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ON THE LAW OF THE ITERATED LOGARITHM
FOR MARTINGALES

By EvaN FisHER

Lafayette College

The Kolmogorov law of the iterated logarithm fails when the bounded-
ness condition on the increments is relaxed. In this paper, we consider this
in the martingale setting and establish a lower bound, extending a result
known in the independent case.

1. Introduction. Let {X;, i > 1} be a sequence of independent random
variables with EX; = 0 and EX? <, for i = 1,2... . Define s2 = ©7_, EX?
and suppose that s2 —» © as n — . Kolmogorov’s law of the iterated loga-
rithm (LIL) [Kolmogorov (1929)] states that if

(1.1) IX,| <c,s,(log, s,2,)_1/2 a.s.,

for constants ¢, — 0 as n — =, then

(1.2) limsup S, /(2s2 log, s,f)l/2 =1 as,
n—o

where S, = L?_, X, and log, x = log(log x).

If the Kolmogorov condition (1.1) is weakened so that c, is replaced by a
constant ¢ > 0, then the result (1.2) fails in general. This has been shown by
Marcinkiewicz and Zygmund (1937), Feller (1943) and Weiss (1959).

Upper and lower bounds for limsup, . S,/(252 log, s2)'/2 in this case
have been derived by Tomkins (1978) and Teicher (1979). In particular, it
follows from their results that

(1.3) 0 < limsup S, /(2s2 log, s,2,)1/2 <® a.s.
n—o
The second inequality in (1.3) was derived earlier by Egorov (1969).

A martingale analogue of the Kolmogorov law of the iterated logarithm was
first established by Stout (1970). In the supermartingale case analogous to the
weakened condition, a finite upper bound was derived by Fisher (1986),
extending an earlier and more restricted result of Stout [(1974), Theorem
5.4.1].

In this paper we establish a lower bound in the martingale setting. A
consequence is that (1.3) is extended to the martingale case.

Section 2 of this paper consists of a statement of the main result and a
discussion of it. Section 3 consists of the proof of the theorem.
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2. Statement of theorem and remarks. Let {U,, #,, n > 1} be a mar-
tingale defined on a probability space (2, &, ¥), where {#,, n > 1} is an
increasing sequence of sub-o-fields of #. Let {X;, i > 1} be the martingale
difference sequence defined by X; = U, — U,_, (define U, = 0). Suppose that
E[ X2 F_] < », fori>1(et &, = {¢,)), and define s2 = L7_,E[ X2 F_,],
for n > 1. For convenience, we define ¢(x) = (2log,(x% v e2))'/2 and n(x) =
(2x log,(x V e2)172 for x > 0.

THEOREM 1. Let {U,, %,, n > 1} be a martingale described with the preced-
ing notation. Assume that s2 > «© a.s. as n - » and that

(2.1) IX;| < K;s;,/¢(s;) a.s.,
where K, is an &,_-measurable function for each integer i > 1 with
(2.2) limsupK; < K,

for K > 0 an arbitrary constant.
Then there exists a positive constant ¢(K) so that

(2.3) limsupU,/s,¢(s,) > ¢(K) a.s.

In particular, one can take £(K) as
(2.4) e(K) = hz'(1) A (1/81K),
where h(x) = x2 + 12KY%¢%/2 x > 0.
REMARK 1. In the martingale analogue of the Kolmogorov LIL established
by Stout (1970), condition (2.2) is replaced by the assumption K; — 0 as

i = o, The lower half of this result follows from Theorem 1 by observing that
hz'(1)11as K- 0.

REMARK 2. As noted in Stout (1970), the hypothesis that K; is a random
variable rather than simply a constant means a less restrictive hypothesis than
the classical one when Theorem 1 is applied in the independent case.

RemARK 3. An immediate consequence of Theorem 1 is that

(2.5) limsupU, /s, ¢(s,) >0 a.s.

n—o
This, in combination with Lemma 1, results in the conclusion that

(2.6) 0 <limsupU,/s,¢(s,) <» as,

n—o

extending what has been proved in the independent case.

3. Proof of main result. The proof of Theorem 1 makes use of two
results that we list as Lemma 1 and Lemma 2.
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LEMMA 1. Assume the hypothesis of Theorem 1. Then there exists a con-
stant A(K), 0 < AM(K) < o, so that

(3.1) limsupU,/s,¢(s,) <AM(K) a.s.

n—o

Proor. This is an immediate corollary of Fisher [(1986), Theorem 1]. O

Lemma 2 is a large deviation result for martingales derived by Freedman
(1975). We adopt his notation for the following definitions.

Let a and b be positive numbers. Define o, = inf{n: s2 > b} if such n exists
and o, = « otherwise. Let

(3.2) L(b) =esssup sup |X,(w)].

®  n<oyw)
Let A and B be the events defined as
A = {U, > a for some n such that s2 < b}

and

B= {supst <b}.

LEMMA 2. Let 0 <8 < 3. Suppose L(b) is finite and satisfies the condi-
tions

(3.3) b/a > 9L(b)/82

and

(3.4) a?/b > (16,/56%)log(64/5%).

Then

(3.5) P(AUB) > 3exp[—3(a%/b)(1 + 48)].

ProoF. See Freedman [(1975), Proposition 2.4]. O

Proor oF THEOREM 1. Let r > 1. Define ¢, = sup{n: s < r*}, where £ > 1
is an integer. Since s, — » a.s., ¢, is a well-defined stopping time relative to
{Z,i> 1}

Cons1der the martingale {U®, #.®, n > 0}, where U = U, ., — U,, and
F® = F, .. [Recall that if 7 is a stopplng time relative to {37 P> 1} *then
by F is meant the o-field of events A € & such that A N (r =1) € &, for
all integers [ > 1.]

Let X{® = U® — U®, for n > 1 and

()’ = % B|(x)] 7).
i=1
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Define
Y. (k) = X,‘,’”I{ n (K§k) < K)},

for n > 1, where K® = K, . (The notation I{A} denotes the indicator
function of the event A.)

Define V® = L7_Y®. Then {V®, Z®, n > 1} is a martingale. This
follows from the fact that {X(®), #® n > 1} is a martingale difference se-
quence and I{N7_(K® < K)} is %, *)-measurable. Let

(o) = T E[v@? 7).
i=1

Assume the space (Q, %) is sufficiently regular so that there exists a
regular conditional probability P,(w, B) on (Q, &, P) given ¥, . That is, for
each w € Q, P,(w, - ) is a probability measure on (), ) and, for each fixed
B e &, Pk(w, B) = P(B| %, Xw) as. It follows as a consequence of a standard
result on regular conditional probabilities that {V®), #® n > 1}is a martin-
gale defined on the space (0, &, P,(w, *)) for o € Q a. .. [see Loeve (1978),
Sections 29 and 30].

Following Freedman’s approach [Freedman (1975), Section 6], we apply
Lemma 2 to this martingale. Define the event A, as

A= {V® > e(K)(1 - r~/2)n(r**1) for some n > 1

such that (va’"))2 <rktl— rk>,

where £(k) is defined by (2.4).
In the notation of Lemma 2, a and b are defined as

a=e(K)(1-r2)n(rk?)
and

b=rktl—rk,
In addition, we have

L(b) < esssup sup |Y®(w)].

o 0<n<ty,,—t,+1

Let m =t,,, for k sufficiently large [e.g., so that ¢(r**Y/2)> K]. For
0 € NYI(K® < K), it follows that

s 1<s + K?s?, m+1/® (sm+1)
By the definition of ¢, ;,
S?n+1 < rk+1/(1 _ K2/¢2(r(k+1)/2)'
Since s,/¢(s,) increases as n increases we have

L(b) < (K/¢(r(k+1)/2))r(k+1)/2(1 _ K2/(P2(r(k+1)/2))—1/2.
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Let 6 = 3K'/?¢'/%(K). It is immediate from (2.4) that 0 <& < 1. For k
large, elementary calculations verify that the remaining hypotheses of Lemma
2 described by (3.3) and (3.4) are satisfied.

Define the event B, as

B,=A,U {sup(vflk))2 <rktt— rk}.
Applying Lemma 2 we find from (3.5) and the definition of A.(-) and &(K)
that
P(B,|#,) = } exp[ —(log, r** Dhe(e(K))] as.

Since &(K) < hx'(1) and hg(x) increases as x increases, the inequality
hg(e(K)) <1 holds. Therefore the series L;_,P(B,|%; ) diverges a.s. By
Lévy’s conditional form of the Borel-Cantelli lemma [see Stout (1974), page
55] we obtain

P(B,io0) = 1.

For k sufficiently large (depending on w), it follows from (2.2) that
Y ¥(w) = X{"(w), for n > 1. Therefore, for each w outside a null set and for %
sufficiently large (depending on w), the equalities

Vih(0) = UP(w) and (yP)(e) = (s¥)"(w)
hold for n > 1. Since s2 — « a.s., it follows that (v{*))? — « a.s. Therefore,
P(A,io0) =1.
This implies that
(3.6) P(C,i0) =1,

where

Cy = (UM > e(K)(1 = r~/%)n(r**") for some n > 1
such that (sf,"‘))2 < rk+l— rk>.

Applying Lemma 1 to the martingale {—U,, &,, n > 1} proves that there
exists a finite constant A(K) > 0 such that

P[U, < =M(K)n(s?)io] = o.
Since n(s?) < n(r*) and n(r**') > r'/2y(r*), then, for all r > 1, we obtain
(3.7) P[U, < —A(K)r~'2p(rk+1y io]=0.
Combining (3.6) and (3.7) shows that, for all » > 1,
P[U, > n(rt* ) (e(K)(1 - r~1/2) = A(K)r~1/2)

(3.8)
for some n satisfying ¢, <n < ¢, i.o.] = 1.
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Since n(r**1) > n(s2) for t, < n < t,.,, (3.8) implies that
limsupU,/s,¢(s,) = e(K) as. O

n—o
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