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CLUSTERING IN THE ONE-DIMENSIONAL THREE-COLOR
CYCLIC CELLULAR AUTOMATON!

By RoBERT FiscH
Colby College

This paper investigates the dynamics of the one-dimensional three-color
cyclic cellular automaton. The author has previously shown that this
process fluctuates, meaning that each lattice site changes color infinitely
often, so that there is no ‘““final state” for the system. The focus of the
current work is on the clustering properties of this system. This paper
demonstrates that the one-dimensional three-color cyclic cellular automa-
ton clusters, and the mean cluster size, as a function of time ¢, is asymp-
totic to ct'/2, where ¢ is an explicitly calculable constant. The method of
proof also allows us to compute asymptotic estimates of the mean interpar-
ticle distance for a one-dimensional system of particles which undergo
deterministic motion and which annihilate upon collision.

No clustering results are known about the four-color process, but
evidence is presented to suggest that the mean cluster size of such systems
grows at a rate different from ¢!/2,

1. Introduction. A stochastic process of recent interest is the cyclic
particle system introduced by Bramson and Griffeath [5]. This is a multitype
interacting particle system defined on a d-dimensional lattice Z¢ where each
lattice site may take on one of a finite number of values, which are called
colors because of the way the values are displayed in computer simulations.
The colors are given a structure of their own in order to specify how they may
interact with each other. This structure may be described as a cyclic hierarchy
(hence the name cyclic particle system). If N is the number of colors, then
represent the colors as 0,1,..., N — 1. We say that color i can eat color j if
i=j+ 1(mod N); if i —j| # 1 (mod N), then we say that { and j form an
inert pair.

A cyclic particle system is a continuous time Markov chain. The intuitive
idea of the evolution is as follows. Each lattice site waits a random (exponen-
tially distributed) amount of time before choosing a random neighbor. (The
neighborhood of a lattice site x is the set of lattice sites y such that |x — y| = 1.)
If the color of the chosen neighbor can eat the color of the site in question,
then it does so, meaning that the color of the site changes to the color of the
chosen neighbor. Otherwise, the color of the site in question remains un-
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changed. This procedure occurs repeatedly and independently at each lattice
site, so that a dynamic is defined on the entire lattice.

The fundamental question to ask about a cyclic particle system is whether
each site of the process changes color at arbitrarily large times, known as
fluctuation, or whether each site changes color only finitely many times,
known as fixation. Fluctuation means that there is continuing change in the
process, whereas fixation means that the process ““gets stuck”. In [5], Bramson
and Griffeath show that for the one-dimensional cyclic particle system, fluctu-
ation occurs a.s. if there are four or fewer colors, and fixation occurs a.s. if
there are five or more colors. In two or more dimensions, this question is
unsettled, although computer evidence suggests that the two-dimensional
cyclic particle system may fluctuate regardless of the number of colors. See [8]
for an account of the investigation of Bramson, Griffeath, and the author into
these two-dimensional systems.

In the remainder of this paper, we shall restrict ourselves to one-dimen-
sional systems. For those systems that fluctuate, the next task is to examine
how the evolution proceeds. If the number of colors is two, then the resulting
process is actually the voter model of Clifford and Sudbury [6] and Holley and
Liggett [10]. For this process, it is known [4] that clustering occurs, which
means that the evolution produces long intervals whose sites all have the same
color. Furthermore, the mean cluster size of the voter model grows at a rate
proportional to the square root of time. For the three- and four-color cyclic
particle systems, one would like to produce results along these same lines.
Computer simulations suggest that clustering does indeed occur in these
systems, but no progress has been made to date in rigorously computing the
rate of growth of the mean cluster size.

This investigation has led to the study of a system known as the cyclic
cellular automaton. This process, which is introduced in [7], can be thought of
as the deterministic analogue of the cyclic particle system. The state space, just
as for the cyclic particle system, is {0,1,..., N — 1}%, and the N colors are
arranged in a cyclic hierarchy. Time passes in discrete units. A random initial
condition is specified; this is the only nondeterministic component of the
process. To get the configuration at time ¢ + 1 from the configuration at time
t, each site examines its two neighbors. For site x, if the color of either
neighbor can eat the color of x, then the color of x gets eaten at time ¢ + 13
otherwise, the color of x remains unchanged. Once each site in Z determines
how it will update, then all sites update synchronously at time ¢ + 1. The main
result in [7] is that fluctuation occurs a.s. with four or fewer colors and that
fixation occurs a.s. with five or more colors. Hence, for a given number of
colors, the cyclic cellular automaton and the cyclic particle system exhibit the
same behavior with regard to fluctuation and fixation.

The main result of this paper computes asymptotics on the mean cluster
size of the three-color cyclic cellular automaton. In doing this, we demonstrate
that cellular automata provide a tractable setting for proving results that are
related to conjectures about certain interacting particle systems. This furthers
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the notion that the analysis of these deterministic systems is useful in under-
standing their stochastic counterparts.

It is natural to inquire about the clustering properties of the four-color
cyclic cellular automaton, and this paper concludes with a discussion of this
system. Although no clustering results are presented concerning this system,
some empirical data will be given to suggest how this system differs from the
three-color cyclic cellular automaton.

2. Definitions. Before proceeding, let us define the probability space in
which we shall work, the processes with which we are concerned, and the
notation that will be used to discuss them. Since the only nondeterministic
component of a cyclic cellular automaton is the initial configuration, the
probability space we shall define will merely serve the purpose of specifying the
product measure used for the initial configuration. Instead of regarding prod-
uct measure as a sequence of independent uniform random variables that
define the initial configuration at each lattice site, it will be more convenient to
use an implementation where a uniform random variable determines the color
at the origin, and then a sequence of independent uniform random variables
measure the color transitions from one site to the next. It is with this in mind
that we define our probability space (Q, &, P).

Let Q=1{0,1,2} X {—1,0,1}%, let & be the o-algebra generated by finite
cylinder sets of ) and let P be uniform product measure on (). For v = o} X
(...,0_1, 0g, 0,...) € Q, we then have that P({w, = j}) = P({w;, = k}) = 1/3,
foreachie 7, j{0,1,2} and 2k € {-1,0, 1}.

The three-color cyclic cellular automaton is denoted by {n,}. An illustration
of {n,} is given in Figure 1. The state space for {n,} is S = {0,1,2}?, and
elements of the state space are called configurations. For each n € S, we write

F16. 1. The one-dimensional three-color cyclic cellular automaton.
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1(x) to indicate the color (either 0, 1 or 2) of 7 at a site x € Z. A sample path
for {n,} is denoted by (7,), so that for any choice of w € Q, (n,) = (n,Xw)
consists of a sequence of configurations 1y, 7,, 15, . .. . (As is customary, the o
dependence will be suppressed in our notation.) The parameter ¢ can be
thought of as a time parameter, so that n, evolves from 7,.

Fix o € . To define n,, we first set 14(0) = . For x > 0,

19(%) = (no(x — 1) —w,_;) mod3
and, for x < 0, .
no(x) = (mo(x + 1) + ®,) mod3.

To define the rest of (,) from 7, the following inductive rule is used: For
each x € 7,

(n(x) +1) mod3, ifn,(x+1)=(n(x)+1) mod3

Mesq(x) = or n,(x — 1) = (n,(x) +1) mod3,
n,(x), otherwise.

This completes the definition of {n,}.

It is important to define another cellular automaton imbedded within {n,},
which we shall call the edge cellular automaton {{,}. This cellular automaton
will be defined so that for each time ¢, {, will keep track of all the color
transitions between consecutive sites of 7,, that is, the relation

(2.1) {i(x) = (n(x) —m(x + 1)) mod3

will hold for all ¢ > 0. In Figure 1, {{,} is represented by the edges between
colors. In the sections to follow, our discussion will center around {¢,} rather
than {n,}. For this reason, the choice of ({), %, P) was made in order to
simplify the discussion of {{,}.

The state space for {{,} is § = {—1,0, 1}2. Notational conventions for {n,}
will be used for {{,} as well. When necessary to avoid confusion, we will call
elements of S color configurations and elements of S edge configurations. To
define {{,}, we show for each @ € Q how to construct {,, and then indicate
how to define {,,, from ¢, for any ¢ > 0.

Fix w € . For each x € Z, define {,(x) = w,, so that (2.1) holds when
t = 0. We shall indicate how {, evolves from ¢, so that (2.1) holds in the case

= 1, and then an induction allows {{,} to be defined so that (2.1) holds for
all £ > 0.

Let us say that {, is vacant at x if {,(x) = 0 and that {, has an edge
particle at x if {o(x) # 0. If {, is vacant at x, then ny(x) = no(x + 1), sothat
in the color configuration 7,, the edge between x and x + 1 is within a block
of one color. But if {, has an edge particle at x, then this edge is a boundary
between two blocks of different colors. If {,(x) = 1, then ny(x) = (no(x + 1) +
1) mod 3, so that the color of the block to the left eats the color of the block to
the right. By comparing 7, and 7,, the boundary between the two blocks will
have moved one site to the right by time 1. Similarly, if {,(x) = —1, then this-
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boundary will have moved one site to the left by time 1. The boundaries in 7,
between blocks of different colors arise from the motion described here,
although we have not yet described what happens when two such boundaries
collide; this shall be addressed momentarily.

The evolution from ¢, to {; is motivated by the motion of these boundaries
in the color configuration. We regard ¢, as a collection of moving particles, and
¢, will be the result of the motion of these particles. If {,(x) = 1, then we call
the edge particle at x a rightward particle. If {(x) = —1, then the edge
particle at x is a leftward particle. To define {; from ¢,, we move all the
rightward particles one site to the right and all the leftward particles one site
to the left. The only remaining detail is to indicate how collisions between
particles are resolved. No collision is possible between two rightward particles
or between two leftward particles because all particles move at the same speed.
If a rightward particle and a leftward particle collide, they should annihilate
each other, because this corresponds to a situation in the color configuration
where a block of one color is getting eaten from both sides. Since only one color
can be doing the eating, the colors of the blocks to either side are the same,
and so when they meet after eating the block between them, there is no
boundary.

This discussion motivates the construction of {; from ¢, which allows (2.1)
to be satisfied when ¢ = 1. By defining ¢, inductively for ¢ = 2,3,..., then
(2.1) will be satisfied for all ¢ > 0. Formally, given ¢{,, then for any x € Z,

1, ifeither {,(x) =0,{(x—1)=1,{(x+1)+# -1
orf(x)=1,{(x—-1)=1;
Lie1(x) ={ -1, ifeither {(x) =0, (x+1) = -1, {(x —1) #1
or{(x)=-1,{(x+1) = -1,
0, otherwise.

That the formal definition for {{,} satisfies (2.1) for all ¢ > 0 is left for the
reader.

The idea of {{,} being a collection of moving particles is important enough
that it will be convenient to relabel the values that {,(x) can take on as ¢, 0,
and ~ instead of —1, 0, and 1, respectively, so that we may redefine S =
{¢,0, »}*. The initial condition ¢, is made up of vacant sites 0, rightward
moving particles », and leftward moving particles <. Later configurations ¢,
indicate the positions of these particles at time ¢, where the rules of movement
allow each » and ¢ to move one site in their indicated direction every time
step and specify annihilation upon collision. In reference to a particular edge
particle starting from a site in ¢,,, we shall feel free to speak of future events
for this edge particle, such as the time at which this particle is annihilated. If
an edge particle has not been annihilated by time ¢, we will say that this
particle lives to time ¢.

3. Statement of main results. Let us define our terminology concern-
ing clustering. In any configuration, a cluster is a maximal block of contiguous
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sites that are all the same color. To compute the mean cluster size of a
configuration 7, first compute the mean cluster size of n on an interval
[—n,n], and then let n approach infinity. Formally, the mean cluster size
C(m) of a configuration n € S is defined as

2n
C = li
(m) n % number of clusters nhasin[-n,n]’

whenever this limit exists. Another notion we must specify is the condition
necessary to conclude that a process {n,} clusters. What we want to mean by
this is that when observing an interval of sites at a very large time ¢, then 7, is
overwhelmingly likely to display only one color over this interval. So we shall
say that {n,} clusters if and only if for any x,y € Z, x < y,

tlif:op(m(x) =n(x+1)= - =79(y)) =1

Once we know that {n,} clusters, we can try to compute how C(7,), the mean
cluster size of n,, grows with ¢.

We can now state a result concerning the clustering of the three-color cyclic
cellular automaton. In the theorem, ~ means that the limit of the quotient
approaches 1 as ¢ approaches .

THEOREM 1. Let {n,} be a one-dimensional three-color cyclic cellular au-
tomaton.
(a) {n,} clusters.

(b) C(n,) ~ Y37t/2, a.s.

Theorem 1 gives a description of what happens in the evolution of the
three-color cyclic cellular automaton. Part (b) is actually a special case of a
more general theorem. To state this more general theorem, let us focus on the
edge cellular automaton {{,}, which was described in terms of a system of
particles moving deterministically and undergoing annihilation upon collision.

For each p in the interval (0,1 /2], define a system of deterministic annihi-
lating particles {{P} to be a process that is defined on the probability space
(Q, &, PP), where Q) and & are as before, and P” is product measure
on ) defined for each i € Z as PP({w; = 1) = PP({o; = —1) =p and
PP({w; = 0}) = 1 — 2p. (Events involving o, will not play a role in these
systems.) The state space for {{?} is {¢, 0, ~}?, and {{?} is defined in much the
same way as {{,}. Hence, given o € , the initial condition (¥ is defined at
each site x € Z via

/4, fw,=-1,
2(x)=(0, ifw =0,

r, ifow,=1.

Thus, the measure determining ¢} is product measure with the property that
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independently at each site x € Z,
(3.1) PP(Z§(x) =¢) = PP(¢f(x) =~) =p,  PP({f(x) =0) =1~ 2p.
The evolution rule for {{?} is the same as the evolution rule for the edge
cellular automaton. Each ¢ represents a leftward particle, each » represents a
rightward particle and each 0 represents a vacant site. At each time step,
every particle leaves its current site and appears one site away in the appropri-
ate direction unless a collision occurs, in which case the colliding particles
annihilate each other and no longer appear in the system. Let us observe that
the edge cellular automaton is represented in this collection because it is equal
in distribution to {¢!/3}.

The quantity of interest for these systems is the mean interparticle distance
as a function of time. In order to be precise about what we mean by this, let us
define the mean interparticle distance D({) of a configuration ¢ € S to be

2n
D(¢) =1
() n3e number of particles { hasin[—n,n]

whenever the limit exists. The next theorem computes asymptotics on D({P)
as t gets large.

THEOREM 2. For p €(0,1/2], let {{’} be a one-dimensional system of
deterministic annihilating particles with initial product measure satisfying

(3.1). Then D({f) ~ ywt/2p, PP-a.s.

When Theorem 1 is interpreted in terms of the edge cellular automaton, it
gives a statement about a system of deterministic annihilating particles, and
since C(n,) = D({,) in this context, then Theorem 1(b) is the same as Theorem
2 in the case p =1/3. The computations that extend Theorem 1(b) to
Theorem 2 are performed in this paper.

4. Systems of moving particles with collision rules. Theorem 2 gives
a result about a class of systems of particles that move deterministically and
that annihilate upon collision. A number of results concerning systems of
particles undergoing some kind of motion exist in the literature. Several of
these are highlighted in this section in order to show that the cellular
automaton of Theorem 2 is a natural system to study outside the context of
the cyclic cellular automaton from which it arose. The results mentioned in
this section are compiled in Table 1 in order to identify a collection of systems
that are related in a natural way, to demonstrate that a particular kind of
problem has been solved for most of these systems and to emphasize the role
Theorem 2 plays in filling a remaining void in this framework.

The systems to be described all have the following setup. Particles are
initially placed in a one-dimensional environment (either a lattice or a contin-
uum). Each particle moves according to some process, either random walk,
Brownian motion, or deterministic motion, and the motion of any particle is
independent of the motion of all other particles until it collides with another
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TABLE 1
Summary of results about one-dimensional systems of particles

Process governing particle motion

Collision rule, Random Brownian Deterministic
quantity of interest walk motion motion
4 4

Reflection /exclusion, Vi Ve Vi
natural scaling Arratia [3] Harris [9] Harris [9]
divisor for tagged
particle displacement

Annihilation, growth \/Z \/{ N3
rate of mean Bramson and Arratia [2]? Theorem 2
interparticle Griffeath [4] of this paper
distance

Coalescence, growth Vvt Ve Vi
rate of mean Bramson and Arratia [1] Conjecture
interparticle Griffeath [4] of this paper
distance

2Result not stated in [2], but follows from the results of [2].

particle. An interaction mechanism is prescribed to decide the outcome of such
collisions; the three interaction mechanisms considered are reflection/exclu-
sion, annihilation and coalescence.

Consider first a one-dimensional lattice of particles undergoing random
walk. Arratia [3] studied the exclusion process in this setting. Particles are
initially laid down with density p and undergo independent, continuous time,
simple symmetric random walks, except that any time a particle tries to jump
onto an occupied site, such a jump is inhibited. Conditioning on a tagged
particle starting at the origin, the displacement Y, of this tagged particle can
be examined. Arratia found that the displacement of the tagged particle in the
exclusion process satisfies

1
—Y,>4 N
4‘./2.

0 V2(1 - p)
’ 1/—7;[) .
(The d indicates convergence in distribution.) Note that the scaling divisor
here is ¢/ rather than ¢!/%, which is the corresponding scaling divisor for a
random walk on the one-dimensional lattice that moves without collisions.
Another paper examining particles undergoing random walk is by Bramson
and Griffeath [4]. This paper looks at what happens when the collision
mechanism causes annihilation of the particles, and also when it causes
coalescence of the particles. One quantity they computed is the mean interpar-
ticle distance D, at time ¢. For both the annihilating and coalescing systems,
they showed that the asymptotic growth of D, is proportional to ¢!/2. More
precisely, for an appropriate class of initial conditions in each case, the
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annihilating system satisfies
D,
Vi
and the coalescing system satisfies

D,
RS
(The p indicates convergence in probability.)

Next, consider a one-dimensional system of particles undergoing Brownian
motion. Harris [9] investigated such systems where particles reflect upon
collision. Initially, particles are placed on the real line according to a Poisson
point process with intensity 1. A tagged particle is conditioned to start at the
origin, and its displacement at time ¢, Y,, is the quantity of interest. In this

setting, the result is that
! Y, N|O V 2
VvV - Z 1.
‘t/z t d ’ T

Again, the appropriate scaling divisor is #!/* rather than #1/2,

Arratia [1] looked at a system of one-dimensional Brownian motions where
the particles coalesce upon collision. The initial condition places a particle at
each point of the real line. Letting X, be the configuration of the system at
time ¢, he showed that

—)p 2\/;

1
XI =d WXt.

From this, one can conclude that the mean interparticle distance grows at a
rate proportional to /2. Another result due to Arratia [2] allows one to make
a similar statement when annihilation is the collision rule.

Finally, consider a one-dimensional system of particles whose motions are
deterministic. Harris [9] examined a system where such particles are initially
placed according to a Poisson point process with intensity 1, and each particle
is assigned a velocity whose value is chosen according to a normal distribution.
Each particle moves at its assigned velocity until it collides with another
particle, at which point reflection occurs via the mechanism that each particle
takes on the velocity of the other particle in the collision. A tagged particle is
conditioned to start at the origin, and its displacement at time ¢, Y, is
examined. Here, the result is that

Ly o2

Note that the scaling divisor here is #!/2, which differs from the scaling divisor
for the tagged random walk or the tagged Brownian motion.
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The omissions from this collection of results, as can be seen from Table 1,
are theorems concerning the mean interparticle distance of a one-dimensional
system of deterministic particles which either annihilate or coalesce upon
collision. Theorem 2 fills in the gap in the case of annihilating particles, and
the author conjectures that a result similar to Theorem 2 holds for coalescing
particles. This conjecture is based on the realization that the mechanisms
described in the proof of Theorem 2 are not severely disturbed by a change in
the collision rule, and so it is unlikely that the mean interparticle distance
would grow according to a different power of time, although the coefficient of
the growth rate may indeed be different.

5. Some preliminary results and the proof of clustering. In this
section, we introduce some tools for analyzing {{7}; one of these tools will be
put to use to prove the clustering result of Theorem 1(a). The first lemma
captures the idea that particles in {{?} may not move through each other. If
two particles eventually annihilate each other, then all the particles that
started in the interval between these two in the initial condition must annihi-
late one another, that is, no particle from outside this interval may annihilate
any particle from inside this interval. The proof is elementary and hence
omitted. The notation [x] represents the smallest integer greater than or equal
to x; the notation | x] represents the greatest integer less than or equal to x.

LEmMA 5.1. Let x,y € Z with x <y, and assume that the initial configu-

ration of {{f} has a rightward particle at x and a leftward particle at y; that is,

8(x) = » and {§(y) = . Then at least one of the following three events must
occur by time [(y — x)/2]:

(i) these two edge particles annihilate each other, and all the particles
between them annihilate one another;
(ii) the ~ at x is annihilated by some ¢ in [x + 1,y — 1]; or
(iii) the ¢ at y is annihilated by some » in [x + 1,y — 1].

For each x € Z, we want to define two random walks, Z,, and Z,_, that
will be useful in analyzing the evolution of {{?}. These random walks are
defined on the same probability space as {{?} (and, in the case p = 1/3, {n,}.
Given w € (Q, define

x+t—1

Zx+(t) = Z w;,

x
Zx—(t ) == Z ;.
i=x—t+1
The random walk Z,, can be thought of as starting at 0 and increasing by 1
with every » encountered and decreasing by 1 with every ¢ encountered while
scanning {§ to the right starting at x. Similarly, Z,_ scans {§ to the left

starting at x, but ¢ particles increase Z,_ and » particles decrease it. Figure
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AN £ AN Z AN AN AN
I Y f T 1 Y — Y | Y 1
X
t-1 2 3 4 5 6 7 8 9 10 11
Z (¢)»1 1 2 1 2 3 2 2 1 0 O

Fic. 2. Illustration of Z .

2 depicts a portion of {§ and shows how Z_, can be defined from it. Let us
mention here that Z,, and Z,_ are recurrent random walks under P” (see
P2.8 of Spitzer [11]). The following result gives some elementary arithmetic
relationships that these random walks satisfy. The proofs follow directly from
the definitions of Z,, and Z__.

LEmMA 5.2. Letx,y € Z with x <y and let s,t > 0.

@Z,(y-x+1)=-Z, (y—x+1.
) Z,,(t)=0ifand only if Z,,,_,,_(¢) = 0. )
©Z, (s+0)=Z2,,8)+Z,,,, ®D)andZ, (s +t)=2Z, (s) + Z,_,,_(2).

We shall use these random walks in order to get a condition for when an
edge particle from ¢§ lives to time ¢. First, for each x € Z, we define the first
return times 7, and 7,_ of the random walks Z,, and Z,_ to zero as

7..=min{t > 0: Z_, (¢) = 0},

7..=minft > 0: Z,_(¢) = 0}.
Note that 7,,=7,_= 1 if {§(x) = 0, so that one need not move away from
zero to register a return to zero under this definition of the return time. Also,
P?(r,,< ©) = PP(r,_< ) = 1 by the recurrence of Z,_, and Z,_ under P?,

so that r,, and 7,_ are finite PP-a.s. Our goal is to prove the following
proposition.

PropoSITION 5.3. Letx € Z and assume {§(x) = ». Then this particle will
live to time t if and only if 7,,> 2¢ + 1.

An illustration of this proposition is given in Figure 3, where the initial
condition of Figure 2 is run for a few time units.

The next lemma gives us a connection between the evolution of {{7} and the
first return time of Z_, to zero. This will lead to the proof of Proposition 5.3.

Lemma 54. (a) Foranyx € Z and any t > 0, Z,,(¢) = 0 if and only if {§
has exactly the same number of » and ¢ particles between x and x + ¢t — 1,
inclusive, and Z,_(t) = 0 if and only if {§ has exactly the same number of »
and ¢ particles between x — t + 1 and x, inclusive.

(b) Let x € Z and t > 0. Assume that {§(x) = » and that this particle is not
annihilated by any particle starting in [x + 1,x + ¢ — 1. Then Z_ (s) > 0 for
alls=1,...,t.
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m
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I
0lllllllllllll
X
t>1 2 3 4 5 6 7 8 9 10 11
zZ (t)»1 1 2 1 2 3 2 2 1 0 0

= 10 2(5)+1 > T > 2(4)+1

Fic. 3. Illustration of Proposition 5.3.

(c) Let x,y € Z with x <y. Assume (§(x) = », {§(y) = ¢ and these two
particles annihilate each other. Then Z, . (y —x + 1) =0 and Z, . (t) > 0 for
allt=1,...,y — x.

(d) Let x € Z, and assume that Z, (t) >0 for all t =0,...,7,,. Then
either {£(x) = 0 or else {§(x) = », {§(x + 7,,— 1) = £ and these two particles
annihilate each other at time |7, /2]

Proor. Statement (a) follows directly from the definitions of Z,, and Z, _.

To prove (b), we induct on ¢. It is easy to see that (b) holds in the cases
where t = 1 and ¢ = 2. So, fix £ > 2 and assume (b) holds whenever ¢ < k.
Assume the ~ at x is not annihilated by any particle starting in [x + 1,
x + k — 1]. From the inductive hypothesis, we only need to show Z_, (k) > 0.
If (f(x+k—1)#¢,then w,, ;120,80 Z, (R)=2Z, (k- 1)+ w441 >
0. Hence, we can assume that {#(x + k£ — 1) = /. Then we are assuming that
the ~ at x is not annihilated by any particle in [x + 1,x + & — 2] or by the ¢
at x + £ — 1. By Lemma 5.1, it follows that the < at x + & — 1 is annihilated
by some » at a site y in [x + 1,x + & — 2]. But then, all the particles in
[y, x + £ — 1] must annihilate one another. Since every annihilation involves
one ~ and one ¢, there are equal numbers of ~’s and /’sin[y,x + & — 1]. By
part (a), Z,,(x + k —y) = 0, and by Lemma 5.2(c) and the inductive hypothe-
sis,

Zx+(k) =Zx+(y _x) + Zy+(x +k _y) =Zx+(y _x) +0>0,

which is what we need.

To prove (c), we observe that option (i) of Lemma 5.1 occurs, so
that there are equal numbers of »’s and ¢’s in [x,y], and it follows that
Z.,(y —x + 1) = 0 by part (a). Furthermore, since the » at x is not annihi-
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lated by any particle in [x + 1,y — 1], then by part (b), Z,,(¢) > 0 for all
t=1,...,y —x.

The assumption in (d) about Z, (¢) being nonnegative for all ¢ up to 7,
merely rules out the possibility that {§(x) = ¢, because it is impossible for Z, ,
to change from nonnegative to negative before time 7., . If 7,,= 1, then
{8(x) = 0. So, assume 7,,> 1, which implies that {£(x) # 0. Then {8(x) = »,
Z, (r,,—1)>0and Z  (r,,)=0 (from the definition of r,,). From this,
@yir,,—1= —1,s0that {f(x +7,,— 1) =<.

Let us determine which ¢ particle annihilates the » at x. From part (c), if
such an ¢ came from a site in [x + 1,x + 7,,— 2], then Z,, (¢) = 0 for some
t <r.,, and from part (b), if no ¢ from a site in [x + 1, x + 7, — 1] annihi-
lates the ~ at x, then Z, (7,,) > 0. The definition of r,, precludes either of
these possibilities, so that the ¢ at x + 7., — 1 must annihilate the » at x.
The time at which they annihilate each other is merely the distance each must
go in order to collide. O

The proof of Proposition 5.3 now follows directly from Lemma 5.4(d).
Assume that {§(x) = . If 7,,< 2¢ + 1, then this » particle will be annihi-
lated at time |7,, /2] < ¢, while if 7., > 2¢ + 1, then it will be annihilated at
time |7, /2] > ¢t. So, we have a way to use results about random walk to get
information about annihilation times of particles of {{/}.

As an application of Proposition 5.3, we shall conclude this section by
proving that {n,} clusters, which is the content of Theorem 1(a). For x,y € Z,
x <y and ¢t > 0, we have the equality of the events

{n(x) =m(x+1) = - =n(y)}
={¢(s)=0foralls =x,x+1,...,y — 1}
because a color configuration interval can only display one color when there
are no edge particles in the corresponding edge configuration interval. Thus,
by proving the following lemma, we can apply it in the case p =1/3 to
conclude Theorem 1(a).
LEmMMA 5.5. Letx,y € Z with x <y. Then

(5.1) lim PP({f(s) = Oforalls =x,...,y) = 1.
t— o

Proor. Let us observe, using the subadditivity and translation invariance
of PP, that

PP({P(s) =0foral s=x,...,y)
=1-PP({P(s) + 0 for some s =x,...,y)
>1-(y—=x+1)PP({P(0) #0)
By symmetry between ~ particles and ¢ particles, it suffices to show that
lim P7(£7(0) = ») = 0



CLUSTERING IN CYCLIC CELLULAR AUTOMATA 1541

in order to conclude (5.1). But if {(0) = », then it must be the case that
{8(—t) = » and this » particle lives to time ¢. Then translation invariance,
Proposition 5.3, and the recurrence of the random walk Z,, allow us to
compute that

lim PP({P(0) = ») = tlimPP(70+> 2t +1) = 0.
t—> —®©
This proves the lemma. O

6. The computation of D({P). We shall prove Theorem 2 in this sec-
tion, and hence be able to compute the mean cluster size of {n,}. Let us recall
the definition of the mean interparticle distance:

2n
. = l. .
(6.1) D(%) o, Tumber of particles { hasin [—n,n]

In order to analyze this quantity, we shall define indicator functions describing
when particles from ¢ live to time ¢. For each x € Z, let

. 1, if {(x) = » and this particle lives to time ¢,
X x,t = .
0, otherwise;
. _ |1, if {§(x) = ¢ and this particle lives to time ¢,
X x,t .
0, otherwise.
Then the number of particles {? has in [—n,n] can be expressed as

n—t n+t
(6.2) Z Xzt T Z X;,t-
x=—-n—t x=—n+t
Let us now observe that, for a fixed value of ¢, {x] ) <, and {X{ ez
are sequences which are 2¢-independent ({... , x7_ i, x7, and

{X}t>X+1,1>- -} are independent if y —x > 2¢, and similarly for {x{ ). This
implies that each sequence is mixing and hence ergodic. These sequences are
also stationary, so we may apply Birkhoff’s ergodic theorem to conclude that

1 n—t n+t
(63) lim——| X xi.+ L xi. = E[xg.+x{:), Pras.
now &N\ gy x=-—n+t

The right-hand side is merely the probability that a particle is at the origin of
the initial configuration and lives to time ¢. In light of Proposition 5.3, let us
define

pf = PP({8(0) = », 79> k)
= PP(Zy, (1) > 0, Zo,(2) > 0, ..., Zo, (k) > 0).
Then (6.1), (6.2) and (6.3) can be combined to yield

(6.4) D(LP) = PPas.

P ’
2p5 41

Thus, it is necessary to analyze pf, which is done in the following lemma.
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LEmMA 6.1. For 0 <p <1/2, pf ~Vp/wk.

Proor. The proof uses a standard reflection principle argument. Let us
use the notation Z(-) to denote Z, (). We can write

pP = f PP(Z(1) > 0,...,Z(k — 1) > 0, Z(k) = j)
j=1
=p f PP(Z(2) > 0,...,Z(k — 1) > 0, Z(k) = jlZ(1) = 1)
j=1

=pY PP(Z(k-1)=j-1,Z(i) # —1fori=1,...,k — 2)
j=1

=pX [PP(Z(k-1)=j-1) - PP(Z(k-1)=j -1,
j=1
Z(i) = —1forsomei=1,...,k — 2)].
By the reflection principle, we get
pf=p X [PP(Z(k—1)=j—1) - PP(Z(k - 1) =j + 1)].
j=1
The sum on the right is actually a finite telescoping sum, so that
pf =pPP(Z(k — 1) =0) + pPP(Z(k - 1) = 1).
By symmetry,
pf =pPP(Z(k — 1) = 0) + pPP(Z(k — 1) = —-1).
We can then use the relation

pPP(Z(k —1)=1) + (1 — 2p)PP(Z(k — 1) =0) + pPP(Z(k - 1) = —-1)

= P?(Z(k) = 0)
to conclude that
4p -1 1
(6.5) pf = B PP(Z(k—1)=0) + EPP(Z(k) =0).

We now apply Proposition 7.9 of Spitzer [11] to compute asymptotics for the
probability of a random walk being at the origin at a given time. In the present
context, we can conclude that for 0 < p < 1/2,

PP(Z(k) = 0) ~

1
N
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and in the case p = 1/2,
PY2%(Z(k) = 0) =0 if kisodd;

2
PY2(Z(k) = 0) ~ V pry if & is even.

Using these results in (6.5) gives us the conclusion of the lemma. O

Thus, applying Lemma 6.1 to (6.4), we can conclude Theorem 2, which can
then be used to calculate the mean cluster size for {n,} in Theorem 1(b).

7. Numerical verification of Theorem 1(b). Theorem 1(b) was veri-
fied numerically by simulating the three-color cyclic cellular automaton with
the aid of a Cellular Automaton Machine (CAM). A system of 65,536 sites with
wrap-around boundary conditions was used for the simulation, and data were
generated in order to estimate the asymptotic growth rate of the mean cluster
size C(n,). Three hundred runs of the system were made, with each run
lasting 15,000 time units. Every 50 time units, the number of edge-particles in
the imbedded edge cellular automaton was recorded. From these data, the
average number of particles at each of the recording times was computed by
averaging over the 300 runs. By dividing the average number of particles into
the number of sites in the simu'ation (65,536), we computed the average of the
cluster sizes C, at each of the recording times ¢.

From Theorem 1(b), we know that the graph of In C(n,) versus In ¢ will
approximate a line of slope 1/2 at large times ¢. Figure 4 shows a graph of
InC, versus In¢. We see that this graph does approximate a straight line. A
least squares analysis to find the slope of the line best approximating these
data gives a value of this slope as 0.502424, which is within 0.5% of theoretical
value. Furthermore, we know that a graph of C(n,) versus ¢'/2 will approxi-
mate a line of slope (37/2)'/2 = 2.171. Figure 5 shows a graph of C, versus
172, This graph also approximates a straight line, and a least squares analysis
gives that the slope of the line of best fit is 2.203980, which is within 1.5% of
the theoretical value.

We would like to get empirical values of the power of time and the
proportionality constant that approximate the theoretical values even better,
but since Theorem 1(b) is an asymptotic result, better approximations can only
be made by running the simulations for longer periods of time. Unfortunately,
it is not clear that we may run a wrap-around system of 65,536 much longer
than 15,000 time units without the finiteness of the simulation having a large
effect on the results. To illustrate the problem, consider any site containing an
. Over the course of 15,000 time units, this » can consider half of the /
particles to be moving away from it and the other half to be moving toward it,
because it is impossible for this » to collide with an ¢ more than 30,000 sites
away to the right of it. However, over the course of 32,768 time units, this »
must consider all Z particles to be moving toward it because it and any ¢ can
annihilate each other if all intervening particles annihilate one another. Al-
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though it is not clear exactly how long the simulation may be run before the
finiteness of the simulation has a great effect on the empirical estimates, it is
clear that a simulation with many more sites is necessary in order to substan-
tially increase the length of time over which the simulation is run in order to
get better approximations to the asymptotic result. Unfortunately, running
simulations on a single CAM limits our simulation size, and simulations run
without the CAM are over 2000 times slower and are impractical to use for
getting such statistics. Hence, for the time being, we are unable to obtain
better empirical evidence of Theorem 1(b).

8. The four-color cyclic cellular automaton. The four-color cyclic
cellular automaton, which we shall denote in this section by {n,}, is defined in
[7]. The cyclic hierarchy on the four colors specifies that color 1 can eat color 0,
color 2 can eat color 1, color 3 can eat color 2, and color 0 can eat color 3.
Furthermore, colors 0 and 2 form an inert pair, as do colors 1 and 3. The
initial condition for {7,} is determined by product measure, where at any site
xe/’Z, :

P(no(x) = 0) = P(ne(x) = 1) = P(mo(x) = 2) = P(mo(x) = 3) = §.

At each time ¢, each site looks at its two nearest neighbors. If it sees the color
that can eat it, then it becomes that color at time ¢ + 1; otherwise, it remains
unchanged at time ¢ + 1. Figure 6 illustrates {n,}.

The imbedded edge cellular automaton {{,} can be described in terms of edge
particles along the same lines as in the case of three colors. But now, in
addition to the rightward and leftward edge particles, »~ and ¢/, described in
Section 2, we have a blockade particle #, which corresponds to an edge
between two inert colors in the color configuration. Each site in an edge
configuration is either vacant, denoted by 0, or contains one of these three
edge particles. The initial configuration for {{,} is determined by product
measure, where at any site x € Z,

P(y(x) = 0) = P({o(x) =r) = P({o(x) = ¢) = P({o(x) = b) = 7.

To get the configuration at time ¢ + 1 from the configuration at time ¢, each »
particle moves one site to the right, each ¢ particle moves one site to the left
and each £ particle remains unmoved. If an » and an ¢ collide, they
annihilate each other. But if an ~ or an ¢ collides with a 4, the £ is
annihilated and the moving particle reverses direction. In other words, if an »
collides with a ¢, the site where the collision occurs contains an ¢, and if an ¢
collides with a 4, then the site where the collision occurs contains an .

So, the edge cellular automaton consists of particles undergoing determinis-
tic motion among a forest of blockade particles. The moving particles bounce
back and forth among the blockades, reversing direction and annihilating a
blockade particle with every bounce. When two moving particles collide, they
annihilate each other. These effects can be observed by looking at the color
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F1G. 6. The one-dimensional four-color cyclic cellular automaton.

interfaces of Figure 6. Any result about this edge cellular automaton will carry
over to a corresponding statement about the one-dimensional four-color cyclic
cellular automaton, and so it may be possible to analyze this cyclic cellular
automaton by proving appropriate statements about this edge cellular automa-
ton.

We know from [7] that {n,} fluctuates. Thus, it is natural to investigate the
clustering properties of {n,}. Unfortunately, the techniques used for the three-
color system do not carry over to the four-color system. For the edge cellular
automaton corresponding to the three-color cyclic cellular automaton, we were
able to describe when a particle lives to time ¢ in terms of the first return time
of some random walk to zero. However, this sort of result is yet to be proved
for the edge cellular automaton corresponding to the four-color cyclic cellular
automaton. In the absence of this kind of result, some other approach is
necessary to conclude that {n,} clusters.

The one-dimensional four-color cyclic cellular automaton has been simu-
lated on a CAM. A system of 65,536 sites with wrap-around boundary condi-
tions was used to help understand the behavior of {n,}. Upon looking at these
simulations, it was apparent that clustering does indeed occur for this system.
Assuming the truth of this conclusion, a natural next step was to use the CAM
to generate data in order to estimate the asymptotic growth rate of the mean
cluster size C(7,). One hundred runs of the system were made, with each run
lasting 90,000 time units. Every 300 time units, the number of edge particles
in the imbedded edge cellular automaton, counting moving particles and
blockade particles, was recorded. From these data, the average number of
particles at each of the recording times was computed by averaging over the
100 runs. By dividing the average number of particles into the number of sites
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in the simulation (65,536), we computed the average of the cluster sizes C, at
each of the recording times ¢.

If C(n,) were asymptotic to a function of the form ct®, then a graph of
In C(n,) versus In¢ would approximate a line of slope a at large times ¢.
Figure 7 shows a graph of In C, versus In ¢. A least squares analysis to find the
slope of the line best approximating these data gives a value of this slope as
0.407444. Repeating this least squares analysis on the latter half of the data
(i.e., for times greater than 45,000), the slope is 0.346692. It seems from this
analysis that the mean cluster size in the case of four colors does not grow like
t'/2, but may grow like some other power of ¢, perhaps ¢'/3.

One may ask about the faithfulness of these simulations to the infinite
system at large times such as ¢ = 90,000 due to the fact that the simulations
are run on a finite number of sites. After all, in the three-color simulations, it
is impossible for »’s and ¢’s to coexist after time 32,768, and so no collisions
are possible at any later time. Clearly, any conclusions made about the infinite
cellular automaton through observations of the three-color simulation at time
90,000 are dubious. The difference between the three-color simulations and
the four-color simulations is that in the three-color simulations, some particles
will have travelled great distances at large times, whereas in the four-color
simulations, moving particles are bouncing back and forth and have no chance
to wrap-around as long as blockade particles are still around. In all the
four-color simulations observed, most of the particles remaining at time 90,000
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are blockade particles. Thus, no moving particle has had a chance to be
affected by the finiteness of these simulations. Furthermore, even simulations
where all the moving particles are annihilated by time 90,000 are not “bad”
simulations. This is because of the long period of time (compared to 90,000)
required for a live particle that avoids annihilation to reach a site tens of
thousands of sites away from its initial site due to the bouncing back and forth
necessary to clear away all of the blockade particles in the way. Thus, Figure 7
should be useful in drawing conclusions about the infinite four-color cyclic
cellular automaton. At the very least, Figure 7 is strong evidence for the
conjecture that the growth rate of C(7,) is not proportional to ¢!/2.
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