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THE LAW OF THE ITERATED LOGARITHM
FOR INDEPENDENT RANDOM VARIABLES
WITH MULTIDIMENSIONAL INDICES
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Jilin University, North Dakota State University and Jilin University

Let X, 7% € N?, be a field of independent real random variables, where
N9 is the d-dimensional lattice. In this paper, the law of the iterated
logarithm is established for such a field of random variables. Theorem 1
brings into focus a connection between a certain strong law of large
numbers and the law of the iterated logarithm. A general technique is
developed by which one can derive the strong law of large numbers and the
law of the iterated logarithm, exploiting the convergence rates in the weak
law of large numbers in Theorem 2. In Theorem 3, we use Gaussian
randomization techniques to obtain the law of the iterated logarithm which
generalizes Wittmann’s result.

1. Introduction. The strong laws of large numbers (SLLN) for indepen-
dent random variables (real or Banach space valued) with multidimensional
indices have been investigated over the last few years. See, for example, Gut
(1978, 1980), Li (1990), Mikosch (1984), Mikosch and Norvaisa (1987) and
Smythe (1973), among others. The laws of the iterated logarithm have been
investigated in the past for independent identically distributed (iid) random
variables (real or Banach space valued) with multidimensional indices. See Li
and Wu (1989), Morrow (1981) and Wichura (1973). The present paper is
concerned with providing some general conditions under which the law of the
iterated logarithm holds for independent random variables (real or Banach
space valued) with multidimensional indices. We need some notation before
explaining the basic theme of this paper.

Let N be the set of all d-dimensional lattice points with positive integers as
components, where d > 1 is a fixed integer. Let N? be equipped with the
coordinate-wise partial order < . Points in N? are denoted by 7,7, etcetera.
For 7 = (n,n,,...,ny) € N, we define [r| = [1%_;n,. Further, 7 — « means
that [7i] —» « and is denoted by lim; 2. The limit superior of a field a;,
7 € N9, of real numbers is defined by inf, ., supy ., a5, and is denoted by
lim sup,, ¢ \¢ @5. The limit inferior is defined in analogous fashion. For 7, m in
N? with 7 < 7, the set A(%i,m) = {E € N%; 7 <k <7} is called a rectangle.
Let X,, 7 € N% be a field of real random variables. For any A c N¢, set
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S, =X ,ecaX;, |Al = cardinal number of A, (7) ={m € N?; m <7} and
S; = Si). Note that [7| = [(7)]. Let L(x) = log(max{e, x}) and Ly(x)=
L(L(x)), x > 0.

In order to bring into focus the essentials of this paper, we begin with a
description of Wichura’s (1973) work. Let X, X, 7 € N, be a field of iid real
random variables. Then

(1.1) limsup|S,-,|/(2|r_z|L2(ITLI))1/2 =Vdo as.,

reN?

if and only if
(12) EX=0, EX?=0% and EX2(L(IX))? '/Ly(IX]) < .

Recently, Li and Wu (1989) obtained a similar result in the context of
separable Banach space valued random variables. Our main aim in this paper
is to develop some techniques by which one can establish the strong law of
large numbers and the law of the iterated logarithm for 1ndependent random
variables.

The basic framework under which we work in this paper is described as
follows. Let X, 7@ € N¢, be a field of real independent random variables not
necessarily identlcally distributed. Let EX, = 0 and EX2 < « for each 7 € N¢,
and B; = L3 _,EX? - » as [f] - ». In analogy with (1.1), we wish to have

(1.3) lim sup|S;|/y/2B; Ly( B =Vd as,

rneN?

under some adequate moment conditions on the random variables. The follow-
ing example indicates that (1.3) is very unlikely to be fulfilled even under very
strong conditions. We take d = 2, and the independent random variables
satisfy P(X,,, =1 =P(X;,=-1D=1/2=P(X,,;, =1 =P(X, =
—1), X, = 0 a.s. for all other 7. Obviously, X;, 7 € N? is a field of uniformly
bounded independent nonidentically distrlbuted real random variables with
EX, = 0 for every i = (ny,n,) € N% and B, = ZkS—EX =n,t+n;—1-»
as |7i| —» «. By the classical law of the iterated logarlthm we have

lim sup|S;|/y/2B; Ly( By)

rneNd
(1.4) _ - -
= limsup ZXa i+ ZX(, nl/ \/2(n+m 1)Ly(n+m — 1)
(n+m)-o|i=1 Jj=2
=1+V/2 as.

In view of the failure of the validity of (1.3), we will only study under what
conditions

(1.5) lim sup|S;|/{y2B;Ly(B;) < as.
reNd

holds.
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The basic idea in our treatment is to seek a connection between a certain
strong law of large numbers and the law of the iterated logarithm. To motivate
the result, we begin with the following simple observation. Let X, X,,... bea
sequence of iid real random variables with EX, = 0. Then

L X,

k<n

1/2
(1.6) (limsup(l/n) Y sz) = lim sup /(2nL2n)1/2 a.s.

n—ow k<n n—so

In the case of independent random variables with multidimensional indices, we
demonstrate that

(1.7) limsup Y XZ/B, < aus.
TlENd Esﬁ

essentially implies that

(1.8) lim sup 12

neN?

Y X

k<m

< ® a.s.

/(2B5LyB5)

See Theorem 1.

Some comments are in order on (1.7) and (1.8). There is a world of
difference between the cases d = 1 and d > 1. In the iid case, when d =1,
(1.7) and (1.8) are equivalent. But when d > 1, (1.8) need not imply (1.7) even
in the iid case. Smythe (1973) gave necessary and sufficient conditions for the
validity of (1.7) in the iid case. These conditions are different from (1.2).

We also develop a general technique by which one can derive the strong law
of large numbers and the law of the iterated logarithm exploiting the conver-
gence rates in the weak law of large numbers. See Theorem 2.

Further, we use Gaussian randomization techniques to obtain the law of the
iterated logarithm which generalizes Wittmann’s (1985) result. See Theo-
rem 3.

For the development of results in this paper, we need some concepts from
Mikosch and Norvaisa (1987). Let a,, 7 € N9, be a field of positive numbers
such that lim; .\« a; = ®. This field of numbers is said to have the “star”
property if there exists a sequence D,, k > 1, of finite subsets of N¢ such that
D, t'N¢ and satisfies the following.

ConpiTioN A. Set D, ={(1,1,...,1)}and I, =D, - D,_,k>1.If n €
I,, then () c D,

ConpDITION B. There are constants b > 1, c¢;, ¢, > 0 such that for every
7 € I, the relation c¢,b* < a, < c,b* holds.

ConbiTiON C. For every k > 1, there exist disjoint rectangles E, , and an
appropriate index set R, such that I, =D, — D,_, = U ,c g, B, ,-

ConpITION D.  There are constants ¢c; > 0 and s > 0 such that #R, < c3k?®
for all £ > 1.
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ConpiTioN E. v, = limsup, ,,max, ., b~ *?L} 0’2 #{reR; E, . N
() + T} < o,

Conditions A, B and C come from Mikosch and Norvaisa (1987). Condition
E is a minor variation of Condition D of Mikosch and Norvaisa [(1987), page
243). For examples and interpretation of Conditions C and E, see Mikosch and
Norvaisa (1987). The fields of numbers having the star property are very broad
and include the following:

1. a, = Inl"e(|7l), 7 € N?, where ¢(-) is a nondecreasing slowly varying func-
tion and y > 0.
2. d=1and a, 1.

2. Preliminaries. In this section, we establish some lemmas which will
be useful in the proofs of the main results in the next section.

LEmMA 1. Let X, i € N, be a field of independent symmetric real ran-
dom variables and a,, n € N?, be a field of positive numbers having the star

property. Then

(2.1) limsuplS;|/y/2a;Ly(ay) < a.s.,

neN?
if and only if
1/2
(2.2) 51:;1) :IelfglsEk_rl/(ZbkLZ(bk)) <® a.s.

Proor. By the Borel-Cantelli lemma, (2.2) is equivalent to the fact that
for some A > 0,

(2.3) Y ¥ P(Sg, |/(26*Ly(6*)) " 2 1) < =,

k=1reRr,

which is a Prohorov-type condition. Using a similar argument as in Theorem
2.2 of Mikosch and Norvaisa [(1987), page 244], one can show the equivalence
of (2.1) and (2.3). O

LEMMA 2. Let T be a countable index set and T,, n > 1, a partition of T
such that #T, < cn® foralln > 1 for somec >0 ands > 0. Let g,,t €T, be
a family of independent identically distributed N(0, 1) random variables. Then

(2.4) E sup max|g,|/{y2L(n) <.

n>1 teT,
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Proor. Note that (2.4) is equivalent to

(2.5) Y P(sup max|g,l/y2L(n + 2) > km) < o,
m>1 n>1 tETn
where k& > (3 + s)'/2. For every m > 1, we have

P(sup maqgilgtl/\/2L(n +2) > km)
teT,

n>1

< 2(#T, B
,El( n)‘/;em\/ZL(n+2)

<c ), n°exp{—k*m2L(n + 2)}

n>1

(1/V27 Jexp{—x2/2} dx
(2.6)

<c X 1/(n+ )% < o(1/28"m" 001,

n>1

Obviously, T, . (1/2¥* 1) <, O

Recently, Ledoux and Talagrand (1988) obtained necessary and sufficient
conditions that a Banach space valued random variable X satisfy the bounded
law of the iterated logarithm and the compact law of the iterated logarithm,
respectively. The gaussian randomization technique was basic in the proofs of
their main results. Modifying their argument to suit our needs, we have the
following result.

LEMMA 3. Let T be a countable index set and R,, n > 1, be a sequence of
index sets such that {T, ,; r € R,, n > 1} forms a partition of T; that is,
Upz1Urer Ty, =Tand T, ,NT, ;=D form+norm=nandr+s. Let
X,, t €T, be a family of zero mean independent real random variables and
&nr» TER,, n>1, be a family of independent standard normal random
variables such that these two families are independent. Then

L X

teT, ,

Esup sup

n=1reRr,

(2.7) >
< cEsup sup Ign,rl( )y Xf) ,

n=lrer, teT, .

for some constant ¢ > 0.

Proor. Let g,, ¢t € T, be a family of independent standard normal random
variables which is independent of X,, t € T. Denote by E, and Eyx expecta-
tions with respect to the independent families g,, ¢t € T, and X,, t € T, of
random variables, respectively. Using an argument similar to the one used on
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page 1251 and then Lemma 3.3 in Ledoux and Talagrand (1988), we have

Esup sup | Y. X,
nzlreR,lteT, ,
<2(Elg)) 'Esup sup | ¥ g.X,
nzlreR,lteT, ,
=2(Elgt|)_1EXEgSUP sup | Y g%,
n>lreR,lteT, ,
< CV2mEx|sup sup E,| ) gX,
n>1rer, teT, ,
g\ 172
+Esup sup Ig,,,,l(Eg Y 88X, ) )
n>1reR, teT, ,
(2.8) 2\ 1/2 ‘
< CV27 Ex| sup sup Eg( h th,)
n>1lreRr, teT, ,

1/2
+Esup sup Ign,rl( Z Xt2)

n>1lrer, teT, ,

1/2
=C\/%E(sup sup 3. th)

nzlreR, teT, ,

1/2
+ CV27 Esup sup Ign,,l( Y th)

n>1reRr, teT, ,

1/2
< 6CE sup sup Ign’,l( Yy Xf) ,
n>1rer, teT, ,
for some constant C > 0. The last inequality follows from

1/2
Esup sup Ig,,,,l( > Xf)

n>1reRr, teT, ,

1/2
=EXEgsup sup |gn,r|( Z Xt2)

n>1reRr, teT, ,

1/2
> Eysup sup (Elgn’,l)( Yy Xf)

n>1reR, teT, ,

1/2
= y2/7 E sup sup( Y X,z) . ]

nzlreR, \teT, ,
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LemMMma 4. Let T, T, , and R, be the same as in Lemma 3. Let X,, t € T,
be a family of real mdependent random variables such that for every t € T,
IX,| < C, a.s., where C is a constant. Then

(2.9) sup sup

n>1reR,

| <» a.s.,

a
) <o

Proor. It is sufficient to prove (2.9) = (2.10). In fact, by a maximum
inequality in Hoffmann-Jgrgensen (1974), it is easy to prove that under (2.9),
(2.10) is equivalent to

teT, ,

if and only if for every a > 0,

(2.10) E( sup sup

nzlreRr,

teTn,r

(2.11) E(supIXtI) < o,
teT

From the assumption that |X,| < C a.s. for all ¢, (2.11) holds. O

The following lemma is a general version of (3.3), the fundamental inequal-
ity, in Hoffmann-Jgrgensen (1974).

LemMmA 5. Let X,, n > 1, be a sequence of real independent symmetric
random variables, and S, = L7_,X;, n > 1. Then for every integer j > 1, there
exists C;, D; > 0 (depending only on j) such that for any t > 0,

(2.12)  P(IS,| = 2jt) < CjP(IIE?anlXA > t) + D,(P(1S,| = t))J'.
Proor. For j =1, (2.12) is trival and we take C; = D, = 1. Assume that

(2.12) holds for some j with relative numbers C; and D;,. Then using (3.3) of
Hoffmann-Jgrgensen (1974) for j + 1 we have

P(1S,| = 2(j + 1)t)
<P(S,| =t +1t+2jt)
< P( max |X,| = t) + 4P(IS,| = £)P(IS,| = 2jt)
1<k<n

< P( max |X,| > t)

1<k<n
+4P(S,| = t)(CjP(lxgi: X, > t) + D;(P(1S,| = t))j)

j+1

< (1+4C; )P( max IXkI > t) +4D;(P(IS,| = t))

Hence we can take C;,; =1+ 4C; and D;,, =4D;. O
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3. Main results. It is known that there is a close relationship between
the strong law of large numbers and the law of the iterated logarithm. The
following result shows that the study of the law of the iterated logarithm for

independent random variables X, 7 € N?, with respect to y/2a,L,(a5),
7 € N9, can be reduced to a study of the strong law of large numbers for X2,
7 € N9, with respect to a,, 7 € N%, in some cases. This result seems to be new
even for the case d = 1.

THEOREM 1. Let X, n € N?, be a field of real independent random vari-
ables and a,, i € N%, be a field of positive numbers having the star property.

If S;/y2a,;Ly(ay), N € N%, is stochastically bounded, that is, bounded in
probability, and

(3.1) limsup Y, X#/a, < a.s.,
TLENd Esﬁ

then

(3.2) limsup|S;|/y/2a;Ly(a;) <® a.s.

neN?

Proor. We can assume, without loss of generality, that each X is sym-
metric. By (3.1), there exists C; > 0 such that

(3.3) Y P(X,*> Caz) <.

neN?

Let ¥, = X, I1(IX,| < /Ciay), Z,; = X; — ¥,, 7 € N°. From (3.3), we have

(3.4) lim Y. Zz/y2a;Ly(az;) =0 as,
neN

k<7
and
(3.5) limsup ), YZ/a, < as.
neN? Z<n
Let g, ,, r €R,, n > 1, be independent standard normal random variables

independent of X, n € N%. Since a,, 7 € N%, has the star property, using
Lemmas 2-4 and (3.5), we have

LY

keE,

E( sup max /(2b"L2(b"))1/2)

n>1Tr€ER,

1/2
(3.6) sCE(supmaxlg,,,,l( h Yzz) /(2b"L2(b"))1/2)

n>1Tr€ER, kE€E, ,

1/2
< CE’( sup max |gn,,|/(2L2(b"))1/2)E(sup max Y, Y;z/b")

n>17<€&, n=1T<R, k€E, ,

< o,
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By Lemma 1,

(3.7 lim sup

neNd

Y Y3|/y2a;Ly(a;) < as.
k<7

Combining (3.7) and (3.4), we have (3.2). O

REMARK 1. If each X, is symmetric, then the condition that
S;/V2a;Ly(az),n € N, be stochastically bounded can be eliminated in the
above theorem.

REMARK 2. If, in addition, X,, 7 € N¢, satisfy EX, = 0, EX2 <  for each
7 and a; = B, = L;_,EX# > » as 7 — », then it follows that
S./vV2a,Ly(a;), n €N? is stochastically bounded. In this case, we conjec-
ture that (3.1) can be weakened to

(3.8) limsup ), X#/B;Ly(B;) <> as.

TLGNd TCSTL

REMARK 3. An analogue of Theorem 1 can be established for separable
Banach spaces of type 2.

In the following theorem, we provide a technique by which we can get the
strong law of large numbers and the law of the iterated logarithm by utilizing
the convergence rates in the weak law of large numbers. This technique has
some intrinsic merit and is useful to deal with multidimensional indices in
practice.

THEOREM 2. Let X,, 1 € N?, be a field of real independent random vari-
ables, and a,, n € N?, be a field of positive numbers having the star property.
(1) If there exist Ay, Ay > O such that

(3.9) P(IS;l/az = A,) = O((log az) ™) as7@ — e,
then
(3.10) lim sup|S;|/a; <> a.s.,

reN?

if and only if for some A4 > 0,
(3.11) Y. P(X;l = A3a;) <.
neNd

(ii) If there exists 6 < 1 such that for every ¢ > 0,

(3.12) P(IS;l/a; =€) = O((log aﬁ)—ea) asn — o,
then
(3.13) limdSﬁ/a,_L =0 a.s,

neN
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if and only if
(3.14) Y. P(X;l >ea,;) <o foreverye>0.

reN?

Proor. We will only give the proof of (ii) since the proof of (i) is similar
except for the necessary modifications. We can assume, without loss of general-
ity, that each X, is symmetric. As in Lemma 1, (3.13) is equivalent to

(3.15) lim max|Sg, |/6* =0 as.

k—» reRr,

But (3.15) is equivalent to
(3.16) Y X P(ISg |/b*=2¢) <

k>1reR,

for any &> 0. For fixed ¢ >0, choose j=j(¢) such that a = a(e) =
(e/2¢9)%" "% > 1 + s (since & < 1), where ¢, is the constant in Condition B
and s is the constant in Condition D. Denote &, = ¢ /(2). By Levy s inequality
and (3.12), we have

P(|Sg, |/b* = &,) = O(k=(1/2")

holds uniformly for r € R, as k¥ - . By Lemma 5, we have uniformly for
reR,,

P(]SEk,r|/bk > s)
<c, P( max |X,| > elb’“)

nekg, ,

(3.17) ;
D;(P(|Ss,, /6" = &)

<C; Yy P(X;l > (81/¢c5)az) + O(k™®) ask - x.
nEE, ,

From (3.14), we have

Z Z Z P(lXﬁl = (81/02)aﬁ)

k>1reR, ne€kE, ,
Y P(Xzl = (e1/¢)az) <.
neN?
Since #R, < c3k® by Condition D, we have

)IEDY {P(|SE,, | /6% = 81)}

k>=1reRr,
=Y O(k™ ") < o,
k=1

Thus we have proved that (3.12) and (8.14) imply (3.13). By the Borel-Cantelli
lemma, obviously, (3.13) implies (3.14). O

(3.18)

(3.19)
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REMARK. The condition that 8 < 1 in Theorem 2(ii) is very crucial. For
example, suppose X, X;, X,, ... are iid standard normal random variables. Let
a, = (2nL,n)"? n > 1. Then for any ¢ > 0,

d

Thus (3.12) is satisfied with 6 = 2. Evidently, (3.14) is true. However, it is well
known that

Y X,
k=1

/a, = e) = P(IXI/(2L2n)1/2 > e) = O((log an)_ez) asn — o,

n
limsup( Y Xk)/an =1+0 as.
nowo \p=1

Theorem 2 is rather a general result. An analogue of Theorem 2 can be
established for separable Banach spaces. No geometric conditions are required.
We examine how the conclusion (1.1) can be drawn from Theorem 2. Let
X,X,, n €N be a field of iid real random variables such that EX =0,
EX? <o and EX2L(X])? !/LyX|) < . If d > 2, by a standard.argument
(cutting methods and exponential inequalities) it follows that for some A > 0,
1/2

(3.20)  P(IS,l/(2MRIL,(I7l))

Thus we see that (3.9) is satisfied. (3.11) follows from EXZ2(L|X[)?~'/
Ly(1X]) < ». Consequently, (3.10) holds true with a, = (2[7|L(|7]))*/2. Thus
(1.1) follows in a weak form. Theorem 2 is unable to identify concretely the
limit superior.

We also note that, if d > 2, the Marcinkiewicz—Zygmund strong law of large
numbers established in Gut (1978) and Smythe (1973) follows as a conse-
quence of Theorem 2. Moreover, following the same ideas as in Theorem 2, one
can give an alternative and simple proof of Theorem 1 of Li and Wu (1989).

We come back to our original problem. Let X,, 7 € N?, be a field of
independent real random variables such that EX, = 0, EX2 < » for each 7,
and B; = L3 _EX# > » as 7 - ». There are at least two ways to obtain
(3.9): (1) cutting methods and exponential inequalities; (2) approximation by
the central limit theorems. The following corollaries exemplify each of these
ways separately.

> A) = O((log Iﬁl)_l/z) asm — .

CorOLLARY 1. Let X, i € N%, be a field of real independent random
variables with EX, = 0 for each 7. If there exists r, A > 0 such that

(3.21) sup EXZ(L(|X,1))" <o
neNd
and
(3.22) Y P(X5l = A2FILy(171) ) < o,

neN?
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then
(3.23) lim sup|S,|/(2RILy(I7]))* < ® a.s.
neN?
If, in addition,
(3.24) liminfB,/[7| > 0,
neNd
then
(3.25) 0 < lim suplS,l/(2IRILy(R)) "> < a.s.
neN?

COROLLARY 2. Let X,, 1 € N, be a field of independent real random
variables and a,, i € N%, be a field of positive numbers having the star
property. If there exists A, A, > 0 such that

(3.26) suplP(S,/ya, <x)— ®(x)l =o((loga,) ™) asfi -
x€R )

and
(3.27) Y P(IX;| = A5a5) < o,
rneN?
then
(3.28) limsgpIS,-,I/\/Za,-,Lz(aﬁ) <o a.s.
neN

The following is a generalization of the Kolmogorov law of the iterated
logarithm.

CoROLLARY 3. Let X,, i € N?, be a field of independent real random
variables such that EX;, = 0, EX? < « for each 7i and B, = L5 ., EX? - was

n — . Suppose /B, Ly( By) , i € N%, has the star property. If

(3.29) Xl = o(VB/Ly(By) ) a.s.,

then

(3.30) 1 < limsupl|S;|/y2B;Ly(B;) < a.s.

neNd

Wittmann (1985) obtained a rather general law of the iterated logarithm
when d = 1. The following theorem has resemblance to Wittmann’s result,
but our method of proof is entirely different from Wittmann’s method. Even in
the classical case of d = 1, we can construct an example which satisfies the
assumptions of our Theorem 3, but an assumption in Wittmann’s result fails.

THEOREM 3. Let X, 7 € N?, be a field of independent real random vari-
ables such that EX, = 0, EX2 < © for each i and 0 < B; = Lj; ,EX? - »
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as i = . If B,, n € N9, has the star property and for some 1 <p < 2,

(3.31) Y EIXZ - EX2P/(2B,Ly(B5))" <,
reNd
then
(3.32) limsuplS;|/y2B;Ly(By) < a.s.
reNd

Proor. Observe that in this case S;/y/2B;L,(B;) converges to 0 in
probability as 77 — . We can assume, without loss of generality, that each X
is symmetric. By Lemma 3, we have

E(sup maxISE |/(2bkL2(bk))1/2)

(3.33)
< CE

1/2 L2
sup max|g, . ( Y Xﬁz) (26*Ly(5%)) 7|,

k>1reRk ﬁeEk

where g, ,, r € R, k > 1, are independent standard normal random variables
independent of X,, 7 € N, Note that Trner, EXs <cb®, reR,, k=1,
since B, 1 € N9, satlsﬁes Condition B. We have

1/2 L2
sup maxlgk’,l( Y X% (26*Ly(b%))

k=1 TEE, REE,,,

E

< V2 B sup maxlg, | /(2Ly(6) ")

(3.34) k=17€
1/2
+ E|supmaxlg, || ¥ (XZ-EXZ)| [(20*Ly(b%))"”
k>17€Ry 7 lgeE,
=1 +1,, say.

From Lemma 2, I, < «. Since 1 < p < 2, using Holder’s inequality,

) /(2b"’L2(b"’)))1/2

) /(%kLz(bk)))p)W

1/2p
sCl(Z T Ov EIX%—EX%IP/(zb’“Lz(bk))p)

k>1reR, n€E, ,

T (X2- EX

REeE, ,

I, < E(sup max g7 .

k>1TE€R,

< Y (XZ-EX?

REE, ,

2
E| sup maxg; ,
k>1T<ER,

(3.35)

1/2p
< CZ( Y EIX2 - EX2IP /(2B Ly B,_,))p) < o,
neN?

Combining (3.34), (3.35), (3.36) and Lemma 1, we see that (3.32) holds. O
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CoroLLARY 4. Let X, n > 1, be a sequence of independent real random
variables such that EX, = 0, EXf < o for each n and B, = L"_|EX? - » as
n — oo, If

(3.36) Y EIX,|’’/(2B,Ly(B,))" <
n>1

for some 1 <p < 2, then

n

Y X, ’/‘/2BnL2(Bn) <o a.s.

i=1

(3.37) lim sup

n—oo

REMARK 1. An analogue of Theorem 3 can be established for separable
Banach spaces of type 2.

REMARK 2. Let ¢,, n > 1, be a sequence of iid random variables with
P(e, = 1) =1/2 = P(¢, = —1), that is, a Rademacher sequence. Let X,
2"/%,, n > 1. Note that EX, = 0 for every n and B, = Z:‘_IEX2 = 2"+1
2—>ooand B,../B, —>2asn—+oo Also

(3.38) Y., EIX2 - EX2P/BP =0
nx>1
But, for any a > 0,
(3.39) Y (2B,Ly(B,)) ®"?E|X,|*** =
n>1

In view of (3.39), Theorem 1.2 of Wittmann (1985) is no longer applicable. But
by Theorem 3 above,

lim sup /(2B,,L2(Bn))1/2 <o as.

n—oo

L X,
k=1
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