cg(km)/z(;%)[m(srfm(s))(w,)
(8.13) b2 L
B e ) o)
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converges a.s. and in L%(dP). But

(814) oo 77 - (,—11/?)2_3%(3) = P2/ e)
and

(S (o)) = m{{y it alorr o) <o)
oty <)

= r Em(8,(rs))(«),

so that (8.11) and (8.13) give

[k/2] i
(8.16) }EX})CJ"“*’”/z(E)[m(SE(rS)) + X (—co(e)) va(rs)

n=1

=0

a.s. and in L%(dP), for all » > 0. This completes the proof of Theorem 1.1. O

Note. If we could show that

= 0(c**"(e)),

2m

k
]m<se<z>> - T (el

n=

then the preceding should give us terms up to
2m -1
k
2m

9. Asymptotics of the expected value.

instead of [k /2].

Proor oF THEOREM 1.3. If (42 — 2X(2 — B) < 1, then by Theorem 1.1,
k
(9.1)  E(m(8,(1)) = L (=1)"'c5(e) E(vu(1)) + o(c*(2)),
n=1

as ¢ = 0.
Using (8.14) and (8.15), this is equivalent to
E(m(S,(2))) = E(t**m(8;-1+(1)))
(9.2) k -
= T (~1)" T GGE(, (1) TIED 4 o(g1mh-0/6oD),
n=1 .

as ¢t = », where c, = cy(1).
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We first intend to prove that

. B 1 n—1 1
(9.3) gl_l;r(l)E(’Yn,a(l)) = [23 Sin(zﬂ-/ﬁ)] I'(2-(n-1)(2/8-1))

whenever (2n — 1X2 — B) < 2; later we will show that the preceding limit
equals E(y,(1)), which would complete the proof of Theorem 1.3.
Let p,(x) denote the density of X,. We have

E(yn,e(l)) = E(j;ldtlj;l{fa(xtz - th) dt2 - <fe7G0>8t1(dt2)}
X[ [ X = X ) de = (£ G0, (dn,))
(04) = [ [ (For i) dba = (1, Gooy(dtr))

X,[t: - ftl {( fe’ptn_tn—1> dt, — <fa,Go>5t,,—1(dtn)}

= [1771(8) dt,
0
where
(9.5) Le(®) = [ N forPo_)8(s) ds = (f., Goda(t).
In particular,

L1(¢) = [t‘< for Do) ds — {f., Gy

1-t o
(9.6) —fo (f.rpy) ds —fo (f.,p,)ds

=7 ’ ) st .
<fa fl_tp >
We have that, for any 0 < 6 < 1,
|ps(0) —ps(x)l < cfl]_ — eipxle-spﬁ dzp
(9.7) < cxafpae_spp d2p

< cxlsT@TO/B,
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Hence, with p,(0) = p,(0)s~2/5,

I1(¢) —f: p,(0) ds + O(£%)(1 — t)l—(2+8)/B

(98) p4(0)

1-2/8
We now show through an appropriate choice of § that the second term in
(9.8) does not contribute to (9.4) in the limit as ¢ — 0.
If 2k — 1X2 — B) < 2, then a fortiori (& — 2)2 — B) < 1, while (2% —
D2/B - 1) <2/, that is, 2k — 2)(2/B8 — 1) < 1; hence we can choose 0 < §
< 1 such that

(9.9) 5> (k- 2)(2-B),
(9.10) 6/B+k(2/B—-1) <1.
Now consider, for general y > —1,

[ pead(1 = 57 ds

(1=)""%F + 0(e?) (1 — )} ®+P/8,

= [} forpd(1=9)" = (1= a)"] ds

(9.11)
+(1 - a)yfl( fos Ds_a) ds

- fol‘“< fop(1 —a—35)" = (1-a)"]ds + O(h(s))(1 - a),

where h(e) is defined in (6.1); see also (7.9).
Since we have p (x) < p,(0) = cs~2/#, (9.11) is bounded by

cfol_as'”ﬂl(l —a—-s)" —(1-a)lds + O(h(e))(1 —a)’
(912) _ (1 - a)"*(l'z/’”fls‘”ﬁl(l —s)" = 1lds + O(h(e))(1 — a)”
0

<e((1=a)"™" P 4+ h(e)(1 - a)”)

since
(9.13) [ls7/A1(1 - )7 - 1lds <=,
0
for y > —1. ‘
Checking the definition (9.5), we have that if
(9.14) lg(s) <e(1—s), y> -1,
then

(9.15) Le(t) < c((1 - &) P 4 h(e)(1 - 1)").
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The error term g(s) in (9.8) satisfied
lg(s)l < ce®(1 — s)'"2/P%/%,
hence an induction argument using (9.15) and (9.10) shows that

n—2
(9.16) 17 ~2g(t)l < ce® Y, (1 — )V P-2/P=0/Bpn-2()
j=1

and, therefore, with (9.10) we have
(9.17) ’fll!“Zg(t) dtl <ce’h" " 2(e) - 0,
0

by (9.9) and (7.9).
Thus we can drop the error term in (9.8) and calculate

[ p(0)(1 —s)' 7P
0o ° 1-2/8

To this end we compute, for y > —1, using (9.7),

L((1-s)")(2)
~ ft1< for a1 = 8) ds — (f.,Go)(1 — t)”

)(t) dt.

1 Y y y «
=ft <f£,ps_t>[(1 -5) = (1-1) ]ds —(1-19) <f8,f1_tps ds>
(9.18)

= [Pl -9"-@-0lds -1 =) [" p(0) ds
+ 0(88)(jt1(s — ) @B (1 — )" — (1 - t)"ds
+(1 - t)*+(“2/ﬂ)‘5/’3).
We first compute

1 Y 1-Vlds —(1-"["
[P =9)" = (1 =0)"]ds = (1 =)"[ p,(0)ds

=p(O) [ (1 -t = 5)" ~ (1~ )] ds

‘_ (9.19) (1 = )3y

1
~ py(0)(1 - t)”(1_2/’3)[ fsmela - - alds + 15|



58 J. ROSEN

Now, for Re(p) > 0, Re(g) > 0, we have

Lp-1 — )9 - _}_
fot [(1-1) 1] dt = B(p,q) >

(9.20) r(p)(g) 1

" T(ptq) »p

while both sides of (9.20) have analytic continuations to Re(p) > —1, p # 0.
Hence the integral in (9.19) equals

)

r(1-2/8)T(1+7y)
Fr(1+(1-2/8)+vy)

Now, by induction assume that we have shown that, in j successive
applications of I, to 1, we ignore the error term in (9.18). Then, via (9.8) and
(9.21), y successively takes the values i(1 —2/B8), i =1,2,...,j and the
(j + Dst error term (9.18) will then be

(9.21) py(0)(1 = £)7+®

0(58)(1 _ t)(j+1)(1-2/l3)—5/ﬂ.

Arguing exactly as when j = 0, we see that we can ignore this error term in
the ¢ — 0 limit of (9.4). Hence, with (9.8), (9.20) and (9.21) we have, using
re-2/8)=Q0-2/8ra-2/p),

lim E(y,,.(1))

2\\"! 1
B (”I(O)F(l - E)) T(1+ (n-1)(1-2/8))

(9.22) Xfl 1 — §\(r-DA-2/8)
(1-1) dt
0

2\\"! 1
- (pl(o)r(l - E)) T2+ (n- D)(1-2/8)

But, for the symmetric stable process of order S,

1 2
(9.23) p:(0) = EW_[;F(E)

and

9.24 FEF(l—E)—"——————l
(9:24) (B) B)” sn(27/B)
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which leads to (9.3). It now remains to show that

(9.25) E(v,(1)) = lim E(y,,:(1)),
for some subsequence z; — 0.
By (8.11),
(9.26) E(7,(s)) = 5”1+~ D/B-DE (5, (5)).

As in Section 8, we can assume s is chosen so that, for some subsequence
& 1 d g,

E(v,(s)) = Iim E(y, .(s))
= tim T (o) 3]
x - f (Efel(xh—xt,_l))dz
0<t; < -

lh_)n; J§1(_ho(51))n_j(? : ll)sj

x [ E(llflzfel(xst,-—xst,_l)) di

(9'27) O<¢;< -+ <t;<1

lh_f‘}o X:: (_ho(fz))n_j(§ _ 11)Sj

J

X [ -f (1‘[ I/B(X,i—Xti_l)))dZ

o(55)) (57

Jj
% ff E(lIszel(sl/B(X‘t_Xti-l)))dz‘
O<ty - <t;<1

Thus, comparing (9.26) and (9.27), we have (9.25) with &, = (¢,)/s'/8. O

s <t;<1

= gl=(n=1@/B-D iy Z (

> i=1

J
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