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MOMENT INEQUALITIES FOR FUNCTIONALS OF THE
BROWNIAN CONVEX HULL

By DAvAR KHOSHNEVISAN

Massachusetts Institute of Technology

We briefly show an extension of inequalities of Burkholder and Gundy
for linear Brownian motion to certain monotone functionals of the d-
dimensional Brownian convex hull. Our results belong to a class of results
that imply that Brownian hulls are much like the one-dimensional maximal
process.

1. Introduction. Let {B(#); ¢t > 0} be a standard linear Brownian motion.
Burkholder [3] shows that if 7 is a stopping time (with respect to the natural
filtration of B), for all r > 0 there are constants c,, ¢, satisfying

(1) e, E(r)""* < B{maxB(s)} < ¢, ()",

which, at least informally, states that the Brownian scaling property, in some
sense, carries over to stopping times. The multidimensional version of this
result holds, with B replaced by |B|, in (1).

In the next section we show that in higher dimensions an analogous result
holds for the set-valued stochastic process that is defined to be the convex hull
of the range of B. Section 3 closes with some concluding remarks and a brief
description of some recent work on the Brownian convex hull.

2. The main result. Throughout this paper, we define € to be the
collection of all convex subsets of the d-dimensional Euclidean space, R¢, that
contain the origin in their interior. Endow € with the Hausdorff metric, H.
In other words, for A, B € ¢,

H(A,B) = max{ sup inflx — yl, sup inf|x —yl}.
x€A y€B yeB x€A

The following lemma is easy.
LemMa 2.1. (€9, H) is a separable metric space.

Notice that (€%, H) is incomplete for all d. For example, in d = 1 take
A,=[-1,1/n] € ¢! and notice that A, > A =[-1,0) & €.

Before we state the inequalities, we need to define the class of functionals
that we shall be looking at.
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DEFINITION 2.2. We say ¢: €% — R. is increasing if whenever A, B € €¢,
and A C B, then ¢(A) < ¢(B). For a > 0, we say that such a ¢ is a-scaling, if
for all C € €2, and for all r > 0, ¢(rC) = r%(C). Let ® denote the class of all
increasing functionals that are a-scaling for some a > 0.

As examples of elements of ® one has the volume, surface area and the
diameter functionals. Actually, all of the so-called mixed volumes are known
to be in ® (see Eggelston [7]). Other nontrivial and interesting examples of
¢ € ® are, for example, ¢(C) being the largest surface area or volume ob-
tained by looking at k-sided polytopes inscribing C, or ¢(C) being the smallest
surface area or volume obtained by considering k-sided polytopes circumscrib-
ing C.

The following is an immediate consequence of the definitions. As well as
giving us an idea of the elements of @, it also settles all related measurability
problems.

LEmMA 2.3. If ¢ € @, then ¢ is continuous.

ProorF. There exists an a > 0, such that ¢ is a-scaling. Therefore, if
A, e ¢% and A € €2 are such that lim, ., H(A,, A) = 0, it follows that

Ve>03IN>Vn>N:(1-e)ACA, c(l+s)A.

Notice that we are using the fact that elements of € contain 0 in their
interior. Applying ¢ to the above, by scaling and monotonicity,

Ve>03IN3Vnx>N:(1-¢)(A) <o(A,) < (1+e)%0(A),
which is the result. O
We shall introduce some notation and then state and prove the main result.
Let {X(¢); ¢ > 0} be a d-dimensional Brownian motion. Define {C(#); ¢ > 0} to
be the associated convex hull process, that is, C(¢) is the convex hull of the set
of points X([0,t]) ={x € RY3I s <t > X(s) =x}. Let % be the natural

filtration of X and define U, = {x € R%: |x| < 1} to be the d-dimensional unit
disk.

PROPOSITION 2.4. Let ¢ € ®. If « is the scaling index of ¢, then there exist
constants ¢, and c,, such that for all F-stopping times, 7,
c,Er*/? < E{¢(C(7))} < c,ET*/2.
PROOF OF THE UPPER BOUND. Let M(¢) = sup,_,/X(s)|. Then the most

generous estimate yields the desired upper bound, viz.,

Ve>0, C@)cM()U,
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implying that
e(C(7)) < o(M(7)Uy)
=M(7)%¢(Uy).
Taking expectations,
Ep(C(r)) < EM(7)%¢(Uy,)
< kEr*/%p(U,),

by an application of the ordinary Burkholder-Gundy inequality; see Burkholder
[3]. Letting ¢, = ke(U,), we get the desired upper bound. O

ProoF OF THE LOWER BOUND. Here, we shall use the good-lambda inequali-
ties. For this, simply notice the following sequence of inequalities:

Pr{r*/2 > 2r, ¢(C(7)) < o7}
< Pr{*r > r/e, <p(C((2r)2/a)) < 8r}

(2) = E{].(TZ,Z/O:) Pr{<p(C((2r)2/°‘)) < 37‘|9~(r2/°‘)}}
< E{L(,2 y2r0) Prxgom[0(C((2%% = 1)r?/%)) < or])
= Pr(r*/* > r}Pr{p(C(1)) < 8(2/* - 1) %),

Here we have used, in inequality (2), some standard Markov process notation.
Hence, as § —» 0, we have shown that

Pr{r*/? > 2r, ¢(C(7)) < 8rlr*/2 2 r} = 0(5).

The justification for the above sequence of equalities /inequalities is easy: They
follow from the Markov property, the independent increments property and
some basic geometry. The details are left to the interested reader. At this
point, the good-lambda inequality implies the lower bound. For this and more,
see Burkholder [3]. O

3. Remarks.

1. Since C(¢t) € €? for all ¢ at once, almost surely, Lemma 2.3 is more than
sufficient. However, we do not know of a proof or a disproof for the lemma
if €¢ is replaced by all compact convex subsets of R?. In this case, the
lemma does go through if we further assume that elements of ® are
location invariant as well. It would be interesting to see if this assumption
can be dispensed with altogether.

2. For results on the growth rates for the convex hull of multidimensional
Brownian motion, see the interesting results of Lévy [9] and Evarns [8].

3. Our application of Burkholder’s good-lambda inequality is patterned after
those in Bass [1] and Davis [5]. What makes things slightly different here is
the geometric argument required in the proof of the lower bound.
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4. Using Cauchy’s formula, Takacs [10] gives a beautifully simple calculation
for the expected perimeter length of the convex hull of planar Brownian
motion: E|dC(¢)| = (87t)!/2. El Bachir [6] has a simple proof, using polar
coordinates, for the analogous result for the area, that is, he has proved
that if d = 2, then E|C(¢)| = wt/2.

5. For results on the smoothness of the boundary of the convex hull of planar
Brownian motion, see Cranston, Hsu and March [4]. Further information
on this subject has appeared in the recent article of Burdzy and San Martin
[2]. Mountford (unpublished) uses estimates of [2] to give the exact result.

6. In the notation of Proposition 1, if ¢ € ®, then for all p > 0, ¢? € ®, and
hence the term ‘“moment inequalities” in the title.
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