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A NOTE ON CONDITIONAL EXPONENTIAL MOMENTS AND
ONSAGER-MACHLUP FUNCTIONALS
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It is proven that, for any deterministic L2[0, 1] function ¢(¢),

E(exp j;)1¢(t) dw,

where w, is a standard Brownian motion and | - || is any “reasonable”
norm on Cy[0, 1]. Applications to the computation of Onsager-Machlup
functionals are pointed out.

||w||<e)—+1 ase — 0,

Let ¢ € L%0,1] be a given deterministic function. Let w, be a standard
Brownian motion, and define I(¢) £ [j¢, dw,. Denote by ||| - [I| the supremum
norm on [0, 1], and by || - ||z the L? norm on [0, 1]. In [2], it is shown that if for
a given deterministic path ¢,, ¢ € [0, 1], one has that

(1) E(expI(¢)| lwll <e) > 1 ase—0,

then the Onsager-Machlup functional computation for ¢, = [i¢, dt (cf. [3],
chapter 6, and [2]) follows, that is, if x, is a diffusion satisfying

dx, = f(x,) dt + dw,,
with f bounded and having two continuous bounded derivatives, then

Prob{lllx—d;|||<s} 1 4 a2 e
Srob(TTw]] <o} -»w%—;ﬁﬁ@—fwﬁ)+fwﬂd§ as e = 0.

Further applications to construction of the skeleton of Wiener functionals
follow and will be described elsewhere.

In [2], (1) is proven for ¢ € C°[0, 1], for any @ > 0. The proof, which uses
analytic methods, breaks down in the case of ¢ € L0, 1] and, moreover, is
quite complex. In this note, we bring a new simple proof to (1), based on
different methods, which allows for ¢ € L0, 1].

Denote by || - || any norm on [0, 1] which dominates the L' norm, that is, for
all measurable ¢ on [0, 1],

(2) EW&sKWW

In particular, we wish to consider the case of the supremum norm. We claim
the following.
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THEOREM. Assume that, for any deterministic constant c,

(3) E(exp cwylllwll <€) -1 ase— 0.
Then
(4) E(exp I(¢)|llwll <e) > 1 ase— 0.

REMARK. (2) and (3) are trivially satisfied for ‘“reasonable’’ norms, such as
L? norms, supremum norm and so on.

PrOOF OF THE THEOREM. First, by Jensen’s inequality, using the fact that
the conditioning is symmetric and that I(—¢) = —I(¢),

(5) E(exp I(¢)|llwll < &) > 1.

Let ¢° be a C'[0,1] function such that |[¢ — ¢°|l; < 6. Note that by an
integration by parts,

(6) E(exp(I(qS's))lIIwII < e) = E(exp(¢>1w1 - [olwtdb’(t) dt)llly}ll < s) -1

ase > 0,
where the last limit follows by (2) and (8). Using now Schwartz’s inequality,
one has that

E(exp I(¢)|lwll < &) < E/*(exp 21(4%)|llwll < )

XE?(exp2(1(¢) — I(9°))|lwll < ¢).

Due to (6), the first term in the right-hand side of (7) converges to 1, and due
to (5), the theorem will hold true for any ¢ € L?0, 1] once we show that, for
any ¢ € L0, 1],

(8 E(exp I(y)|llwll < &) < E(exp|I(¢)]).

Indeed, using the fact that I(i) is a Gaussian random variable with zero mean
and variance 0,7 = lyll3, one has

(7

2 e %’
E(exp|I(y)]) = mo fo exp(x - T"wz)
'
(9)

1 2 e (x - 0,)*
=exp(§o¢2)—é‘/_-;f0 exp(———zL)dxal as o, — 0.

Using now ¢ = 2(¢ — ¢°), noting that 0> < 62 — 0 as § — 0 and substituting
(8) and (9) into (6),

lin(l)E(exp I(¢)|llwll < &) < (),
where k(8) —» 0 as § — 0, which together with (5) proves the theorem.
To prove (8), we will actually prove that, for any n > 0 and £ > 0,

(10) Pr(lI(y)| <nllwll <e) = Pr(lI(¢)| <m),
from which (8) follows immediately.
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To see (10), let e; denote an orthonormal base for L%[0, 1] such that e; = .
Let x; £ [Je,(¢) dw,, and denote by x the infinite vector whose components are
x;. Note that the x; are standard, i.i.d. normal random variables. By Theorem
2.1 of [1], one has that for any convex, symmetric set C, C R*,

(11)  Pr(lxy <8, (%1,...,%;) € C,) = Pr(lx;] <8)Pr((xy,...,%;) € Cp).

Let C be a convex, symmetric set in R”, and denote by C, its projection on
R*. Clearly, C, is convex and symmetric and therefore (11) applies to it. Using
dominated convergence, one concludes that

(12) Pr(lx,| <é,x€ C) = Pr(lx,| <8)Pr(xeC).

Therefore, choosing C = {x||lw|l < &}, and noting that C is both symmetric
and convex, we get from (12) that (10) holds true. Inequality (8), and therefore
the theorem, follow. O

REMARK 1. Note that (10) is not a direct consequence of the FKG inequali-
ties, except in the particular case when || - || is the L? norm. In other cases, the
particular properties of elliptically contoured measures are needed for Theo-
rem 2.1 of [1] to hold true, and then the properties of the Gaussian measure
are needed to translate that into a statement concerning conditional probabili-
ties as in (10).

REMARK 2. One could ask whether (4) holds true for functionals which are
more complex than the Wiener integral. For an L2 norm conditioning, it
follows by the FKG inequalities that, for a class of symmetric and convex
functionals, the answer is positive. This approach may be extended for some
classes of functionals to other norm conditionings. To use the method pre-
sented previously, one would need the extension of Theorem 2.1 of [1] to the
situation where the set {|x,| < 8} is replaced by a general convex and symmet-
ric set. This is stated as an open conjecture in [1] and, to our knowledge, is still
an open problem.
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