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LIMIT THEOREMS FOR RANDOM WALKS CONDITIONED
TO STAY POSITIVE!

By RoBERT W. KEENER
University of Michigan

Let {S,} be a random walk on the integers with negative drift, and let
A,={S,=20,1<k <n}and A = A,. Conditioning on A is troublesome
because P(A) = 0 and there is no natural sigma-field of events ““like” A. A
natural definition of P(BJA) is lim, _,, P(B|A,). The main result here
shows that this definition makes sense, at least for a large class of events
B: The finite-dimensional conditional distributions for the process {S,}; . o
given A, converge strongly to the finite-dimensional distributions for a
measure Q. This distribution @ is identified as the distribution for a
stationary Markov chain on {0, 1, ...}.

1. Introduction. Let{S, = X¥7X,} be a random walk on the integers with
negative drift. Standard results in large deviation theory assert that as n — «
the conditional distributions for S, given {S, > 0} converge weakly to a
geometric distribution. The goal in this paper is to investigate properties of
the process with the conditioning events {S, > 0} replaced by the event A =
{S, =0, k> 1}. Of course P(A) =0 so this requires some care. A natural
definition for conditional probabilities given A would be P(B|A) =
lim, ,, P(BIA,), where A, ={S, >0, 1 <k <n}. Our two main results
show that this definition makes sense for a large class of events B.

The first result deals with simple random walks. X, X, X,,..., are ii.d.
with 0 <P(X=1)=p<1/2 and P(X= —-1)=qg=1—-p. The process
{Y,},.o will be a stationary Markov chain on {0,1, ...} with Y, =0 and
transition probabilities

1Y, +2

2Y, +1

Our first theorem asserts that the finite-dimensional conditional distributions
for the random walk {S,} converge to the finite-dimensional distributions for
the Markov chain {Y,}. The Markov chain {Y,} also arises in the work of
Pitman (1975) studying the conditional distribution of {S,} with p =1/2
given that it hits some positive constant before it becomes negative.

P(Y,,, =Y, +1Y,) =

=1-P(Y,,, =Y, - 1IY,).

THEOREM 1.1. For any B c Z*,
lim P[(S,,...,8,) € BIA,] = P[(Y,,...,Y,) € B].
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Our second results deals with random walks from a discrete exponential
family. Under P,, X, X;, X,, ... will be iid. from a discrete exponential
family,

P(X =1x) = Py(X = x)exp{wx — (o)}

for w € Q, where $(0) = ¢'(0) = 0. Then E,X=0 and E X <0 for w <0.
We will assume the parameter space ) contains some neighborhood of the
origin and that the support of the P, distribution of X is contained in Z but is
not contained in any sublattice of Z. The exponential family formulation is
slightly unusual. It is more common in the large deviation literature to begin
with a fixed distribution of interest, but to impose conditions on the moment
generating function sufficient to embed the target distribution in an exponen-
tial family. If P, were the distribution of interest, embedding in a family
satisfying the requirements above could be accomplished provided E, X < 0,
the P, distribution of X is arithmetic with unit span and 0 < dE, e'*/dt < »
for some ¢, where E_e'® < «. One useful feature of the exponential family
formulation is that the P, -conditional distribution of X,,..., X, given S, =j
does not depend on . This is called sufficiency in statistics, a term we will use
later.

Let 7(a) = inf{n > 1: S, < —a} and 7 = 7(0). Also, let 7(b) = inf{n > 1:
S,, > b} and 7*= 77(0). The process {Y,}, . , will again be a stationary Markov
chain on {0, 1, ...} with Y, = 0, but now the appropriate transition probabili-
ties are given by

Eols'r(z)l

P(Yn+1=z|Yn=y)=P0(X=z_y)EO|S I
()

for z,y > 0.

THEOREM 1.2. Under the conditions just stated, for any negative o € Q)
and for any B c 7%,

lim P,[(S,,...,S;) € BIA,] = P[(Y;,...,Y,) € B].

This result is not quite a generalization of Theorem 1.1 since the distribu-
tion of X there is concentrated on the sublattice 2Z + 1 of Z. Although
Theorem 1.2 is the deeper of these two results, some of the key ideas in its
proof are easier to follow in the context of Theorem 1.1 where a few crucial
calculations can be done explicitly using the reflection principle. We suspect
Theorem 1.2 can be extended to other lattice distributions and to absolutely
continuous distributions using similar methods.

A number of other authors have obtained conditional limit theorems with
the same conditioning events A,. Kao (1978), Iglehart (1974b, 1975) and
Durrett (1980) consider the broken line process in continuous time. They
rescale time to lie in (0, 1) and rescale space to obtain weak convergence for the
conditional distributions of the entire process in various function space topolo-
gies. These results complement the results here by providing information
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about the process at much later times. Durrett’s results are particularly
interesting as he arrives at a completely different limit when the tails of X
decay algebraically. This suggests the expcenential family structure assumed
here may be necessary. Daley (1968) and Iglehart (1974a) show that .#(S,|A,,)
converges weakly as n — «. Iglehart identifies the limiting distribution in the
general case through its moment generating function. The following theorem
gives a probabilistic expression for the limiting mass function, thus inverting
Iglehart’s moment generating function.

THEOREM 1.3. Under the conditions of Theorem 1.2, for any negative
w € Q,

ewa0|ST+(b)|
ZoIZ=oekwths'r’f(k)'

P(S,=0blA,) -

asn — oo,

A number of conditional limit theorems for Markov chains on an infinite
countable state space have been given by Seneta and Vere-Jones (1966). If the
chain is “r-positive,” the conditional limit theorems obtained are the same as
results for chains with a finite state space established in Darroch and Seneta
(1965). Viewing {S,,} as a Markov chain, two limits they study (called quasista-
tionary distributions) are lim, _,, P(S, = x|A,) and lim , _,, lim, ,, P(S,, =
x|A,). The first limit is that considered in Theorem 1.3, and the second
without letting m — o« is similar to the limits in Theorems 1.1 and 1.2. These
results have been extended to a general state space by Tweedie (1974a, b, c),
again for r-positive chains. Unfortunately, the r-positive condition fails for
random walks [this is noted in the discussion of simple random walks in the
last section of Seneta and Vere-Jones (1966)], so these general results are not
directly relevant here. The methods used in these papers are more algebraic
than the methods used here. It may be possible to give a simpler proof of
Theorem 1.2 using algebraic arguments, especially since the limiting process
{Y,} is an h-transform [see Kemeny, Snell and Knapp (1976), Section 8.2] of
the random walk {S,} without drift. There is also a growing literature on
conditional limit theorems for Markov processes in continuous time. In partic-
ular, quasistationary distributions for simple random walks in continuous time
are given in Seneta (1966) and Pollett (1986).

Some of the results established to prove Theorem 1.2 may be of independent
interest. The approach taken uses saddle-point approximations to derive
asymptotic properties of pinned random walks. In the relevant limits, the
process has small drift and the theory developed is similar in some respects to
the results for corrected diffusion approximations given by Siegmund (1979,
1985a) and Hogan (1984), and similar to the results about the maximum of a
random walk with small negative drift given by Klass (1983). Reversing time,
the results here about the initial behavior of the process, given that it stays
below a boundary for a long time, could be recast as results about the last



804 R. W. KEENER

steps of a process, given that it stays below a boundary until a late stage n.
This problem with near constant drift has received considerable interest in the
nonlinear renewal theory literature [see, e.g., Woodroofe (1982), Chapter 5]
and the results here are similar but with drift tending to 0.

2. Simple random walks. In addition to P, it is convenient to introduce
measures P,, P and P{®. Under P,, X, X,, X,, ... are ii.d. with Py(X =
1) = P(X = —1) = 1/2. Under P and P{®, X, X,, ... are ii.d. with the
same marginal distributions as they have under P and P, respectively, but
S,=a+ X1X;. The events A, are related to the stopping time 7=
inf{n: S, <0}by A, = {r > n}.

THEOREM 2.1. Fora >0andj=j, >0,
2(j + 1)(a +1)
n

P@(r>nlS, =j) ~
as n — ® with j + n — a even provided j%/n — 0.

Proor. By sufficiency,
P@(7>nlS, =j) = P{(r>nlS, =j).

These probabilities can be computed exactly by the reflection principle as
follows. Since S, = —1 on {r < n} and since X ~ —X under P§®, conditioning
on the process prior to time 7,

P@(r<n,S,=j)=P(r<n,S,=-2-j)
= P{(S, = -2 -J).

Since (S, — a + n)/2 has a binomial distribution under P{* with sample size
n and success probability 1/2,

P{(S, = =2 - )
P{(S, =J)

n+j—a'(n—j+a'
= =)

n—a—j—2'n+a+j+2"
== =)

P{M(r <nlS, =Jj)

The theorem then follows using the identity
z+c)! c(c+1 c?
£_._)_ =14 __(___) + O( )

22! 2z 2

as z — o, provided c¢2/z — 0. To establish this identity when ¢ > 0, note that
c2/z - 0 implies ¢/z — 0, so Taylor expansion of the log function about 1
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- L)

El5els)]

c(c+1) (c(c+1))

gives

(z +c)'
log| ————

N~

N |~

Taking exponentials verifies the identity since e®* = 1 + ¢ + o(¢) as ¢ = 0 and
c(c + 1) < 2c2 The case ¢ < 0 is similar. O

Proor or THEOREM 1.1. Let y,,...,y, be nonnegative integers with y, = 1
and |y;,; —y;l =1forl1 <i <k — 1, and let

B={S;=y1,--, S, =y}
By the DeMoivre-Laplace central limit theorem for the binomial distribution,
2.1 P,(S j 2
(2.1) W(Sa=i) ~ ) —
as n — » with n — j even, uniformly for |j| = o(¥n ). Also,
P(S, =j) = Py(S, =j)(4pg)" " *(p/9)""*.
Using sufficiency and the Markov property, with y = y,,
P(B,7>n,S, =j)=Py(B,r>nl|S, =j)P(S, =j)
= (4p9)"*(p/9)"*Py(B,7 > n, S, =)
= (4p9)"*(p/9)"*2*PY (1 > n — &, 8, 4 =J)
= (4p9)""*(p/q)"*27*P§’(7 > n — kIS, _; = j)

XPo(Sp_p=J—y)-
Then

n3?P(B,7 > n) ; _
= L 27p/q)"*nPP(r>n - kIS,_, =j)
(4PQ) / n—jeven
Jj=0

XVn Po(S,_ =J = ¥)-

The sum over j > n'/* approaches 0 since the summand is bounded by
2 *(p/q)’/?n®2. By Theorem 2.1 and (2.1), the summand is asymptotic to
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2 *(p/q)?2(y + 1Xj + Dy2/m as n — =, uniformly for 0 < j < n'/. Hence

n32P(B,r > n) .
T — L 27%p/g)*2(y+ 1)(j+ 1)Y2/m -0
(4pq) n—j even
j=0

as n — o, Similarly,

n32P(7 > n) . )
Ty Y (p/a)%2(j + 1)y2/m -0
n—;:jze(‘)/en

as n — », Using these relations,

(2.2) P(Blr>n) - 27y +1)
as n — «. If {Y,} is a process with these finite-dimensional distributions, then
P(Y,,,=Y,+1|Y,,... Y)=£YL"2)—ZL_—1
" " e (Y, + 127"
1(Y, +2
B -2_( Y, +1 )

so {Y,} is a stationary Markov chain with the transition probabilities stated in
Section 1. Equation (2.2) asserts that the conditional finite-dimensional mass
functions converge pointwise, and the theorem follows. O

3. Discrete exponential families. For this section, under P,
X, X,, X,, ... will be i.i.d. from a discrete exponential family,

P(X =x) = Py(X = x)exp{wx — y(w)}
for w € Q, where ¢(0) = '(0) = 0. We will assume the parameter space

contains some neighborhood of the origin and that the support of the P,
distribution of X is contained in Z but is not contained in any sublattice of Z.

A conditional version of Theorem 1.2 approximating P (X; =x,..., X, =
x,lT > n, S, = b) will be obtained, and from this Theorem 1.2 will follow by
summation. If we let P{*) denote a measure under which X, X,, X,, ... are

ii.d. with the same marginal distribution as they have under P, , but with
S, = a + L1X;, then we can express this quantity as

P(X,=%,....,X,=x)ltr>n, 8, =b)
_P(Xy=xy,..., X, = x,)P\(1>n—-k,S,_,=0b)
(3.1) P(r>n,S,=0»)
_P(Xy=x,..., X, = x,)PS(7 > n — kIS,_, = b)P¥(S,_, =b)
P, (r>n|S,=b)P,(S, =0b) ’

where a = L *%x;. Since the distribution of S, is “almost known” by central
limit theory, the key expression is P{*)(r > n|S, = b), which is approximated
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in the next theorem. Of course for fixed a and b, this probability will approach
0 as n — «, but since a ratio is involved in (3.1), the rate of approach is crucial.
Let P{*®(B) = P{*(B|S, = b) for events B € a(X,, ..., X,) (by sufficiency,
these measures do not depend on ).

THEOREM 3.1. With fixed a,

P,(l“’b)(‘r >n) =

1+5b
E§|S, — alE§®IS, . + bl + o( )

nog

as n — o, uniformly for 0 < b < n'/%,

To prove Theorems 1.2 and 1.3 from this result, we will need the following
two lemmas which are relatively standard results in large deviations theory.
Let g,(x) = Py(S, =x) and g,(x,w) = P (S, = x) = g(x)explox — ky(w)}.
The first lemma is a saddle-point approximation for g,, and the second gives
bounds for the tails of the distributions of S,. In exponential families, means
and variances are given by E_ X = ¢/'(») and Var (X) = ¢"(w) > 0 for 0 € Q°
(the interior of Q). Then ' is strictly increasing on Q° and for x € '(Q°) we
can define &(x) by ¢'(&(x)) = x. Then &(x/n) maximizes g,(x, w). On Q°, ¢
is infinitely differentiable, so on '(Q°), & is irAlﬁnitely differentiable. For
proofs of these assertions, see Brown (1986). Let ¢y = ¢ o & and §" = ¢ o &.

LEMMA 3.2. Asn — =,
exp{—xa‘)(x/n) + nz/;(x/n)} ( ( 1 ))
(%) = = 1+0|—|]|,

&%) V2mny"(x/n)

uniformly for integer-valued x with x /n in a sufficiently small neighborhood of
0. Also,

n

~ exp{— [x - n¢'(w)]2/(2nt//"(w))}
:‘gg\/; 8n(x, ) Verni (w)

as n — o, uniformly for o sufficiently near 0.

This approximation for the distribution of S, was originally derived by
Daniels (1954). A careful account is given by Barndorff-Nielsen and Cox
(1979), and their regularity conditions are satisfied here. The second assertion
follows from the first by Taylor expansion. The fact that X, g,(x, @) = 1 can
be used to take care of the supremum over very large |x|. Alternatively, one
could use our next lemma for large |x| or refer directly to the proofs in
Barndorff-Nielsen and Cox (1979).

LEmMA 3.3. For any v = o,

P,(S,2x) < exp{(w — o)X — n[‘l’(“’) - ‘ﬁ(wo)]}
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and for any w, < o,
P(8, <x) < exp{(@ — wo)x — n[¥(@) — ¥(w,)]}.

Proor. Introducing the likelihood ratio dP,/dP, [or more prec1sely the
likelihood ratio for the restriction of these measures to o(X,,..., X))

P,(S, 2 x) = E, [exp{(® = wo) S, = n(¥(w) = ¥(wo))}; S, = 4]
and the first bound follows easily. The other bound is similar. O

The following corollary of Theorem 3.1 is the promised conditional version
of Theorem 1.2.

CorOLLARY 3.4. Let yy,...,Y, be nonnegative integers, y, =0, x; =y; —
¥j—1 for 1 <j <kanda =y, Then

E®|S, — al

Pr(zo’b)(Sl=y17'~-7Sk=yk|7>n)_)PO(X1=x17'-'7Xk=xk) E.|S.|
0~

as n — «, uniformly for 0 <b < n'/8,

ProoF. By the second assertion in Lemma 3.2,

-7 -pv)
exp{ - —————
2(n — k)Y"(0 1
PE(S, = b) - R e
J2m(n - k)d'(0) N p—
1
"~ J2mny’(0)
as n — oo, uniformly for 0 < b < n'/8 So
P§(S,_, =b)
PO(Sn = b)

as n — o, uniformly for 0 < b < n'/8. Using this and using Theorem 3.1 to
approximate P§{®(r >n — k|S,_, =b) and Py (7> n|S, =b), the corollary
follows taking w = 0in (3.1). O

-1

Proor oF THEOREM 1.3. Using Theorem 3.1 and Lemmas 3.2 and 3.3 (with
wgy = 0),
P,S, > n'/8)

P(r>n)

P,(S, > n'/?)
= P,(8, = 0)POO(r > n)
exp{on'/® — ny(w)}

~ exp{ —ny(w)}g,(0) P> O(7 > n)
-0

P(S,>n'8r>n) <
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as n — . Hence P,(r > n) ~ P(t > n, S, < n'/®). By the second assertion in
Lemma 3.3 with = 0, g,(b) ~ 1/v/270¢, so using Theorem 3.1,

P,(r>n, S, =b) =g, (b)exp{wdb — ny(w)}P"*(7 > n)
_ 2exp{wb — ny(w)}

V21 odnd®/?
1/8

1+b
{EOISTIE{,"’)IS,++ bl + o( )}
n

as n — oo, uniformly for 0 < b < n'/%, Summing over 0 < b < n'/%,

2e-WE (S| =
Pm(’T > n) ~ ngoewaé_b)lsf++ bl

as n — », and the theorem follows by division. O

Proor oF THEOREM 1.2. A simple calculation shows that the limiting
distribution in Corollary 3.4 agrees with the distribution for the Markov chain
{Y,} defined in Section 1. With the notation of Corollary 3.4,

P(S1=y1,--»Sp=yplr>n) =3 POO(S,=y,,...,8, =ylr>n)
b=0

XP,(8S, =blr>n).
Since P(S, > n'/®r > n) - 0, the theorem follows from Corollary 3.4. O

The main task remaining is to establish Theorem 3.1. Intuition suggests
that if {r > n} fails under P{*'?, it most likely fails because S, < 0 for values
of k near 0 or n. We can take advantage of this by conditioning on S,,, where
m = |n/2] (the greatest integer < n/2). This gives
(8.2) P@®(r>n)= Y PSS, =c)P»(r>m)P(r>n—m).

c=0
The relevant values of ¢ in this expression are of order vVn. Theorem 3.11
below shows that the conditional probabilities P> X(r > m) are close to the
unconditional probabilities P,(,")(q- = «), where 7 is chosen to make the process
drift to c, that is, with ¢'(n) = E, X = ¢/m. Our next result approximates
these unconditional probabilities. This result and its proof are related to
Lemma 2 of Siegmund (1979).

LEMMA 3.5. As 0|0,
P (7 = ») ~ 20E{|S, — al.

Proor. Since () contains a neighborhood of the origin, by Taylor expan-
sion Y(w) ~ w?0l/2 as w |0, where o2 = Var (X) = ¢"(»). From this and
convexity of ¢, for w positive and sufficiently small there will exist a unique
value 0* = 0*(w) < 0 with ¢(w) = ¥(w*). Also, 0* ~ —w as w | 0. Let F, be
the sigma field generated by X, for 1<i<k and let & ={A: AN
{r=Fk} e &, for k > 1}. If P and @ are measures on %, with restrictions P,
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and Q, to &, and if @, < P, for all n, with A, = dQ,/dP,, then Wald’s
fundamental identity [see Woodroofe (1982), Theorem 1.1] asserts that

Q(A, 7<) =[ AdP

T
A,7<w

for all A € Z. Since the likelihood ratio between the restrictions of P{* and
P9 to &, is given by

dP@

dptgg) 9;2 = exp{(w - w*)(sk - a)})

Wald’s fundamental identity implies
P{(r < @) = ERexp{(w — 0*)(S, — a)}
[we have used the fact P «(7 < ©) = 1 since E X < 0]. Hence
PO = ) = E@[1 - expl(@ - 0*)(S, ~ a))].

Since [1 — exp{(w — @*X 8, — a)}l/w is nonnegative, bounded by (0* — w) X
(S, — a)/w and converges almost surely to —2(S, — a) as » |0, the lemma
follows provided S, is uniformly integrable under P® for » negative and
sufficiently close to 0. In fact, for any k& > 0, E|S,|* is uniformly bounded for
o < 0 but sufficiently close to 0. To see this, pick a value w, < 0. Then for
0,/2 < <0, E@IS, |* = E|S,|* exp{w(S, — a) — 74(w)} (by Wald’s iden-
tity) which is bounded by a suitable constant plus E{* exp{wo(S, — @)}. By the
next lemma, for some w <0, E,exp(wS,) < ®, so the descending ladder
variables have exponential left tails and E{* exp(w,S,) will be finite for some
w, <0. O

Lemma 3.6 appears as Proposition 1 of Siegmund (1975). Problem 8.9 of
Siegmund (1985b) describes another method of proof. The result can also be
obtained from analytic continuation in the Wiener-Hopf factorization formula.

LEMMA 3.6. For some o < 0,
Eye @S < oo,
The next four results provide information about the conditional measures

P needed to establish Theorem 3.11. The first result is a corollary of
Lemma 3.2 bounding the tails of the distribution of X.

COROLLARY 3.7. For some ¢ > 0, if a = a,, and ¢ = c,, are integer-valued
sequences with a = o(n) and ¢ = o(n) as n - , then

Pe9(X,| = x) = O(Vne™*¥)

as n — o, uniformly for x > 0.
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Proor. For any o € (1,
P(X,|>=2x,8,=c—a) P (X, = x)
P(S,—c—a) P (S,—c-a)
This bound will be used with w = », = @(c — a)/n). Then ¢ — a = ny'(w,),
so the second assertion in Lemma 3.2 implies
1

-0
¥ (w,)

P,(la’C)(lel > x) =

Vn|P,(S,=c—a) -

as n — «. Since w, > 0 as n — o,

lim inf \/rTPwn(Sn =c—a)>0.
To bound the numerator, apply Lemma 3.3 with n = 1 and a positive and
negative value for w,. Since w, — 0 and ¢ is strictly convex with a minimum
at 0, for both choices of w,, ¢(w,) — ¢(w,) < 0 for all n sufficiently large, and
hence with ¢ the smaller of the magnitudes of the two values of w,,

Pa)n(IXII >x) < 2e*
for n sufficiently large. The corollary follows. O
LEMMA 3.8. Suppose m =m, ~en as n —> o for some ¢ € (0,1). Then

there exist neighborhoods N, and N, (that may depend on ¢) of the origin such
that

ll;"(C/n)
,OLtS o ~ _
E© 9% \/ﬂp”(w) R T pR— exp{c[t + &(c/n) — o]

+(n—m)y(w —t) + mp(w) - nj(c/n)}
as n — o, uniformly forc/n € Ny and t € N, where w = w,, for n sufficiently
large is the unique solution of
33 m (n—m) ; c
. — Y (0) + ———¢' (0 — t) = —.
(33) Z (o) + g (0 = ) =
Proor. We will assume throughout that 0 < m < n. Then the left-hand
side of (8.3) is strictly increasing as a function of w. Let [—4,8] be a
neighborhood of 0 contained in Q. If t €[-6/3,6/3] and w = —26/3, then
the left-hand side of (3.3) is bounded above by ¢'(—68/3). Similarly, if ¢
[-6/8,6/3] and w = 25/3, the left-hand side of (3.3) is bounded below by
¥'(8/3). Hence the range of the left-hand side of (3.3) (viewed as a function of
o) contains [¢'(—6/3),4'(5/3)] and a unique solution is guaranteed if ¢ €
[-6/8,6/3] and c/n € [/ (—6/3),¢'(6/3)]. Since g,(x, w) = g,(x)explowx —
ky(w)},

etSmg (¢ —8,,,0) =exp{tc — (n —m)[¢¥(0) - ¥(o —1)]}
X&n_m(c—=8,,0—t).
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Conditioning on S,,,
E,[en; S, =c] =E,[e'Srg,_.(c = S, 0)]
(34) = expftc — (n — m)[¢(w) — ¥(o — )]}
XEwgn—m(c - Sm7w - t)
From the second assertion of Lemma 3.2, and using (3.3),
[c =S, = (r = m)¥' (o - 1)]*
P T 2(n —m)d' (o — 1)
+ o0
\/Zw(n -m)y" (o —t) (
ol S m¥ (@)
P 2(n —m)yY"(w — t) . (_1_)
V2m(n — m)y" (o — t) ? Vn

as n — ». Since the P, distributions of (S,, — my'(w))/{ymy"(w) converge
weakly to N(0, 1),

VnE, g, n(c = Sn, 0 —t)=1/2m{ed"(0) + (1 - &) (0 = 1)} +o0(1)

as n — . The lemma follows using this in (3.4) and approximating P, (S, = ¢)
using Lemma 3.2 by

Pw(Sn = C) = gn(c)exp{wc - nl/’(w)}
_ exp{(w —d(c/n))c + n(d;(c/n) - ‘l’(w))}
\/2'n'n(ﬁ”(c/n)

1
En-m(C = Sp,0 — 1) W)

. O

COROLLARY 3.9. Ifa=a, and ¢ =c, satisfy a =o(n) and c = o(n) as
n—oand if m=m, ~é&en as n > © for some value ¢ € (0,1), then the
P& distributions of (S,, —a — (¢ — a)m/n)/Vn converge weakly to N(O,
oie(l — ¢)) as n — . Also, the moment generating functions converge point-
wise to the moment generating function for the limiting distribution.

PrOOF. If the conditions on a and ¢ were strengthened to a = o(Vn) and
¢ = o(Yn), weak convergence would follow from the invariance principle for
pinned random walks due to Liggett (1968). With the additional uniformity in
a and ¢, weak convergence could be obtained using Lemma 3.2 to show
pointwise convergence of the conditional mass functions scaled up by V.
Since we are concerned with tail behavior, it seems more convenient to use the
previous lemma to establish pointwise convergence of the moment generating
function. Fix 8 € (—»,»), § # 0 and assume without loss of generality that
a, = 0 for all n. It is sufficient to show that as n — =,

E;(;O’c") exp{5(Sm — cnmn/n)/\/;l,_} - exp{52a-025(1 - 3)/2},
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the moment generating function for N(0, 02¢(1 — ¢)). Hence, applying Lemma
3.8, we should take ¢ = 6/Vn . The corresponding parameter w, solves

end' (@) + (L —e,)¥ (0 =8/ ) = c,/n,

where ¢, =m,/n - ¢ as n - «. As noted in the proof of Lemma 3.8, the
left-hand side of this equation is increasing in w. By Taylor expansion about
&, = @&(c,/n), the left-hand side of the equation evaluated at = &, + 256/Vn
[after simplification using ¢'(d,) = ¢, /n] equals

+ %w"(an)(iz — (1 -¢,)) + 0(1/n)

n
as n — o, For all sufficiently large n, one of the values will be less than ¢, /n,
the other greater than c,/n, implying w, € (&, — 2I8|/Vn, &, + 2|8|/Vn).
Hence w, — &, = O(1/Vn) as n — «. Using this, Taylor expansion about &,
in the equation defining w, gives

fni + 9 (6,) [0, = dy, — (1 - £,)0/n] + O(1/n) = ¢, /n,

SO
w,—d,=(1-¢,)8//n +0(1/n)

\/ @ (ea/m) 1
e"(w,) + (1 — &)y (w, — 8/Vn)

as n — o, Lemma 3.8 implies
EQ:cn exp{ﬁ( S, - cnmn/n)/\/rT}
~ exp{cn(ﬁ/\/; +é, —w,) +n(l—¢g,)¢(w, —8/n)
+ne,d(w,) = n(8,) — £,¢,8/Vn )
as n — », By Taylor expansion, the argument of the exponential here is
e (/0 + 6, - w,)
+n(1 = e,)¢(8,) +en(1 —¢,) (0, — b, —8/Vn)
+in(1 = e )W (6,) (0, — &, — 8//n)
tne,l(8,) + Cuen(@, = By) + gne, ' (,)(w, = 8,)°
—n(,) = aen /i +o(1)
= 30(8,)[(1 — )€267 + £,(1 = £,)"8%| + (1)

as n — . Since

- z058(1 — ¢)

as n — o, which proves the corollary. O
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LEmMA 3.10. Ifa =a, = 0(n®*'®) and c = c, = O(n'/®) as n —» « and if
liminf, _, an/\/;> 0, then

lim lim sup P{**9(7 < en) = 0.

el0 n—o

Proor. This result almost follows from the invariance principle in Liggett
(1968). Let &, = &(—a/n). Removing the conditioning on S, followed by
conditioning on %,

P{’(r<en, S, =c)

g.(c—a,d,)

P@9(r < gn) =

E},?[gn_f(c -8,,8,); 7 <en]

g.(c—a,d,)

Sup(l—e)n<k<n Sup, ez gk(x’ wn)

gn(c -a, ‘:’n)

P{(r <en).

By the second assertion in Lemma 3.2,

o exp{=c?/(2ny7(8,))) (_1_)
N = A AL
1
2mnog

as n — » and

1 1
b A’l, = T + =l
a0 = ek (@) °( vk )
1

V2mkog

~

as k > o, n — o, So

sup supg,(x,d,) ~
(1-e)n<k<n x€Z " \/Z'n'n(l —¢&)ad

as n — o and

lim supP{* (7 < en) < lim supP{¥(r <en) N1 —¢.

n—ow n—oow
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By Kolmogorov’s inequality, if &, < 0,
ng>(f <en) =P; (S, < —aforsome0 <k <en)

<P, (S, - kY (d,) < —a —eny/(d,) forsome0 <k < en)

eny’(d,)
T (a+eny'(a,))
_eny'(d,)
(a(1-e)*
So
lirr:l_)s:pprgaw)(r <en) < lilrfl_)slllp ‘/_1_;_:;:;((?"_) e
eal

(1 - £)**(liminf, ., a,Vn)"

The lemma follows. O

The next result is the pinned version of Lemma 3.5. Theorem 3.1 will be
proved using this result to approximate the summands in (3.2). In Theorem
3.11, the primary goal is an approximation for P{*°(r > n) when a = O(1)
and ¢ = O(Yn ). Since the approximation will be summed in (8.2), it is techni-
cally convenient to strive for uniformity over 0 < ¢ < n%' (the choice of the
exponent, 9/16, is somewhat arbitrary). With this level of uniformity, for some
values of a and c, the error rate can exceed the leading term in magnitude.
Although the relative error could be large in these regions, the result
still provides useful information by giving an asymptotic upper bound for
Pz > n).

THEOREM 3.11. As n — ,
P{*»9(1 2 n) = (2¢/nod)E§MIS, — al + o{(1 + a) Wn + ac/n + c®/n?},
uniformly for 0 < ¢ < n®* and 0 <a < n'/%,
Proor. The proof given will mimic the proof of Lemma 3.5, with the tilting
to P{* ~° instead of P{?. Since
PeO(S,=%)  PE(S,=x,5,=¢) P&(S,= o)
P08, =%)  P(S, =%, 8, = —0) PEAS,=0)

8n-i(c —x)8(—c - a)
gn—k(_c - x)gn(c - a) ’
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Wald’s identity implies
(3.5) P91 <n,B)=E* 9[L;B,7r<n]
for any B € %, where
8n-:(¢ — S;)8(-c —a)
8n-(—c—8,)g,(c—a)’
Fix e > 0 and let B, = {r < (1 — &)n, |S,| < n'/8}. Using the approximation
8n(x) = eXP{—xw(x/n;) +ni(x/m)) (1 + O(l)),
V2mny"(x/n) n
from Lemma 3.2, on B, we have
g, .(c—5)g.(~c —a)
g, .(—c—5)g,(c—a)

derlies
o= e )

SREE

n T

L=

L =

Xexp{ (c—S )w(

n—r

_(—c—a)a')( _cn_a) +n¢}( _c_a)

n

- i) b2 o L))

as n — o, umformly for |c| < 2n%18, By Taylor expansmn ¥'(x) = xo2 +
(//"’(0)x2/2 + 0(lx®) as x = 0. So w(x) =x/02 + K;x2 + 0(x|%) as x - 0,
where K, = ¢[f”'(0)/(20§) Also, since ¥(x) = ogx?/2 + ¢"(0)x® /6 + O(x“)
and ¢"(x) = o + ¥"(0)x + O(x2) we have 1//(x) =x2/(202) + Kyx3 + O(x4)
and §"(x) = o2 + Kzx + O(x?), where K, = —¢"(0)/(80¢) and K,
¥"(0)/0f. Using these relations, the expression for L just given can be
simplified. On B, we have

(=0 = 80 == - (n - i ——]

(c—8, —c? 2¢S, K,c? 1
_(C_Sf)w(n—‘r)= ag(n—1) * ag(n—1) B (n—7)2 To _n)’
[c—8, c? cS, K,c3 1
(n_T)w(n—ﬂr)= 20%(n —7) od(n—1) " (n—1)° +O(_n)
and

~(—c—8; o Kgc 1
‘”( n—r )“’°‘(n—r)+°(ﬁ)
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as n — «, uniformly for |c| < 2n%1¢, The other terms that arise have c
changed to —c, S, changed to @, and/or n — 7 changed to n. Also, it is easy to
check that these relations hold uniformly for |a| < n'/8. After some algebra,

At A8 4]

o 2 - 2 s no o - ol )
(3.6) (n-1)o¢ nof n?  (n-1)? Vn
=1+_2£1'____zic_+263(K1_K2)(i___}_)
(n-1)0¢ nod n? (n-1)?

Kjc 1 1

e (;” n_7)+° T
as n — » on B, uniformly for |c| < 2n
approximation for L in (3.5), we will derive approximations for the P

expectations of a few of the terms that arise. Suppose Y is % measurable and
Y = 0 on {7 > n}. Conditioning on %,

ES[Y; S, = —c]

9/16 and |a| < n'/8. Before we use this

a, —¢)

E@ -0y =

&n(—c—a)
_ E{[Yg,_.(-c-8,))]
- g.(—c—a) ’

so the P{*~) expectation of Y is the same as the P§® expectation of Y7,
where [ = g,_.(—c — S,)/g,(—c — a). By the invariance principle for random
walks, the P{® distributions of 7/a® converge weakly as a — «. Therefore,
7/Vn = 0 in P§®-probability as n — », uniformly for |a| < n'/%, Also, by
Lemma 3.6, S, has finite moments under P, and consequently the P{*
distributions of S, are uniformly integrable for a > 0 [see Lorden (1970)].
Hence S./Vn — 0 in P{®-probability as n — «, uniformly for 0 < a < n'/%,
From these facts, using Lemma 3.2, [ > 1 as n — © in P§®-probability,
uniformly for |c| < 2n%/'® and 0 < a < n'/®. Using Lemma 3.2 and the Taylor
approximations for @, ¢ and ¢" given above, on B,,

1= (1 + O(%))\/—n_’i\/‘/’( _cn_ a)/"'(_:%f)

= (1 +0(n~"1%)) + O(n“5/16)}

+
{ 20'0(n -7)  20¢n
as n — », uniformly for |a| < n'/® and |c| < 2n%/'8. Consequently, ! is bounded
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on B,, uniformly for |a| < n'/® and lc| < 2n%/*. Since I - 1, r/Vn — 0 and
S./Vn - 0 in P{®-probability,
P& ~(B,) =E@[I;B,] > 1

as n — o, uniformly for |a| < n*/® and |c| < 2n°/'6. Also, since

1 1 1 1

L N TR S

n n-r71 n (n—1)

in P{®-probability and these remain bounded on B, we have

1 1 1 1
nEfL"’ _c)[; - ;Bn] = nE(()a)I:l(; — )’Bn] -0

n—r n-—r

and

1 1 1 1
n?E® 9 — - ——; B, | =n’E@|l| 5 — ——3 | B.| >0
n (n—r1) n (n—-7) .

as n — o, uniformly for 0 < ¢ < 2n%'® and 0 < a < n'/%. Similarly, but using
the fact that the P{® distributions of S, are uniformly integrable for a > 0,

S
nE® —°>[ . ;B,,] - E®™S, -0

n—nr

as n — o, uniformly for 0 < ¢ < 2n%/'® and 0 < a < n'/%. Using these limits
to approximate P{* ~°) expectations of terms in the approximation (3.6) for L,
(3.5) gives

P(B,) = E®~(L; B,)

Vvn n

as n — o, uniformly for 0 < ¢ < 21n°/* and 0 < a < n'/%. By Corollary 3.7,
for some g, > 0,

P ~9{X,| = n*/® forsome 1<i<n}=0{n"? exp(—¢on'/?)},

@ o 2¢ o 1 c?
= P (B,,)+-n—E0 [S,-al+o|l—=+ =

so we have

2c
P,Ea’c){‘r > (1 - s)n} = RE((;I”S, —al
3.7
e P9 1 + ! a
a,—¢ - — + — .
+ P {r>(1—-¢e)n} +o m e
The proof will be finished by showing P{*{(1 —&)n <7 <n} and
P =9z > (1 — ¢)n} are both small. Unfortunately, this calculation is rather
delicate. Define h ,(a,c) = P{*9(r > n). Let us begin by showing that & ,(a, c)
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is not too large. Define

d, = sup sup \/Ehn(a, ©) .
" 0<c<2n%1® 0<a<n!/® l1+a+ ac/‘/; + 03/'7'3/2
With m = |(1 — ¢)n], conditioning on %,, gives the bound
P ~Nr>(1-¢)n} =E> 9[h,(a,8,); S, = 0]
+a aS

83
m m
+_._+____~S >0
n n n2’

1
(3.8) <d, E@ -c)[

+ Péa,—c)(sm > 2n9/16).
Let Z ~ N(0,1) and 6 = 0. Using Corollary 3.9, it is not hard to show that

o [1-—¢
(3.9) sup sup P ~9(S,=20) > P{Z>— ,
8y <c<2n%1% 0<a<n!'/8 ) €
sup sup E*9[8,;8,, =0]/Nn -

8/n <c<2n%1 0<a<n!'/8

(3.10) s M=o\
- 0y 8(1—8)E(Z—_'V ) )
oy €

sup sup E@®9[83;8,, =0]/n*?
8yn <c<2n%1% 0<a<nl/®
(3.11) 5 T +13
- od/e?(1 - ¢)°E (z s ) ]
and
(3.12) sup sup P =9(S,, > n®1%) = o(1/Vn)

0<c<2n%'® 0<a<n!/®

as n — », With § = 0 this gives
\/;z_P,f“’_c){T > (1-¢)n}
sup sup

0<c<2n%1% 0<a<n'/8 l+a

1 e(1 — €)od e3(1 — ¢)3af
< {—2-+ V—(—E}_)_o +2V% +o(1)}dm+o(1)

as n — ». We will assume that ¢ has been chosen small enough that the
right-hand side of this inequality is less than (3/4 + o(1))d,, + o(1). Now

2¢E{M|S, — al/n N 2¢E{®|S,|

< -

1//n + ac/n + c3/n? Vn +¢c3/n
<2+ 2E{®™|S,|,

(3.13)
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s0 (3.7) and (3.13) give

d 2 + 2 E¢IS| (3 (1))d +0(1)
n< "3 sup +|—-+o m T O
0()2 a=>0 0'(? 4

as n — o, From this difference equation it is easy to verify that d, remains
bounded as n — o,

The next step is to show that P{* (1 — e)n <7 < n}and P* ~{r > (1 —
¢)n} are small when ¢ > 8Vn . Since d,, remains bounded and since the limits
in (3.9)-(3.11) vanish as £ |0 when & > 0, using (3.9)—(3.12) with § > 0 in
(3.8), we have

VR P& =z > (1 -¢)n
(3.14) lim lim sup sup sup { ( )n) =0

el0 now 8ym <c<n®1 0<a<n!/? l+a

Let d = sup, ., d,. Using the bounds
IS, < (1 —¢€)c+ 1S, — (1—c¢)c|

and
1S,.I° < 8(1 —£)%¢3 + 8S,, — (1 - &)cl®,
we have
P*r> (1 -¢)n,IS, — (1 —&)cl > &Vn /2}
- l1+a alS,| IS 3 ovn
(a,c) m m_ . _ _ > —
< dE{ {\/;n_ + - + mz,ISm (1 -¢)cl 2

+ P98, > 2n°/16}
1+a alS,,—(1—¢)el ac(l-¢ 8(1 — ¢)°¢c3
N ( el (1-¢) L8 -e)

m m m m?

.\ 8IS, — (1 = e)el® 8vn }

< dE@®9

2 ,ISm—(l—e)c|>—2—

+ P9S8, > 2n%/16},
so Corollary 3.9 gives
P> (1-¢)n, 18, — (1—e)e| > 6Vn /2)

3.15) lim limsup su su
( ) el ,,_.mp 050559/16 osasr:ll/s (1 + a)/n + ac/n + ¢3/n?
= 0.

If ¢e<1/4 and n > 2, then m >n/2. If ¢ <1/4, then for ¢ > Vnd on
{IS,, — (1 — &)c| < 6Vn /2} we will have |S,,| < 2¢, which implies (for n > 2)

l1+a alS,l ISmI3 39
+ + <
Vm m m?

1+a ac 8
+—2.

+._
Vn n n
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Conditioning on S,,, for ¢ < 1/4 and n sufficiently large
Pe(1 - e)n <7 <n,lS, — (1 -¢)cl <8/n /2}
< 32d[(1 +a)An +ac/n + c®/n?
X P )8, < 0 for some (1 — £)n < k < n}.

Since Xj,..., X, have the same joint distribution under P{*® and P{~%~%
and are exchangeable, reversing time gives

P8, < 0 for some (1 — &)n < k < n}
(3.16) =P8, <0forsome0 <k <en}
=P "9(r*<en).
Since 7 is just 7 with the random walk {S,}, . , changed to {-S,}, ., (both
are hitting times for {0, —1,...}) and since the random walk {-S,},.,
satisfies the same regularity conditions as {S,}, . ¢, by Lemma 3.10,

lim lim sup P{~ ~*(7*< en) = 0.
el0 n—o

Hence
o Peo{(1 -e)n<7<n,|S, — (1 - ekl <8Vn /2)
lim lim sup sup sup 3
L0 oo 5 <cen®/S 0<asnl/s (1 +a)/Nn +ac/n +c®/n
= 0.

Combining this with (3.15),

m  sup sup P9{(1 —¢)n <7< n} _
e10 5 cocn®/16 g<aent/s (1 F a)n +ac/n +c3/n?
Using this equation and (3.14) in (3.7),
P{9(r > n) = (2¢/noj)EIS, — a
+o{(1 + a)Vn +ac/n + c*/n?

as n — », uniformly for 8Vn <c <n®® and 0 < a < n'/% Since & is arbi-
trary, to finish the proof it is sufficient to show that P97 >n)=o{1 +
a)/Vn} as n — o, uniformly for 0 < a < n*/® when ¢ = o(Vn) as n - ». If we
condition on S,, (with m = [1 — £]n still) and use (3.17),

P*9(r > m) < P&*9(8S,, = m*°)

(3.17)

1+a+ad+68%_
d

Vm

E®9[S,; S, = 6Vm | E{IS, - al

+ P90 <8, <8/m)

+
mo?

l+a aS S3
(@of ™ L, ™. vV
+o{‘/__ + E}, [m +m2,Sm26m]}

m
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as n — o, Using Corollary 8.9, if ¢ = o(Vn), then P{*(0 < S,, < 8/Vm) —
P(0 < Z < 8/(0y/e)),
E,(L“*c)[Sm/u/;z—; S,, > 0] - oy/e(1 —¢) E[Z; Z> 6/(0’0\/;3—)]
and E(*9[S3 /m3/2, S, > 0] remains bounded as n — «. So

lim sup 1/EP,(L“’°)(T > ")
now® 1+a

<(1+5+53)c7 0<z< 5
B V1 -—e { B _("0‘/3—)}

2 € glz. 7 ) E®|S, — al
+ — sy b = .
ooV 1—¢ (ooVe ) igg l1+a

Choosing 6 and ¢ small, this expression can be made arbitrarily small. This
completes the proof of Theorem 3.11. O

ProoF oF THEOREM 3.1. We now take m = |n /2]. Using the time reversal
argument that led to (3.16),

PEOD(r>n—m) =P 91> n —m).

Since 7* is the first time the random walk {-S,}, ., hits {0, —1, ...}, this
probability can be approximated using Theorem 3.11. This gives

P{o = (7r*>n —m) = n = myo? In L
0

as n — o, uniformly for 0 < ¢ < m®'® and 0 < b < n'/8. Using Theorem 3.11
to approximate P{*°(r > m) (taking advantage that a is fixed),

P,(n‘”c)(‘r > m)P,(Lc_’f’n)(T >n-—m)
2¢ EIS | 1 c?
DS —al + o0l — + —
T A aro vn  n?
1+

————E§?I8_++ b| +
(n—m)ael ° IS, | O{

b 1+b b B
sE§™IS, ++ bl + 0 +—+ =

X

(S
+
g
+
| %
~————
—_

Vn n n?

4c?
- ___E®IS, — alE{ IS, + bl
m(n — m)o,
N 1+b c(1+0b) b c? N c*(1+b) N c®
+ — + —
N, i 2 n2n 3 e

as n — oo, uniformly for 0 < ¢ <m% and 0 <b < n'/%. Using (38.2) and
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9/16

Corollary 3.9 (the sum over ¢ > m can be ignored by Corollary 3.7),

P@Y(r > n) E&Y[S2;8,, = 0]

m(n —m)ay

1+0
X E§|S, — alE§™®IS, + b| + o{ - }

2 1+b
— E{IS, — alE§™®IS,++ b + o{ }
nod n

as n — o, proving the theorem. O
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