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NONLINEAR MARKOV RENEWAL THEORY
WITH STATISTICAL APPLICATIONS!

By VINCENT F. MELFI
University of Michigan

An analogue of the Lai-Siegmund nonlinear renewal theorem is proved
for processes of the form S, + ¢,, where {S,} is a Markov random walk.
Specifically, Y, Yy,... is a Markov chain with complete separable metric
state space; X;, X,,... is a sequence of random variables such that the
distribution of X; given {Y}, j = 0} and {X;, j +# i} depends only on Y;_,
and Y}; S, =X, + -+ +X,; and {£,} is slowly changing, in a sense to be
made precise below. Applications to sequential analysis are given with both
countable and uncountable state space.

1. Introduction. Let Y,,Y,,... be a Markov chain with complete separa-
ble metric state space E. Let X;, X,,... be a sequence of (real) random
variables with the property that the conditional distribution of X; given
{Y;,j = 0} and {X, j # i} depends only on Y;_; and Y;. [For example, set
X, =f(Y,_,Y), where f: E X E — R is a measurable function.] If S, = 0,

(1) S,=X,+ - +X,, nx>1,
and
(2) 7,=inf{n >1:8S,>a}, a=0,

then the renewal theorem of Kesten (1974), Theorem 1 below, gives conditions
under which the excess over the boundary, S, — a, converges in distri-
bution as @ — ». The process {S,} will be called a Markov random walk.

The main result of this paper is a nonlinear version of the above result.
Specifically, in Theorem 3, conditions are given on a sequence of random
variables {£,} so that Z, —a converges in distribution as a — «, where
Z, =0,

(3) Zn = Sn + fﬂ
and
(4) t,=inf{n > 1: Z, > a}.

As a first step in proving Theorem 3, the convergence in Kesten’s theorem is
shown to hold uniformly on compact sets; this is Theorem 2 below.

A similar generalization of Blackwell’s renewal theorem is proved in Lai and
Siegmund (1977). There it is shown that if X, X,,... is a sequence of
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754 V. F. MELFI

independent and identically distributed random variables with finite mean and
nonarithmetic distribution, and if ¢, &, ... are slowly changing, that is,

1
;max{lfll, ..., 1&,} = 0 in probability as n — »
and

;gr:)ililiP{ogax 1€, in — &4l Z&} =0, Ve&>0,
then Z, — a has the same limiting distribution as S, — a. This result has
1mportant applications, especially in sequential analy51s, see Woodroofe (1982)
and Siegmund (1985). In a recent paper, Woodroofe (1990) extends the
Lai-Siegmund result to a wider range of processes.

Two applications of Theorem 3 are given below. The first, in which the state
space E is countable, concerns approximating the error probabilities in a
sequential probability ratio test with an underlying biased-coin collection
scheme. The second application, with uncountable state space, involves a
first-order autoregressive model. .

2. Statement of principal results. Let (E, d) be a complete separable
metric space, and let & be the Borel sigma algebra on E. Let @ be a
probability transition kernel on (E, &), that is, let @ be a function from E X &
into [0, 1] such that:

for fixed A € &, Q(-; A) is a measurable function and
for fixed y € E, Q(y; - ) is a probability measure on (E, &).

Let Y,,Y,,... denote a (homogeneous) Markov chain with transition function
Q,sothatforye E, Ac £and n,k>1,

Q(y’A)_ {n+kEAIY _y}
Let X, X,,... be a sequence of (real-valued) random variables with the
property that for x,y € E and Borel sets A,
P(X,€AlY, ,=x,Y,=y,Y,i*n—-1,nX;,j+ n} =F(Alx,y),

where F(-|x,y) is a probability distribution independent of n.

Let N denote the nonnegative integers and let & denote the Borel sigma
algebra of subsets of R. It is assumed that {Y,} and {X,} are defined as
coordinate functions on the canonical probability space (Q, ), that is, =
(EXRN, F=(&x @ and if 0 ={(0,(1),0 (2)}neN, then Y(0) = w,(1)
and X, (w) = w,(2). For y € E, P, represents the unique probability mea-
sure on (), &) pertaining to paths with Y, =y, so that for n > 1, A; €&
and B; € %,

P{Y,€A;,,0<i<n,X;€B;,1<j<n}

= L[ Qidn) - [ Qa-ridy) [ F(daly,)

! anF(danyn—b yn);
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see Revuz (1975) for details of this construction. Finally, define S, and 7, by
(1) and (2) above. In Kesten (1974), it is shown that Y and S, —a have a

joint limiting distribution as @ — » under conditions (Kl) (K4) glven below.

Kesten’s conditions. Here and below, a.s. stands for a.e. [P,] for each y. For
f: (EXRN > Rand 6 > 0, define

f (y0780’y1’sl"")
= lim sup{/(¥, So, ¥1s81,---): d(¥;,y)) + s, — s}l <8Vi< m}.
m — o
This definition will be used in condition K4. Also, for y € E and 7 > 0, let
B(y;m) ={z € E: d(y,2) <n}.

ConpiTiON K1. There exists a probability measure ¢ on & which is
invariant for @, that is, for all A € &,

¢(4) = [¢(dy)Q(y; A).

In addition, for all open A with ¢(A) > 0,
(5) P{Y,€A3n>0}=1 forally €E.

ConbpitioN K2.

JE, ) X\l¢(dy) < =,
w= [E(X)e(dy) >0,

lim —S, =pu a.s.

n—o N

ConpiTioN K3. There exists a sequence {{,} C R such that the group
generated by {{,} is dense in R and such that for each {, and 6 > 0, there
exists a z = z(v, 8) € E with the following property: For each ¢ > 0, there is
an A € & with ¢(A) > 0, integers m;, m, and an 1 € R such that for each
Yy €A,

Py{d(le, z) <e, IS, —nl < 8} >0
and
Pfd(Y,,,2) <&, 1S, —n — ¢l <8}>o0.
ConpiTioN K4. For each y € E and § > 0, there is a b, = by(y, 8) such

that for all product measurable functions f: (E X R)N - R and for all z with
d(y, z) < b,

Eyf(Yo»So,Yv 1---) <E, fs(Yo’So,Yp 1s---) + 8 suplf]
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and
E,f(Yy,80,Y1,8,,...) < Eyfa(Yo, Sy, Yy, S4,...) + &suplfl.

ReEMARK 1. Note that (5) is only required to hold for ¢-positive open sets A
and ¢ is required to be a probability measure, so that Condition K1 is
different than Harris recurrence. Kesten (1974) also proves that Y, and
S, — a have joint limiting distribution K under alternate conditions which
require positive Harris recurrence [see Nummelin (1984)] for the Markov chain
{Y,,}, but do not require a continuity condition like Condition K4. Theorem 3
may be modified to hold under this alternate set of conditions; the uniformity
result in Theorem 2, however, does not hold in this case, and thus uniform
convergence must be added as a hypothesis in Theorem 3. (The alternate
conditions may be easier to verify in some cases, but periodicity in the Markov
chain {Y,} is disallowed, ruling out examples like that given in Section 4.)

ReEMARK 2. Condition K4 is trivially true if E is discrete.

REMARK 3. Theorems similar to Theorem 1 are proved in Orey (1961),
Jacod (1971), and Athreya, McDonald and Ney (1978). Kesten’s version is used
here because it does not require that the {X,} process be positive.

The limiting distribution. In order to define the limiting distribution in
Theorem 1, it is necessary to introduce a two-sided process {Y,, X}, .}, <z
associated with the original process {Y,, X, .1}, <n- The process is defined on
the probability space (¥, #', P'), where ' = (E X R)? and %' = (& X #)~.
For o' € @, let Y (o) = /(1) and X, (o) = & (2), where o =
{0’ (1), @'(2)}, < 7, and define the probability P’ by

P'{YI;+iEAi’OSi5n7XIIe+i€Bi71Sisn}

= fA sv(yo)fA Q(¥o5dy,) * - fA Q(Yn-159y5)

X fBlF(dzllyO,yl)fBzF(dz2|y1, yz) e anF(dany'z—lyyn)

for A, € &, B;€ # and k € Z. This is a standard method of constructing a
two-sided process; for details, see Kesten [(1974), page 367] or Doob [(1953),
page 456].

Now define

n
Y X', if n > 0;
i=1
s =10, if n=0;
0
- Y X, ifn<o,

i=n+1
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and define the measure ¢ on & by

$(A) = P'{ supS’ < 0,Y, € A}.

n<o0

Then the limiting distribution K is given by

1
K(Ax(r,oo))=;fE¢(dz)fEx(0 P{Y, €dw, S, €d))

A

X A l(AX(,,m»(w, s)ds.

TueorReM 1 [Kesten (1974)]. Assume that Conditions K1-K4 are satisfied.
Then for any starting pointy € E, (Y, , S, — a) has joint limiting distribution
K. In particular, for anyy € E and r > 0,

lim P,{S, —a>r}= %f«p(dz)fm(/\ — r)P{S,, € dA}.

a— ®©

The following result, a strengthened version of Kesten’s theorem, is re-
quired for the proof of Theorem 3. The result may also be of independent
interest. The proof of Theorem 2 is given in Section 3.

THEOREM 2. Assume Conditions K1-K4. For every A € & and r > 0 such
that A X (r,) is a continuity set for K, every compact set C C E, and each
€ > 0, there is an a, < « such that for all a > a,, :

sup|P(Y, €A,S, —a> r} —K(A X (r,o))| <e,
yeC

that is, the convergence in Theorem 1 holds uniformly (in y) on compact sets.

The main result of this paper is presented next. Let £, &,, ... be a sequence
of random variables and define Z, and ¢, by (3) and (4). The smoothness
conditions on the {£,} process are similar to those used by Lai and Siegmund
1977).

ConbniTiON Cl. For each n > 1, ¢, is %, -measurable, where %, =
o(Yy,...,.Y,, X,,..., X,).

s Lno

ConprTioN C2. Pf{(1/n)max;_, _, ¢l > €} > 0 as n - « for each ¢ > 0
and y € E.

ConpiTioN C3. For every € > 0 and y € E, there is a 6 > 0 such that

Py{on;ax 1€pir — §|>s}<s foralln > 1.
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THEOREM 3. Assume that Conditions K1-K4 and C1-C3 are satisfied.
Then for any starting point y € E, (Y, , Z, — a) has the same limiting distri-
bution as (Y, , S, — a). In particular, for anyy € E and r > 0,

1 %
lim P{Z, —a>r})= ;f:p(dz)f (A = r)P[S,, € dA}.

a— ®©

ReMARK 4. Condition C2 holds if (¢£,/n) —,, 0 and Condition C3 holds if
£, —.. c for some finite constant c; see Woodroofe [(1982), page 41].

ReEmark 5. If {¢,),., and {{,}, ., satisfy Condition C3 and are tight, then
{£,¢,), -1 satisfies Condition C3; see Woodroofe [(1982), Lemma 1.4].

REMARK 6. Notice that the limiting distribution K does not depend on the
starting point y of the Markov chain.

3. Proofs of Theorems 2 and 3. Throughout this section, Conditions
K1-K4 will be in force. For BCE and & > 0, let B® denote the open
5-halo around B, that is, B’ ={z € E: d(z,B) <6}, and let B ? ={z € E:
d(z, B¢) > 8}, where B° is the complement of B. Also, let R?=S _—a,
a > 0. The following lemma will be used in proving Theorem 2.

T,

LEmMMA 1. For each y € E and 8 > 0, there is a by, = by(y,d) such that
whenever a > § and z € B(y; by),

P

(Y, €A Rl ,>r+28}-8<PfY, €A, R)>r}
(6)

T

<P([Y, €A’ Ry,,>r—28}+5

forall A € & and r > 24.
Proor. Fix y € E and 6 > 0 and let b, = by(y, 8) be the constant given in

Condition K4. Let A€ &, r> 26 and N €N, define the function A y:
(E x RN - R by

N
hn(¥0,80,Y1,815-+-) = 2 sy <a,k<n,s,>a+r,y, €A},
n=1

and note that for z€ E, E,hy(Yy, Sy, Y, S,...)=PfY, €A, R)>r,
7, < N}. It will be shown next that for each z € E,

(1) E,h%(Yy, S0, Yy, 8y,...) <PlY, €A’ RY,,>r—268,1,.,<N}

Since &, does not depend on the values of ¥ .1, Snr1 YN+2 SN+2s -+ >

N
Ry (Yo S0s¥1:815---) < L s, <a+8,k<n,s,>a+r—-39,y, €A’}
n=1
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Hence
E,h%(Yy, Sy, Y,,S,...)
N
<E ) USy<a+8,k<n,S,>a+r-35Y, A
n=1
= PZ{YTM €A’ RY. s>r—28,7,,5< N},
establishing (7).

So by Condition K4 and (7), for every z € B(y; b,),
P(Y, €A, R >r,7,<N}<P[Y, €A RO, >r—25,r1,, <N} +5
<Py, €A RS,>r-25)+8.
Now let N — . Since the right-hand side of the above inequality does not

depend on N, the second inequality in (6) is proved. The first may be proved
similarly. O

Proor or THEOREM 2. Fix A€ & and r > 0 such that A X (r,») is a
continuity set for K, fix £ > 0 and let § > 0 be such that A’ X (r — 28, )
and A7% X (r + 25,») are continuity sets for K, K(A® X (r — 28,)) —
K(A™° X (r +28,»)) <e/4 and & < &/12. Fix a compact set C C E. There
exist y;,¥9,...,¥, € E such that Cc U™ 1B(y,, b;), where b, = b,(y,, ) as
in Condition K4. By Theorem 1, for each i = 1,..., m, there ex1sts an g; < ®
such that for all a > a;,

(8) P,{Y,, €A% RS, >r — 25} — K(A° X (r — 25,)) <&
and
(9) IP{Y, , €A RS ,>r+26) - K(A™® X (r + 28,))| <.

Let a, = max{a,,...,a,} and fix z € C. Then z € B(y,, b,) for some i =
1,2,...,m, so by Lemma 1, (8) and (9),

P{Y, €A, RS> r}) < K(A®X (r - 28,)) + 25
and
P{Y, € A,R)>r} 2 K(A™® X (r + 28,%)) — 25,

whenever a > a,. Repeated application of the triangle inequality shows that
for such a, IP{Y, € A, R} >r} - K(A X (r,®))| <e. O

For the rest of this section, all of the assumptions of Theorem 3 are in force.
In the following, [x] denotes the greatest integer less than or equal to x. Define

a
Mf[:]’
R, =Z
K, (y; AX (r,)) =P, {Y €A,S, —a>r}

fora>0,ycE r>0and A € &.
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LEMMA 2. Forally € E and € > 0,

¢
P{|=—

M—l

a

>s}—>0 asaq — o,

An analogous result, in the iid case, is proved in Woodroofe [(1982), Lemma
4.1]. Lemma 2 may be proved by replacing P by P, everywhere in Woodroofe’s
proof.

LeEmMMA 3. Forall € > 0 and y € E, there is a compact set C € & such that
(10) P{Y,€C}>1-¢ foralln=0.

Proor. Fix e >0and y € E and let ¢, = (¢/2**!) for £ > 1. By Condi-
tion K4, for fixed but arbitrary 2 > 1, thereisa b, > 0 such that forall A € &
and all n > 1,

(11) Q" (x;A) < Q"(y; A°*) + ¢, whenever x € B(y;b,).
Let :
G, = B(y;b;)
and
8 = £,0(Gy).
Since E is separable, there is a sequence A,;, A,,,... of open 1/k spheres

which cover E. If i, is large enough so that o(U, _; A;;) > 1 — §,, then using
(11) and the fact that ¢ is invariant for Q,

1-6, < f(p(dx)Q"(x; U Aki)

I1<iy
< qo(Gk)[Q"(y; U 45 + | + (1= 0(G0),
1<i,
so that
<P(Gk) )
Q”(y; AE';) >————— —g,=1-2¢,.
igk k ?(Gy) * *

If C is the closure of the set N,.; U;;, A%, then C is totally bounded (and
hence compact) and @"(y;C) > 1 — ¢ forall n. O

The proof of Theorem 3 is modelled after the proof of a nonlinear version of
Blackwell’s renewal theorem given in Lai and Siegmund (1977); the main
novelty here is that the position of the Markov chain {Y,} at the time of
conditioning enters the argument. This is where Lemma 3 and Theorem 2
enter the picture: By Lemma 3, the Markov chain may be constrained to lie in
a compact set with high probability; Theorem 2 then guarantees uniform
convergence to the limiting distribution.
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Proor oF THEOREM 3. Fix A€ &, r>0, yc€ E and ¢ <r/2 such that
A X (r,»)and A X (r — 2¢, ) are continuity sets for K. For this ¢ and y, let
8 be as in Condition C3 and let C be a compact set for which (10) holds. For
a > 0, define

N' =N'(a) =

[(1 - (6/4))a]’ o
73

(1+ (6/4))a]
" .
Observe that for all sufficiently large a,

(12) (1+8)N'>N".
Also, by Lemma 2,
(13) P{N' <t,<N"} »>1 asa— .

Below, it will be necessary that a — Z,, » » as @ — ». Thus, define

Ba={1£}eaS-xN'sta_\/;}={ta_‘/E>N'}, a>0,

and note that on B,, a — Z,, > ya — ® as a — «. Also, by Lemma 2,
(14) P{B:} -0 asa — .

y

Then by Theorem 2 and the definition of B,, there exists an a, < » such that
for all a > a,,

(15) K, zyie(Yn; AX (r— 26,%)) — K(A X (r — 2¢,0))| <&
on B, N {Yy € C}.
Finally, define

D,=B,n {YN, €C,N'<t, <N', max ley,,~énl< a}.

l<n<N"-

Then for sufficiently large a,
(16) P{D;g} < 4e

by (12), (13), (14), Condition C3 and Lemma 3.
Next, it will be shown that for sufficiently large a,

(17) Py{YtaEA, R,>r} <K(A X (r—2e,®)) + be.
First note that {N' < ¢, < N”, R, > r} may be rewritten as

{ta>N', Sy —Sw<a—2Zy— (énir—én)VE<n,

Snien =Sy >a+1—Zy — (Enrip — £nv) forsome 1 <n < N” — N'}.
Using this, it is easy to see that

R.>r,N' <t <N", max |éy .-g,|53}
{ e ’ e ’lsjsN”—N’ N+ N

C{t,>N', Sy r—Sy<a-Zy+eVk<n,

Syion =Sy >a+r—Zy — ¢ for some n > 1}.



762 V. F. MELFI

Thus
P(D,,Y, €A, R,>r)
SPy{Ba’YN' (S5 C, ta >N’, SN'+k - SN' <a —ZN' +eVEk< n,

Syiyn—Sy>a+r—Zy —ecand Y, € A for some n > 1}

Ko zy+e(Yas A X (r = 26,)) dP,.

a

<
f(YN,ecmB

That (17) holds for all sufficiently large a now follows from (15), (16) and the
inequality PfY, € A, R, >r}<P([Y, €A, R,>r,D,} + P{D;}. Now let
a — o g — 0toget

limsupP(Y, €A, R, >r} <K(A X (r,®))

a—®

for all r > 0. A similar argument shows that

liﬂingy{Yta €A, R,>r}>2K(A X (r,»)),
completing the proof of Theorem 3. O

4. A biased coin design. To illustrate the use of Theorem 3 when the
state space E is discrete, the theorem is applied to a sequential probability
ratio test of the difference between the means of two normal populations, with
an underlying biased-coin allocation scheme.

Formally, let X7, X3,..., and X7, X;,... denote independent sequences of
random variables, where X7, X;,... are iid. Normal(6*,1), X7, X;,... are
ii.d. Normal(6~—,1) and let 8 = 6*— 0. It is assumed, without loss of general-
ity, that 67= —60*. Here X7, X;,... and X7, X;,... represent the potential
responses of a treatment and control group, respectively. The sequential
probability ratio test alluded to above will test whether 6*> 6, that is,
whether 6 > 0.

Let 0 <p < 3, and let Y,,Y,,... be a Markov chain with the following
transition mechanism:

P, if Y, > 0;
P{Y,,, - Y, =1Y,,....Y%,) = {3, ifY, = 0;
1-p, ifY,<0;
and
1-p, ifY,>0;

PY,,,- Y, =-1Y,,....Y,} = {3, if Y, =0;
D, if Y, <0.
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For k > 1, define
o = I{Yk -Y,_,= 1},

k
Jj=1

n,=k—m,,

and note that Y, — Y, =m, — n,. In the statistical example, m, and n,
represent the number of subjects among the first k& assigned to the treatment
and control groups, respectively. At time k2 + 1, a subject is assigned to the
treatment group with probability p, + or (1 — p), depending on whether a
majority, half or a minority of the first £ subjects were assigned to the
treatment group. The goal of such a design introduced by Efron, is to achieve
balance while minimizing experimenter bias. For more details on this and
similar designs, see Efron (1971) and Wei (1978).
Finally, define

mung\ /- -

Z, = ( A k)(x,;k—x,;k), k=1,
T, = inf{k > 1: |Z,| > a}, a>1,
t, =inf{k > 1: Z, > a}, a>1,

where X}, = (1/m,)L*_15;X and X, = (1/n,)L%_ (1 — 8)X;. Then T, is
the stopping time of an invariant sequential probability ratio test.
It is now shown that Z, is of the form S, + £,. For k > 1, define

1 1
Xy = ESkX}:_ 5(1 = 8,) Xy,
Sk=X1+ tee +Xk’
n, 1\* ~
b= (- 3) T (X -0)X).
Jj=1
Then P(X,,, € AlY, =x,Y,,, =y, Y, i #k k+1,X, j # k)
P{3X; e A}, ify—x=1,
| P{-iX;eA}, ify-x=-1,

and simple algebra shows that Z, = S, + £,, so Z,, is in the form considered
in Theorem 3.

The following lemma will be needed to prove Condition C3 for the {£,}
process.

LEMMA 4.

- 0 ask — «,

(lTk)2 a.s.
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Proor. Write Y, =Y, , +¢,, Bk>1, let s>0 and fix y € Z. Then
for any £ > 1, since {Y, >0} ={Y,_;,= -1, Y,=0U{Y,_;=0,Y,=1} U
{Y,_, > 0},

M}(s) = E (&%)

<1+ eVt dP,
{Y,>0)

<2+4+e°+ esYr-1p5¢k dPy
{Y),_,>0}

<2+e°+ (pef+ (1 —ple )M} _(s).

For sufficiently small s, (pe® + (1 — p)e™®) < 1. Iterating the above relation-
ship shows that for such s, M7(s) is uniformly bounded in k. Using a similar
argument, it may be shown that for some s < 0, M?(s) is uniformly bounded
in k. Thus, for some s > 0, E (e®"#) is bounded in k. The conclusion of the
lemma now follows from Chebyshev’s inequality and the Borel-Cantelli lemma.

O

LEMMA 5.
€ 205 0 ask > .

Proor. Use the relation (n,/k) — (3)) = —(Y, — Y,)/(2k) and algebra to
write

cm DT (5K 07) 4 (1= 8)(X- 07))
+ Ykz—kY" f (8,67+(1 — 5,)67).

The second term on the right is equal to (2k)'6*(Y, — Y,)? which converges
a.s. to 0 by Lemma 4. For the first term, note that Ek_l(B (X7—07)+
(1 - 8,XX; - 67)) = O((k loglog k)'/?) a.s. by the law of ‘the iterated loga-
rlthm comblmng this with Lemma 4 gives the desired result. O

THEOREM 4. If 6 > 0, then for each starting pointy € Z,(Y, ,Z, — a) has
limiting distribution K. In particular, for eachy € Z and r > 0,

lim P{Z, —a > r) 0[¢(dz)[ (A - r)P{S, € da}.

a—®©

Note. In this example, the measure y may be described explicitly. Recall
from Section 2 that ¢(A) = P'{sup, ., S, < 0,Y; € A}, where {(Y,,, X,,, )}, 2
is the two-sided stationary process associated with {(Y,, X, 1)}, <. By condi-
tioning on the entire sequence {Y,},.,, it may be shown that ¢(A)=
¢(A)Pfinf, ., L, > 0}, where {L,} is a random walk with step distribution



NONLINEAR MARKOV RENEWAL THEORY 765

N(6*/2, ). Further information on the distribution of inf, . , L
Feller [(1971), Chapter XII].

. is given in

Proor oF THEOREM 4. Direct calculations show that an invariant distribu-
tion for Y,, Y,,... is given by

0) 2p -1
¢ 2(p-1)°
(1-2p)p*!
tk)= —M—, k=1,2,....
(P( ) 4(1 _p)k+1

Using this, it is easy to show that the integral in Condition K2 is finite and
that

b (7]
p= T E(X)e(y) = -

y=—-x

Also, (S,/k) =, n by the strong law of large numbers since, by Lemma 4,
(m,/k) >, (3) and (n,/k) -, (3). Thus Conditions K1 and K2 are veri-
fied. Conditions K3, K4, and C1 are clearly true (cf. Remark 2 after the
statement of the conditions) and Conditions C2 and C3 follow from Lemma 5
(cf. Remark 4 after Theorem 3). Thus the theorem is proved. O

Notice that the limiting distribution in Theorem 4 depends on the value of
0. This dependence has been suppressed in order to avoid overly messy
notation, but will be made explicit when necessary.

Returning to the statistical problem, let 8, > 0 and 6, < 0 be fixed. Let @,
and @, be the unique probability measures under which 8 = 8, and 6 = 6,
respectively, and note that 2(6, — 6,)Z, is the likelihood ratio for testing
0 =0, versus 0 = 0,. Finally, for i = 0,1, let H, represent the limiting
distribution appearing in Theorem 4, that is, for r > 0,

4 oo
L= H(r) = 5 [#(d2) [ (A = )RS, € da},

yi= [ e"Hy(dt).
0

The following corollary indicates how Theorem 4 may be used to approximate
the error probabilities in the sequential test above. The proof of Corollary 1
may be found in Woodroofe [(1982), Chapter 3].

COROLLARY 1.
Qo{Zr, > a} ~v,e™® and Q\(Z; < —a} ~ y,e™®

asa —> ®,
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The special structure of the Z, process in this example may be used to
determine the constants y, and vy, appearing in Corollary 1. It may be easily
shown that for each m > 1, as n — o,

(Zn+1 - Zny' . -7Zn+m - Zn) = (Tl, . .,Tm),

where {T,}, ., is a random walk with step distribution N(36/4, ;). This allows
the use of Spitzer’s identity in obtaining the expressions for y, and y, in
Proposition 1. The proof of Proposition 1 is omitted; details of a similar
argument may be found in Woodroofe [(1982), pages 24-25].

PROPOSITION 1.
4 > lE i ; =0,1
. = —_— p— — . Lk =
vi= |55 o~ T 3BT im0

where * denotes positive part and E,, E, denote expectation under @, and @,
respectively.

5. Autoregressive example. Let Y, = BY,_, + ¢,, n > 1, where
{€,} _w<n < is an independent and identically distributed sequence of random
variables with E(g,) = 0 and E(e]) = 1 and |B| < 1. Define Z,, C, and D, by

n 2
7 (Z%-1Ye-1Y2) _ C:
T R(TiYE,) | 2D,

As an application of Theorem 3, conditions on the {¢,} sequence will be given
under which (Y, ,Z, — a) converges in distribution as a — =. Notice that
E = R is uncountable in this example.

If it is further assumed that &, ~ N(0, 1), then ¢, is the stopping time of the
repeated significance test of B =0, which rejects B =0 if ¢, <N, for a
suitably chosen constant N,. Thus the limiting distribution of the overshoot
Z, - a is useful in approximating the error probabilities of such a test.

It is easily seen that (C,/n) -, (B/(1 — B?) and (D,/n) —,
(1/(1 — B?). Observe that Z, may be written in the form Z, = ng(C,/n,
D,/n), where g(x,y) =x2/2y and then expanded in a Taylor series about
(B/(1 — B2),1/(1 — B?)) to obtain

n 32 n
(18) n=ﬁz Yk—lYk_ —2—— Yk2—1+§n7
k=1 k=1
where ¢, is the remainder in the Taylor series expansion. After defining
X, =BY, .Y, - (B%/2)Y2, and S, =X, + - +X,, it is clear from (18)
that Z, is in the form considered in Theorem 3.

The five Conditions K1-K3 and C1-C2 are relatively easy to verify, so only
a few comments will be made on these. Conditions C3 and K4, however, are
more difficult to verify, and will be examined presently.

Let o(A) = P[(E%_,B"e_,) € Al for A € #. Then (K1) holds as long as the
distribution of ¢, is nonsingular; see Nummelin [(1984), pages 91, 113]. Now
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E (X)) = 3B%7 so

1
w= ny(X1)<p(dy) = Eﬁzfyz(p(dy)
o]
n=0
g2

T 2(1-pY)

It also may easily be shown that [E |X,le(dy) < .

It will be shown next that (S,/n)—»,, u. Since S, =2Z,—¢, and
Z,/n >, (B2/2(1 — B?)), it is only necessary to show that (¢,/n) -, 0.
For this, note that from the Taylor expansion mentioned above,

1 °g
EB

&1 (C, B\’
P ngx(crndn)(_r: - T:Ei)
v gor[Co_ B \(Ds 1
(19) + &,,(ch, n)(7 - 1_—32)(7 - 1——32)
1 + surDn 1 \?
+§gyy(cmdn)(—n— - I‘:Ei) ,

where c* is a point between C,/n and B/(1 — B?), d* is a point between
D,/n and 1/(1 — B*) and g,,, &,, and g,, are the second partial derivatives
of g. Now (¢,/n) —,, 0 follows from the fact that (C,/n) —,. B/(1 — B
and (D, /n) -, 1/(1 — B2). [Incidentally, by the first remark after Theorem
3, this also verifies Condition C2.]

PROPOSITION 2. The sequence {¢,}, defined in (18), satisfies Condition C3.

Proor. Using the form of {¢,} given in (19), it suffices to show that
g:.(ch, dr), &,,(ch, dr), g,(ch, d}), nt/%(C,/n) — (B/(1 — B*)) and
n'’%(D,/n) — (1/(1 — B2))) satisfy Condition C3 and are tight (cf. Remark 2
after Theorem 3). The first three are easily dispensed with, since they con-
verge as. to g,,(B/(1 —p3),1/(1 - B?), g,(B/(1-B%,1/01 - p*) and
&g,,(B/(1 — B*),1/(1 — B?), respectively.

For the fourth, it is well known that

aa(Cn B
n 1 - B2

):N@J—B%

[see, e.g., Pollard (1984)], so {n'/%(C,/n) — (B/(1 — B?))}, . is tight.
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To verify Condition C3 for this term, note that for n, & > 1,

(n+ k)—l/z(cn+k - (n+ k)( 1 fﬁz)) - n—1/2(Cn - n(_l fﬁz))‘

Cn+k_Cn_k( B )

< n—1/2

1-p2

n 1/2 ~ B
- () ] I/zcn-n(l_ﬁz)

Since {n'/2((C,,/n) — (B/(1 — B®))}, > has just been shown to be tight, Con-
dition C3 may easily be verified for the second term on the right. [For details of
a similar argument see Woodroofe (1982), Example 1.8.] The first term will
need to be rewritten. For this, note that for n > 1,

+

n n n n
Y Y =By Y2, +2BY Y, 15+ X &},
j=1 j=1 j=1 j=1
whence
e I AL b P
B 1= &7 + 1€
j=lJl 1_[32 j=lj 1_B2 j=1‘11J
B
+(1 _Bz)(Yoz- Y?
Thus,
_ B
n 1/2Cn+k_cn k I_BZ)

1 n+k , n+k ﬁ
=n Y BY L+ X Y-k

_ n2
Jj=n+1 Jj=n+1 1-8

n+k 2 n
sn-1/2( A )~Z (s}—1)+2( L )ZY}-1~€J~
J

1-p° =n+1 1-p° Jj=1

B n+k
+(1_—132)(Y02—Yn2)+ Z Y}_lsj .

j=n+1

Now the second and fourth terms on the right are martingales, so Condition
C3 follows from Doob’s inequality; for the first term, Condition C3 follows by
Kolmogorov’s inequality; while for the third term, Condition C3 is clearly
satisfied. Condition C3 and tightness for {n'/2((D,/n) — (1/(1 — B*M}, >,
may be verified similarly. O
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ProposiTioN 3. Condition K4 is satisfied.

Proor. Define

k

i

Y, = Z B* ey,
Jj=1

n ]_ n
Sp=BY Y Y- 532 P (Yk0—1)2,
k=1 k=1
n
Sge = ), BrYY,
k=1

BZ
2k _
1B (ew— l_ﬂz)'

Then S, = S° + (})Y.2e, + Y,S°° and with

e, =

TM=

Sy(y) = S + 3y%, + ¥S;°,
Y.(y) = B*y + Y?, YyER k=1,

the P, distributions of {Y,} and {S,} are equal to the P, distributions of
{W,(y)} and {S,(y)}, respectively. Also note the inequalities (for y, z € R)

Y, (y) = Yi(2)l < |y — 2,
1S,(¥) — Si(2)l < ze.ly? = 2% + |y — 2l [Sp°l.

Let f be a product measurable function from (R X R)V into R and assume
without loss of generality that sup|f| < . For notational purposes, define
f, = [(Y(2), Sy(2), Yi(2), S{(2),...) for z € R and notice that

Eyf(Y01SO’Y17SI7-") —E,f%(Y,, 80, Y1, 8y,...) = f(fy _fzs)dpo-

Now fix § >0 and y € R and let C € R be so large that PIS°| > C
I n>1} <86/2. For z € R, define

B, ={Y,(2) - Y, ()| +1S,(2) — S.(y) <8V n =0},

and note that
1
Py(Bf) < PO{Iy -zl + Eemly2 —2% +ly—2lIS°>63Tn=> 1}

8 — Iy — 2l - je.ly® — 2°

ly — 2|

PO{IS,‘;"I > In> 1}.
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If b, is chosen so that (8 — |y — z| — 3e.ly? — 22))/|ly — 2]) > C whenever
ly — 2| < by, then Py{BS} < §/2 whenever |y — z| < b,,.
For such z, since f, <f? on B,,

(£, = £2)dPo = [ (f,=f2)dPo+ [ (f,~£2)dP,

< 0 + 2Py{ BS}suplf| < & suplfl.

This verifies the first part of Condition K4; the second part may be verified
similarly. O

THEOREM 5. If the distribution of ¢, is nonsingular, then for any starting
pointy € R, (Yta, Z, — a) has limiting distribution K. In particular, for each
yeRandr >0,

- 2(1-p2
lim Py{Z,a—a>r} = -—(-————B—l

a—w B2

[l/j(dz)/:’()\ — r)BS, ed)).

REMARK. In Section 4, Spitzer’s identity is used to obtain expressions for
the error probabilities which are amenable to numerical calculations. Unfortu-
nately, carrying out such a program for the autoregressive example of Section
5 would require an analogue of Spitzer’s identity for partial sum processes
with dependent summands.
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