The Annals of Probability
1992, Vol. 20, No. 4, 1805-1842

RATIOS OF TRIMMED SUMS AND ORDER STATISTICS

By HARRY KESTEN AND R. A. MALLER

Cornell University and University of Western Australia

Let X; be independent and identically distributed random variables -
with distribution F.Let M{® < --- < M be the sample X,, X,,..., X,
arranged in increasing order, with a convention for the breaking of ties,
and let X{™,..., X be the sample arranged in increasing order of
modulus, again with a convention to break ties. Let S, = X; + -+ +X,, be
the sample sum. We consider sums trimmed by large values,

(r)Sn = Sn - Ml(ll) - _Mp(zr)’ r= 1’~27' ces (O)Sn = Sn’
and sums trimmed by values large in modulus,
(")S-n = Sn - Xr(tl) - _Xy(zr)) r=12,...,n, (O)‘§n = Sn'

In this paper we give necessary and sufficient conditions for S, /1X{7| —
w and S, /M{" - ® to hold almost surely or in probability, when r =
1,2,... . These express the dominance of the sum over the large values in
the sample in various ways and are of interest in relation to the law of large
numbers and to central limit behavior. Our conditions are related to the
relative stability almost surely or in probability of the trimmed sum and,
hence, to analytic conditions on the tail of the distribution of X, which give
relative stability.

1. Introduction. Let X;, X be independent and identically distributed
random variables with distribution F and let M{W < --- <M be the
sample X, X,,..., X, arranged in increasing order; more precisely, let m (;),
n>1,1<j<n, be the number of X; satisfying X;>X,, 1 <i<n, or
X;=X;,1<i<j,andlet M’ =X, if m,(j) =r. Thus, ties are broken by
priority of index. Let

(1.1) S,=X, + - +X,,

and define the trimmed sum

(12) s,=S,-MP-----M", r=1,2,...,n,95, =8,.

Also let X(™,..., X" denote the sample arranged in increasing order of

modulus, with a similar convention as above to specify X{” in the case of ties
among |X;|. Define sums trimmed by removing the values of largest modulus:

g _ 1 e _ 0§ _
n§ =8, — XO - X" r=1,2,...,n,%,=8,.

Consider the behavior of the ratio S,/M", when EX < EX*< «, where
X"=max(X,0) and X~ = X"~ X. Then by the strong law of large numbers,
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1806 H. KESTEN AND R. A. MALLER

n~!S, - EX > 0 almost sure (a.s.) and, as is well known, M{"/n - 0 as.
Also, it is easily shown that P{M{" <0 i.o.} =0, if F(0) <1, which we
will assume throughout this paper. Thus n/M" — « a.s. and it follows
that S,/M® — o as. Equivalently, S, /M® — » as. The condition
Mg /M — » as. or in probability, or more generally S, /M’ — « a.s. or
in probability, where r = 1,2, ..., expresses in one way the dominance of the
sum over the large values in the sample. A similar interpretation can be given
to 8, /IX{7| - ». These relations are of interest in connection with the law
of large numbers and central limit behavior. Our aim in this paper is to give
necessary and sufficient conditions for ’§, /|X(”| - © and ’S,/M" > »
a.s. or in probability.

An important role in our calculations is played by the concept of relative
stability. S, is said to be relatively stable (in probability) if S, /B, —p + 1 or
S,/B, —p — 1 (abbreviated to S, /B, —p * 1) for a nonstochastic sequence
B,,, which we will always assume is strictly positive and increasing. When
X, > 0 a.s. an intimate connection between the condition S, /M" — © and
relative stability was proved by Breiman (1965); he showed in fact that these
are equivalent to each other and to an analytic condition due to Feller [(1971),
page 236], which we write generally as

|v(2)|

(1.3) m —> ©, X = o,
or, equivalently,

| A(x)]
(1'4) m — o, X — o,
where, for x > 0,
(15) A(x) = ["[L = F(y) = F(=y)] dy
and
(1.6) v(x) = E[XI(IX] <x)].
We also define
17 A = [[1-FO))dy, A(x)=[F(-y)dy
and
(1.8) V(x) = E[ X2I(1X| <x)].

That conditions (1.3) and (1.4) continue to characterize relative stability of
S,, for general X; was shown by Maller (1978) [see also Rogozin (1976)]. We
will always assume that X; do not have bounded support, so P(IX| > x) > 0
for all x; thus when (1.4) holds, |A(x)| is strictly positive for large x. Conse-
quently, for sufficiently large x, A(x) and hence v(x) are of constant sign; this
follows from the continuity of A(x) and then from the fact that »(x) ~ A(x) as
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x — oo, which is true under either one of (1.3) and (1.4). Furthermore, Rogozin
(1976) shows that |A(x)| and hence [v(x)| are slowly varying as x — « [see
Bingham, Goldie and Teugels (1987) for definitions of slow and regular
variation], and the norming constants B, for which S, /B, —p + 1 satisfy
(1.9) B, ~n|u(B,)| ~n|A(B,)| asn . |

Since convergence of the type S,/B, —p + 1 entails XV/B, —p 0 and
M®/B, —»p 0 as n - » [e.g., by Gnedenko and Kologorov (1968), page 124],
and since P(M{’ > 0) > 1 as n - », for j > 1, when F(0) < 1, “positive”
relative stability of the type S,/B, —p + 1 (equivalently, as it turns out,
positive relative stability of the trimmed sums “~"§, or “~PS,) implies
M8 y/1XP| -p 0 and 7S, /M —p o, r=1,2,.... It is plausible to conjec-
ture that the converses of these are true, and we prove in Theorem 2.1 that
this is indeed the case. Thus this type of behavior does not depend on the order
of trimming, that is, on the value of r.

For a.s. convergence, Mori (1976) showed that trimming S, to (’_I)Sn
“improves” almost sure behavior in cases where E|X| may be infinite, in the
sense that (""YS, — C,)/n may still converge to 0 a.s. for a nonstochastic
sequence C,; in fact this occurs if and only if the integral

@ . dx
(1.10) fo{xP(IXI >x)) —

converges. Maller (1984) extended this to give conditions for which
=bS /B, —» +1 as. for some B, and showed that this entails X{”/B, — 0
a.s., so that X7 /S, - 0 in this case. [Versions of Mori’s result for "~ 1S,
are also mentioned in Maller (1984).] So once again, relative stability (a.s.) of
the trimmed sum appears closely related to the divergence of S, /|X(|.
A similar relation will be seen to hold between "~ "S, /B, — 1 a.s., for some
B,, and S, /M(” — . For results related to the case r = 1 of these rela-
tions, see Chow and Robbins (1961), Maller (1978), Kesten (1971), O’Brien
(1980) and Maller and Resnick (1984).

The kind of trimming is immaterial when the summed random variables are
nonnegative almost surely, a case which is of interest in itself. In fact, let

Or =X2+ X2+ +X2 - (X,gD)2 — (XD, r=1,2,...,n,
with (O)Tn as the sample sum of squares. Then Theorem 2.2, applied to X7,
tells us, for example, that for r = 1,2, ... the following are equivalent:

(r)T
- > oo as,;
(%)
(r—l)T

n 5 .
— 1 a.s., for some nonstochastic sequence C,;
n

o x2P(1X|>x) | dx
| E

(L.11) I\mpaxisn | = <
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[For r = 1, (1.11) is equivalent to E(X)? < ».] Likewise Theorem 2.1 gives the
equivalence of the following:

(r)Tn
(%)

—p ®;

(r‘l)T
n

—p 1, for some nonstochastic sequence C,,;

x2P(IX| > x)
=
[6yP(IX] > y) dy

0, as x — .

(1.12)

Condition (1.12) is Lévy’s condition for F to be in the domain of attraction of
the normal distribution, while (1.11) is a condition on the rate of convergence
of this quantity to 0. Thus we have a natural link with the central limit
behavior of the sum.

2. Results. First we state the version of the theorem for convergence in
probability. We need the following definitions: when ¢ > 0, and P(X < 0) > 0,
let —L_(¢) and L (¢) be an ¢ and a (1 — ¢) quantile of F, that is,

F(-L_(e)-)<e<F(-L_(¢)) and F(L,(e)—)=<1-¢e<F(L,.(¢)).
When P(X < 0) = 0take L_(¢) = 0. L, (&) and/or L_(¢) may not be uniquely

defined by these, but any choice which satisfies the conditions will work. We
also define

(21) w(e) =E[XI(-L(s) sX<L,@)]=[ xdF(),

(2.2) o%*e) =E[X(-L_(¢) <X<L,(¢))] = /H_(g) 5 (8)]x2dF(x).

THEOREM 2.1. Let F(0) < 1. Forr = 1,2,... the following are equivalent:

ng

2.3 ‘—n —p 0, n — oo;
M,(lr) P
£

(2.4) S, £—>0+;

—_— s
e'/%0 (&) :
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there is a nonstochastic sequence B, > 0, B, 1o, for which

(r—l)S
(2.5) T n — o,
v(x)
(2,6) m — o0, x — o;
(2.7 g;/((:)) -, x>, [see (1.8) for V(x)];
(2.8) 1)  row

(P(XI =) V()

Furthermore, (2.3)-(2.8) are equivalent to each of the following:

nNg

(2.9) |X(’), —p o, n — o;
(r=D§

(2.10) = o, n — o;

where B, is the same sequence as in (2.5). The same sequence B, can be used
in (2.5) or (2.10) forall r > 1.

THEOREM 2.2. Let F(0) < 1. The following are equivalent forr = 1,2, 3, . ..
and n — o

ng
(211) E{T), —> ® a.Ss.
ng

there is an x, > 0 such that A(x) > 0 for x > x, and

< oo,

(2.13) N

Xo

xP{|X|>x}\ dx
SrCa

A(x)
‘there is a nonstochastic sequence B, > 0, B, 1, for which

(r—l)S
| a.s.;

(2.14)

n
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there is a nonstochastic sequence B, > 0, B, 1, for which
r-DG r-Dg

< lim sup
n now By

Finally, (2.11)-(2.15) hold for r = 1 if and only if
0 <EX <E|X| < .

(2.15) 0 < liminf <® a.s.

n— oo

THEOREM 2.3. Let F(0) < 1 and assume E|X| = «. Then the following are

equivalent forr = 2,3,... and n — «:
(r)S

(2.16) f(’,; - ®© a.s;
)

(2.17) ll’IlIngf M,(L"; >0 a.s;

there is an x, > 0 such that

»(x[1 - F(x)] ) dx
2.18a B — < ®
( ) '/;0{ A (x) x
and
2.18b "l _Var(—2)| <
(2150) Faelercni<s
there is a nonstochastic sequence B, > 0, B, 1, for which
("—I)S
(2.19) 251 a.s;

there is a nonstochastic sequence B, > 0, B, 1, for which
("—l)S (r—l)S
(2.20) 0 < liminf < lim sup

n—e n n—o n

When E|X| < +x, conditions (2.16)-(2.20) are still equivalent, even for r = 1,
if (2.18) is replaced by

E(X") <E(X") <x or,equivalently, E(X) > 0.
Finally, (2.16)-(2.20) can hold for r = 1 only if E|X| < +c.

n
<o a.s.

REMARK 1. For convergence in probability, since (2.4) and (2.6)-(2.8) do
not depend on r, we see that (2.3) and (2.5), and (2.9) and (2.10), hold for all r
if they hold for r = 1 [even with the same sequence B, for all r in (2.5) and
,(2 10)]; thus all conditions are equivalent to (p051t1ve) relative stability (in
probability) (S,/B, —p + 1) or to S,,/M{" —p ». This shows that trimming
a fixed number of extremes does not affect relative stability in this sense.
However, the example in Remark 6 shows that this is not so for a.s. conver-
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gence. We note that the sequences B, in (2.14) and (2.15) are not necessarily
the same, although they are of the same order of magnitude. The same
comment applies in (2.19) and (2.20).

We note further that if the conditions in Theorem 2.2 (or Theorem 2.3) hold
for some r, then they hold for r replaced by any s > r, as is obvious for
(2.18a); for (2.13) it follows from (4.1). We can then use the same B, for all
s > r (since ""VS, /B, — 1 a.s. implies "~ VS, /B, —p 1, and we can use the
same B, for stability in probability whatever the value of r, by Theorem 2.1).

REMARK 2. It will be shown in the proof of Theorem 2.1 (see Lemma 3.2)
that (2.3) and the other conditions of the theorem are equivalent to either of
the statements

(2.21) P("V8, = T| X} - 1,
(2.22) P{"PS, > TM{"} - 1,

for some T > 0. These conditions, apparently weaker than (2.3) or (2.9), are
the analogues of (2.12) and (2.17) for convergence in probability.

REMARK 3. In Theorem 2.3, the conditions express the dominance of the
positive parts of the X, over the negative parts. This is seen most clearly from
condition (2.18b), which is equivalent to

n —
i=1Xi

——— > 0 a.s
n + -
i=1Xi

where X; = max(X,,0), X; = X — X,. This result is due to Pruitt (1981)
and Erickson (1973); see Lemma 5.1 for a generalization.

Since E|X| = «, (2.18b) can be seen to imply A_(x)/A, (x) = 0, x — .
Also, one can appeal to Proposition 3.6 of Maller and Resnick (1984), which
shows that A_(x)/A,(x) —» 0, x - =, is equivalent to X" , X; /X" ;X =, 0.
Thus by Theorem 2.3, if ©’S,/M{” — » a.s., or (2.18) holds, and E|X| = « (so
that r > 2), then the dominance of X; over X;, and of A (x) over A_(x),
forces B,/n ~A.(B,) > © as n — » [see (1.9)]. However, Theorem 2.2
describes quite a different phenomenon; (2.13) may hold with E|X| = » in
cases where the tails are balanced, that is, (1 — F(x))/F(-x) » 1, A (x)/
A_(x) » 1, x — . Surprisingly, we can even have " VS, /B, — 1 as. for
some r > 2, yet B,/n — 0. For example, take

1
1-F(x)=

x log x  xlog x(loglog x)*

’ A
when x > c;, and

F(-x) =

x log x
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when x > c,, where ¢; > e and ¢, > 1. Then the values of ¢,, ¢, and of F on
(—cy, ¢;) can be adjusted so that, for large x,

Alx) = loglog x °

(2.13) holds for this distribution when r > 2, so VS, /B, — 1 a.s. yet B, ~
nA(B,) = o(n), n — . This example is a random walk that is relatively stable
in probablhty, with S, /n —p 0, and with E|X| = c.

=DS, may be relatively stable a.s., without "~ S being so, when r =
2,3,. 'In fact, (2.13) implies (2.18a) since A(x) < A (x) but not (2.18b), as
the preceding example shows. On the other hand, it can be shown that if
E|X| = », then (2.18a) and (2.18b) together imply (2.13), so a.s. relative
stability of ©~ VS, implies that of "~ VS, (and then the norming sequences B,
may be taken the same, by Theorem 2.1).

REMARK 4. For those results relating to absolute value trimming in Theo-
rems 2.1 and 2.2, we can obtain equivalences for 7§ /B, = —1 and for
M§ /IX| - —w (in probability or a.s.), by interchanging X; and X;.
However, this cannot be done in those results where large values are trlmmed
We have partial results relating to ’S, /B, —» —1 and ’S,/M{” - — (in
probability or a.s.) which we hope to present elsewhere.

REMARK 5. We saw in Remark 3 that

n n
M8 /M - ® as. implies Y, Xi‘/ Y X —p 0.
i=1

However, this is not implied by S, /M{” —, ». For a counterexample, we
only need a relatively stable S, for which A (x) /A, (x) does not converge to
0. The example in the previous remark satisfies this; for a simpler example,
take F(x)=1-1/x, x > 2, and F(—x)=1/(2x), x > 1, F(x) = § other-
wise, for which A (x) ~logx and A_(x) ~ ilogx, as x — ». Here
S,/GGnlogn) »p 1 [as can be seen by means of (1.4) and (1.9)] but the
positive and negative tails are sufficiently close that A_(x)/A_ (x) does not
converge to 0. An example of a relatively stable random walk with E|X]| < o
and E(X) = 0,and hence with 0 < lim, ,, A (x) < 0,0 < limx_,w A _(x) <
and S,/n — 0 a.s., originally due to Feller and Brelman is given in Durrett,
Kesten and Lawler (1991).

. REMARK 6. The function -
F(x) = {1 — 27 'B(log x)" " exp((log x)B)}I(x >e)

is the distribution function of a nonnegative random variable when 0 < 8 < 1,
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for which A(x) = A, (x) is the slowly varying function
x[1 - F(x)]

A(x) = ["[1 = F(»)] dy = exp((log x)*) = Bllogx)* "

when x > e. So the integral in (2.18a) is, if x, > e,

o(x[1 - F(x)] ) dx e g1y d%
I =,f {W} = =B fxo(logx) p 17 + const.,

which converges if and only if #(1 — 8) > 1. Thus, given B, r can be chosen
large enough, that is, sufficient terms can be trimmed, for I, < «. Given r > 1,
if B=1-1/r, we have I, = o but I, ; < o, thus, in general, one less term
may not be enough trimming for (2.16) or (2.19).

Xo

REMARK 7. One way of expressing our results is to say that we are
interested in the case when the large values of X are negligible with respect to
the (trimmed) sum. By contrast, Maller and Resnick (1984) and Pruitt (1987)
studied the case when the large values are comparable in magnitude to the
trimmed sum, that is, when S, /|X| or S, /M or their absolute values
have a finite limit or lim sup. This occurs typically when the tails of F' are
“heavy,” for example, when P{|X| > x} is slowly varying. By contrast, in the
present paper the tails are relatively ‘‘light”’; the truncated mean »(x) is
usually slowly varying, hence can increase no faster than x°, for any fixed
e > 0. Section 4 of Maller and Resnick (1984) also considers the case r = 1 of
the present Theorem 2.2. The case r = 1 of (2.11) is comparatively easy to
analyze, though, because by Kesten (1971) this can occur if and only if
E|X| < », while for r > 1, (2.11)-(2.15) may hold when E|X| = « (see the
example in Remark 6).

Generally speaking, the divergence to one side (e.g., to +) of S, /IX"|
or of "’S, /M(" seems to put more emphasis on the interplay between the
positive and negative parts of the X; than is encountered in the cases of finite
limits such as occur in Thearems 2.3 and 3.1 of Maller and Resnick (1984) and
Pruitt (1987). The latter results basically only have conditions on |X| [see
Pruitt (1987), Remark 2].

3. Proof of Theorem 2.1. To prove that (2.3) implies (2.4), the following
lemma is required.

LEmma 3.1. Forall T>0,e>0, B, >0, By >0, r >0, there exist con-
stants C = C(T, ¢, By, By,r) > 0, K = K(T') and ny = ny(T, ¢, B, By, r) with
the following property:

Let WY i =1,2,..., N, be independent and identically distributed ran-
dom variables with distributions function G™, where N = 1,2,... . Let 6 > 0
and define L(N, 8) to be any (1 — 6 /N )-quantile of G™, that is,

G™M(L(N,8)-) <1-8/N < G™(L(N,$s)),
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and define the truncated moments
m(N,8) = E{WNI(W < L(N, $))}
+L(N,8)[1 - 8/N - G™M(L(N,8)-)],
s*(N,8) = (W™’ I(W{™ < L(N,5))}
+ L%(N,8)[1 - 8/N - GM(L(N,8)-)].

Assume that G satisfies the inequalities

(3.1) J O|x|3 dG™M(x) < B}
and
(3.2) 1-G™(B,) <+ and s(N,8) > 4(B,; + B,).

Then, uniformly in 0 <e/4 <8 < 4e and N = n,,

N
(3.3) P{ Y W > Nm(N,8) + TN/?s(N,8) + TL(N,3)} > C,

i=1
and
N
P{ Yy Wi(N)I(Wi(N) < L(N,6))
i=1
(3.4) < Nm(N,8)— TN'?s(N,8) + K(T)L(N, ),

and W) > L(N, 8) for at least r values of i < N,

but W) > L(N, 8) for at most rvaluesof i <N} > C.

We shall not prove Lemma 3.1 here since the proof is essentially the same
as that of Lemma 2 of Kesten and Lawler (1992). In fact, (3.3) is proved
explicitly there. In our application below, the distribution G™ will be the
conditional distribution of X; + Z,(n) given X, + Z(n) > 0, or of —X, — Z,(n)
given X; + Z(n) < 0. Here the Z/(n) are, at first, 0, then later, uniform
random variables on [0,7~ /2], and all X; and Z,(n) are independent. n and
N will be quantities of the same order of magnitude. In particular, G™ will
be concentrated on [0,%) so that (3.1) holds with B, = 0. If E(X{)?= o
[respectively, E(X;)? = =], then (3.2) is also trivial for some B, for the above
choices of G™. We must check that (3.3) and (3.4) remain valid even when
E(X;)? < o [respectively, E(X7)? < »]. Let us consider the case when 0 <
E(X{)? <o and G™ is the conditional distribution of X; + Z,(n) given
X, + Z(n) = 0, with Z,(n) as before for some n with [N — an| < n'/? and
a = P(X + Z{n) = 0). In this case, let W™),..., W™, be independent with
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distribution G, It is now easy to verify the Lindeberg—Feller conditions, so
that

EL[WN - E(WV)]
(N Var(W¥)"?

converges in distribution to a standard normal random variable as N — o,
Also

0< Al,im s%(N,8) = E{X21X, > 0} < oo,

L(N,$8) = o(N'/?),
and
E(W™) > E{WIMI(W™") < L(N, $))}
+ L(N,8)[1 - 8/N - G™(L(N,8)-)]
=m(N,?$).
The inequality (3.3) is immediate from this (including the uniformity in § in
the interval [¢ /4, 4¢]). A similar argument works for (3.4).
We now commence the proof that (2.3) implies (2.4). Write a« = P(X > 0).
We assume first that F is continuous, in which case Z;(n) will be taken as 0 in
the discussion following Lemma 8.1, and W and G’ will not depend on

N, so we can drop the superfluous superscript N. We remove the restriction of
continuity later. For any T'> 0 and 1 < n < 2 we will estimate P{I'}, where

I'=T(n,T,r)
= L XI(X; <L,.(n/n))
i=1

<nu(n/n)— Tn'%c(n/n)— TL_(n/n)

+K(a_1(2T + 2))L+(n/n), and MV > L. (n/n) = M,(l”l)},

(3.5)

by decomposing with respect to the set of indices A, where X; > 0, and
applying Lemma 3.1. Write

P(I) = Y P{X,>0forie A, X,<O0fori&A andI'}
A

Y P(X,>0forieA,X,<0forieA)

IN—an|<nl/?
X P{I'X; > 0fori € A, X; <0 for i-& A},

where X, denotes summation over all subsets A of {1,2,...,n}, and N is the
cardinality of A. Since X; are independent and identically distributed, we have
for fixed A,

P{T1X; > 0fori e A, X; < 0fori ¢ A}
=P[lNX,>0forl1<i<N,X;<0for N+1<i<n}.

|

(3.6)
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Now let I, (¢) =I1(0 <X <L, (), I_(¢) = I(-~L_(¢) < X < 0), and define
wo(e) =E(XL(2)),  n_(e) = E(XI_(¢)),
o2(e) = E(X?,(2)), o2(e) = E(X_(¢)).
Then the right-hand side of (3.6) is at least

N
p{ L XI(X, <L (n/m))

<np,(n/n)=Tn%s (n/n) + K(a"'(2T + 2))L.(n/n),
X,>L,(n/n) for at least r values of i <N,

but X; > L,(n/n) for at most r valuesof i < N|X; >0,1<i < N}
n—N
XP{ Y (-X;) = —np_(n/n)
i=1

+Tn'%0c_(n/n) + TL_(n/n)|X;<0,1<i<n - N}

=Ty, Say.

When a =1 we take 7, = 1. For a <1 (and a > 0, by assumption of the
theorem), we will have 1 < N < n for sufficiently large n, when I[N — an| <
nl/2, so that 7, and 7, will be well defined.

To estimate ,, apply (3.4) of Lemma 3.1 when W, = W) has the condi-
tional distribution of X;, given X; > 0, and 6§ = Nn/(an). For this choice we
may take L(N,8) = L, (n/n), since

P(W, > L,(n/n)} = P{X > L,(n/n)X > 0} = n/(an) = 6/N.

Moreover, since we assume continuity of F, we have, letting G(x) = G™)(x),

m(N, 8) =[

0

EN Oy dG(x) = a7t [V dF(x) = a Y, (n/n),
0

while, similarly,
s%(N,8) =a lo%(n/n).

Suppose [N — an| < n'/? and n is sufficiently large that n'/? < an/2. Then
an>N—-n'? and N >an —n'2>an/2 > a?n/4, or n*/? < 2a" N2

Thus
nu.,(n/n) = anm(N,5)
> Nm(N,8)— n'/?2m(N, )
> Nm(N,8)— 2a"'N'/?s(N, ),
noting that m(N,d8) < s(N,§) by the Cauchy-Schwarz inequality. Also
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(an)'/? < 2a7Y2N1/2 < 2a7IN'/2 gives
—Tn'2%6,(n/n) = —T(an)"?s(N,8) > —2Ta"*N'/%s(N, 5).
Therefore, if [N — an| <n'/? and 1/2 < /2 < § < 21 < 4, we have by (3.4):
N
m = P{ Y W.I(W, < L(N,8)) < Nm(N,8)— 2¢ (T + 1)N'/?s(N, 5)
i=1
+K(a™ (2T + 2))L(N, s),
and W, > L(N, §) for at least r valuesof { < N,

but W, > L(N, 8) for at most r values of i <N

> C(2aY(T +1),1) > 0.

[Here we have abbreviated C(T, ¢, By, By, r) to C(T,¢).] Similarly, applying
(3.3) of Lemma 3.1 when W, has the conditional distribution of —X;, given
X; < 0, when F is continuous and with N replaced by n — N, gives, when
IN — an| < n'/?,

my > C((2T + 2)/(1 — @),1) > 0.
We therefore conclude from (3.5) and (3.6) that
P{T} > C(Za_l(T +1),1)C((2T + 2)/(1 — a),1) P{IN — an| < n/2}.

Since P{IN — an| < n'/?} is bounded away from 0 as n — » by the central
limit theorem (N is binomial with success probability ), the same is true of
P{I'}. However, when I'(n, T', r) occurs,

i=1

<nu(n/n) = Tn'?s(n/n) = TL_(n/n) + K(a"'(2T + 2))L,(n/n),

and M{? > L, (n/n). Since (2.3) tells us that the probability of
(7S, < [T+ K(a"}(2T + 2))| L. (n/n) and M > L, (n/n))
tends to 0 as n — o, we must have
nu(n/n) - Tn¥%o(n/n) = TL_(n/n) + K(a"*(2T + 2))L,(n/n)
> [T + K(a"}(2T + 2))] L, (n/n), eventually.

. This means that forany 7> 0and 1 <7 < 2,

lim inf wn/n) > T
now n Y%s(n/n) +n Y L,(n/n)+L_(n/n)]
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Since all estimates are uniform in 1 < n < 2, we have when F is continuous

u(e) S
e'2%0(e) +e[L,(e) + L_(¢)] ’

and this certainly implies (2.4).

To remove the assumption of continuity, we use a method similar to one of
Pruitt (1987). Suppose (2.3) holds but there is an infinite sequence n’' of
integers and a constant a such that

(3.8) w(l/n) <a(n) V2o (1/m).

We shall show that this leads to a contradiction. Define random variables
X? =X, + Z(n), where, for each n, Z,(n) are uniform random variables on
[0,2,],0 <z, <1, and all X, and Z,(n) are independent. Let (M*)$ be the
J-th largest term among X7 ..., X7 which is uniquely defined a.s. since X7
are continuous random variables. Let

(3.7) e—>0+,

n
"8t = Y Xt - (MHY - - (M"Y, r=1,2,...,n.
i=1
Notice that if X,, < M{), then
Xt <MD +Z, (n) <MY + 1,
so the number of X greater than M{’ + 1 is at most j — 1. Thus
(M#)Y) < M + 1, and of course M < (M*). So
MY - (M"Y <1, j=1,2,...,n.
Also
n
Ot = T (Xi+ Zi(n) = (M) = o = (M*),]
i=1

=S + Y Z(n) + [Mr(ll) _ (M#)S)] + o+ [Mr(Lr) _ (M#)(nr)
i=1

>M8 —r, as.
Now if X is bounded above w.p.1, then (M*){” is bounded above, and (2.3)
implies "S? /(M*)") —, . If X is not bounded above, then (M*){) -, o
and hence, in probability,

MO~ (MHYP, j=1,2,...,r.

Again we see that ’S*/(M*)!) -, «. Now the. X/ are independent and
identically distributed for each n, and the conditional distributions of X7,
given X7 > 0 or given X7 < 0 satisfy the conditions of Lemma 3.1 uniformly

‘in n. Therefore, the work up to (3.7) tells us that, for large n, u*(1/n) > 0
"and, as n — o,

(3.9) n~YZ%*(1/n) + n~YL*(1/n) + L% (1/n)] = o{u*(1/n)}.
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Here, for n > 1,
wh(e) = E{X{I(L%(e) < X}, < Li(e))},

o¥%(e) = B{(X%,) I(L* (¢) < X{, < L%(2))},
and L*(¢) and L*%(¢) are defined by
e = F¥(—~L*(¢)) = 1 - F¥(L*(¢)),

where F7 is the (continuous) distribution function of X}, provided P(Xf <
0) > 0, or equivalently P(X <0)>0.1If P(X < 0) = 0, L#¥(¢) should be taken
equal to 0. Now u and u*, and o and o, satisfy the following inequalities for
e>0:

(3.10) p(e) = ph(e) — e[ LE(e) + LE(e)] - 2,
and
(3.11) () < 20%(e) + 26| (L% (e))" + (L% (e))] + 4.

(3.10) is established by writing u in the form

M(S) N '/['—Lm(s),L,,(s)]xdF(x) - {'/['—L,(e),O] " '/;O,L,,(e)]}xdF(x)
and integrating by parts to obtain
n(e) = _L+(8)[1 - F(L+(5))]
+ [F[1 = F(x)] dx + L_(e) F(~L_(¢) -)
0

~[° F(x)da.
—L_(e)

The inequalities
F*(x) <F(x—)<F(x) <F¥(x+z,)
and
—L_(¢) < —L*(e) < —L_(¢) + z,, L,(e) <L*(e) <L,(¢) +2,

follow for all x and for £ > 0 from the definitions of the # quantities. Use
these together with the inequality [1 — F(L_(¢))] < ¢, to write

u(e) = —eL,(e) + foum[l — Ff(x +2,)] dx - [_OL EH(x+z,) dr

L (5)+z

—eL (¢ )+[ F#(x)]dx—f F#(x)dx

L _(e)+

Zn

—€ € Ly _ g -
Li(e)+ [ - Fr)as - [

Y

F#(x) dx
()

— —eL? HON - FHx)]dx - [0 F¥(x)dx -z,
eLf(e) + [T L - F()]de = [1 | Ff(x)de -2,
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If we integrate by parts in the last expression we obtain

u(e) = [M59 xdF (x) - eLt(e) - eLh(e) - 2,

L*(¢)

which is (3.10); (3.11) is proved similarly.
Now, by (38.11) with ¢ =n~"! and the fact that liminfo*%(1/n) >
E(X*")? > 0, we have

n~lo?(1/n) = O{n'la-n#z(l/n) + 2n_2[(L’f(1/n))2 + (Lﬁ(l/n))z]}
= ofut(1/n))’, by (3.9).
So, by (3.8),

(3.12) limsup u(1/7')/p%(1/n') < 0.
But if we choose z, = n=1/2 = O{n~'/20,*(1/n)}, we have by (3.9):
2,/ Wh(1/n) = O{n~Y 20} (1/n) /uh(1/n)} = o(1).
Thus, by (3.10) with ¢ = n~! and (3.9),
u(l/n)/ui(1/n)
(3.13) >1-0{[L*(1/n) + Lt (1/n)]/[nut(1/n)]} - 0(2)

-1 asn — oo,
(3.12) and (3.13) contradict each other, so (3.8) cannot hold and we have

1p H(1/n)
nt/?———— >, asn — .
o(l/n)
To prove (2.4) in general from this, take 0 < ¢ < 1 and choose n = n(e) as the
integer part of 2/¢. Then1/n <e <2/n,L,(¢) <L,(1/n),L_(¢) <L _(1/n)
and o(e) < o(1/n). Thus

!u(e)—u(%)‘

|poacr @ x<nen-B[a(-r (1) sx = (3))
SE[XI(L+(3) <X< L(%))] ‘ E[IXII(—L_(%) <X< —L_(e))]
(3.14) sE[XI(L(%) <XSL+(%))] +E[IX|I(—L_(%) <x< —L(%))]
Ayl () xne(G)])
R (e At PP )
()]
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by the Cauchy—Schwarz inequality. [Remember that 1 — F(L,(2/n)) <2/n

ang F(-L_(2/n)—) <2/n.] Thus n'/?u(e)— u(1/n)l/o(1/n) is bounded
an

R ()

o(l/n)

In particular, u(e) > 0 for small ¢ > 0. But then

2u(e) _ n'u(e)

e%0(e) ~ o(1/n)

which proves (2.4) in the general case.
Next we show that (2.4) implies (2.5). This is simply based on Chebyshev’s

inequality. With 6 € (0, 3) and x > 0, we have
( : ) }
>xnu| —
n

rl| £ --(3) s s3] - m5)

a*(8/n)
< — T
x2nu(8/n)

e e

n

— o ase—>0+.

ase -0+,

— 0 asn — o, by(2.4).

4

Also

) )
sP{Xisé —L_(—),L+(—) forsomeiSn}
n n
) )
<n|P X>L+(—)) + Pl X< —L_(—))
n n
< 26,
so we have for all x > 0,
li P{ X } 25
imsupP{|——— — 1| > x) < 26.
o nu(é/n)

All we need is to replace w(8/n) by something independent of & [u(1/n), say]
in this. But the same kind of estimates as used for (3.14) give

{z)-+()
o (2) =03
‘ —E[XI(—L_(%)sXsLJr(%))”
<ofn(2)] 7

=1E
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By (2.4) we now see that u(1/n) > 0 and u(8/n) ~ u(1/n) as n — «, so we
have S, /B, —p 1, where B, = nu(1/n). This in turn implies by the degener-
ate convergence criterion [Gnedenko and Kolmogorov (1968), page 134] that
nP(IX| > xB,) - 0 for x > 0, s0 M{"/B,, - 0, giving "™ VS, /B, =, 1, r =
1,2,... . This is (2.5) except for the monotonicity of B,. That we may replace
B, by the increasing sequence max, _,B, follows as in Rogozin [(1976), page
376).

Next, if (2.5) holds we wish to deduce that M{”/B, —, 0. This follows
from the inequality

8P{""YS, - B,| > «xB,} = P{M{"”| > 5xB,}

if n is sufficiently large and 0 < 5x < 1, which is derived as in Lemma 1 of
Maller (1982) with continuity, or as in Lemma 3 of Mori (1984). Since, further,
P(M(’ > 0) > 1 as a result of F(0) < 1, we have "’S_ /M{” —, o, which is
(2.3). This completes the proof of the first three equivalences in Theorem 2.1
when large values are trimmed. [It also shows that the choice of L_(¢) and
L, (¢) is irrelevant.]

We now prove that (2.9) implies (2.3) (with r = 1, hence for all ). In fact we
prove a little more, namely, that (2.21) implies (2.9) and (2.3), since we will
need this in the proof of Theorem 2.2. This is a result of the following lemma.

LEmMA 3.2. Assume that, for some T > 0,
(3.16) P("DS, > TIX(I) - 1.

Then, forallj=1,2,...,
(j—l)S'

Proor. Let L(¢) be such that

P{|IX} > L(¢)} = e > P{IX| > L(¢)}.

When |X| = L(¢) we shall randomize X in a suitable way and count X as a
value with |X| < L(¢) [even though |X| = L(¢)] with a suitable probability such
that P{|X| < L(¢)} = 1 — &. Then, for any £ > 0,

P{""P§, < TIX{l}
- (el <o )] [l = ()] a5

P,_(T,L) = P{S,_ (L) < TL}

and S, _,(L) is the sum of n — r independent copies of a random variable

where
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with the conditional distribution of X, given |X| < L. Thus, uniformly in
1< ¢ <2, (3.16) implies

P, (T,L(e/n)) >0, asn — o,
or
P(T,L(e/n)) -0, asn — o,

Now‘consider
(j_l)‘gkn = i (Sin = S-1n) ~ X = - XD
i=1
We have
P Zk: (Sin = Si-1yn) <kTL(e/n)or |X;| = L(e/n) for some i < kn
i=1

< knP{|X| > L(e/n)} + kP{S,(L(e/n)) < TL(¢/n)}
< kne/n + ké(n,¢),
where 8(n, ) — 0 as n - «. But, on the event
{Si, = kTL(e/n) and|X;| < L(e/n)foralli < kn}
we have
VDS, > kTL(s/n)— (j — 1)L(e/n) = (kT —j + 1)L(&/n)
and |X{/)| < L(e/n), whence
u-vg, '
W >kT —j+ 1.
Consequently, for any ¢ > 0,
' U-vg,
liﬂing{W{l)ln > kT —j + 1} >1-— ke.

But then also
(j—l)Sl
lim inf P min ———>kT—j}=>1—-(k+ 1)
n—w kn<l<k(n+1) |Xl('])| ( ) ’
because
) B ) B k(n+1)
min Y7P§,>V7P§, - Y X,
kn<l<k(n+1) i=kn+1
., max XV < X))
kn<l<k(n+1)

on' the event
(X)) < 1XEI, for kn + 1 < i < k(n + 1)},
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and
T IX]
g Y
Thus, for all € > 0,
1imglfp{<f-”s‘l > (BT = HIXPN} = 1= (k + 1)e,

or
P{U™D§, > (KT - j)IXPI} - 1
Since this holds for all %, the lemma follows. O

Taking j = 1 in Lemma 3.2, we see that (2.21) implies S,/IX{V| —p .
Hence S,/M® —, », since clearly XD > MO as. Thus (2.3) holds w1th
r=1 and so, by the ﬁrst part of the proof, Sn/B —p 1, giving "™ PS, /B, —p
1 again by the degenerate convergence criterion. ThlS is (2.10). Finally,
-DS /B, —p, 1 implies |X{|/B, —p 0 [as in the implication from (2.5) to
(2.3)] and hence XM /B, —p 0. Thus "g o/ X| >p . This shows the
equivalence of (2.3)-(2.5) with (2 9) and (2.10), and 1ndeed with (2.21). Simi-
larly, one can show that these are equivalent to (2.22).

Note that we have also shown that (2.5) or (2.9) for any r implies (2.5) for
r = 1, possibly with a different sequence B,, B!, say. However, as before,
S,/B. —p 1implies X{"/B! -, 0 and hence X{’/B! -, 0 for each j. Thus
¢-DS /BL -, 1 and "~ PS! -, 1, which shows that B, can be taken equal
to Bl for all n in (2.5) and (2.10).

The remaining equivalences in Theorem 2.1 can be proved either as condi-
tions equivalent to relative stability (in probability) of S, [see Maller (1978,
1979) for (2.6) and (2.7)] or as purely analytical equivalences among (2.4), (2.6),
(2.7) and (2.8). We sketch these proofs here since they may be of interest.

Let (2.4) hold. Then for fixed 0 < § < 1,

1/2
I xdF(x) {e[ xzdF(x)} -, £-0.
[—L_(5¢), L, (5¢)] [—L_(s¢), L, (5¢)]

Since

/ x?dF(x) 2 L2 (2) [ . dF(x)
[-L_(8¢), L . (8¢)] [L,(e), L, (86e)]

+ L2 dF(x
(e)'[[—L_(Ss),—L_(E)] ( )

> L% (e)(1 —8)e + L2(&)(1 — d)e,
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this means [for any permissible choice of L_(¢) or L, ()] that
dF(x L +L_ , 0+.
L1 oo o FE@/ L) + L]} >, e
Finally, we saw in (8.15) (with n~! replaced by ¢) that
p(8e) — u(e) = O[e'%0(8¢)]
as ¢ — 0, so that also
3.17 xdF(x L + L_ — oo, - 0+.
@I [ F /L (o) + L(e)]) e

Now, given a large x > 0, define ¢ = &(x) by ¢ = 3[P(X > x) + P(X < —x)].
If P(X>x)>P(X< —x),then P(X > x) > ¢ > P(X < —x) so we may take
L.(e)>x>L_(¢). If P(X< —x) > P(X >x), then P(X>x) <e <P(X<
—x)so L_(¢) >x > L,(¢). When L_(¢) > x > L_(e) we have

= dF(y)— lyl dF
M(S) ‘£O,L+(s)]y (y) ‘/[—L_(s),O)y (y)

L o peEo={[ - litar)
[0, x] (x, L ()] [—x,0] [—x,L_(¢))

= Ao,x]de(y) + '/[‘—x,O]de(y) + L+(5)[1 - F(x)] + xF(—L_(g)—)

<v(x)+L,(e)[1 — F(x) +¢] <v(x) + 3eL_(¢),
so that
n(e) 2v(x)
(3.18) L) L ()] S P >x) %

When L_(¢) > x > L,(¢) we have

,U'(E) B {‘/[‘0 x] - (L, (e) x]}de(y)

—{f + }lyldF(y)sv(x),
[—x,0] [-L_(e), —x)

so again (3.18) holds. This shows, via (3.17), that (2.4) implies (2.6).

Now (2.6) implies that v(x) > 0 for x sufficiently large, and also that v is
slowly varying as x — «. To see this, let x > 0 and A > 1. Then

[v(Ax) = ()| _ ey A[F () +F(=9)]|
v(x) v(x)

" AxP(IX] > x)

: < —"
o ov(x)

so v(Ax) ~ v(x) as x — o, that is, v is slowly varying. For (2.7) fix ¢ > 0 and




1826 H. KESTEN AND R. A. MALLER

choose x, so large that xP(|X| > x) < ev(x) for x > x,. Then

V(x) = —/[0 ]yzdP(IXI >y) < 2/[0 ]yP(lXI > y)dy

<xZ+ Ze/xv(y) dy < x% + 3exv(x)

Xo

by a property of slow variation [Bingham, Goldie and Teugels (1987), Proposi-
tion 1.5.8]. If V(x) - » as x — «, then (2.7) follows. If V(x) is bounded, then
lim, . v(x) exists. Since v(x) > 0 for large x, the limit must be positive. If it
is strictly positive, then (2.7) again holds. Finally, lim, . v(x) = 0 and the
boundedness of V(x) is excluded by (2.6). Indeed v(x) > 0, v(x) —» 0 and v
slowly varying imply »(x) > x~° eventually, for any fixed £ > 0 [Bingham,
Goldie and Teugels (1987), Proposition 1.3.6(v)], while mean zero and finite
variance for X imply

<f TEO (%)

|y|>x X X

()] =l— [, 24F)

Thus (2.6) always implies (2.7).
Conversely, assume (2.7). Then for any fixed 0 <& < 1and ex <y < x,

22dF(z
lv(x)— v(y)l = j;(msxzdF(z) Sfmsx—-y( )
< Vi::) =o(v(x)), asx — .

Thus v is again slowly varying. Also, for fixed n > 0,

V(2x v(2x v(x
P(x <Xl <2x) < (2)=0(( ))STI()’ eventually.
x x x
Consequently,
i © p(2kx 4nv(x
P(XI >x) < Y P(2kx < |X] < 2*"x) < (k )s (),
k=0 k=0 2'x x

as soon as v(2y) < 3v(y)/2 for y > x. Thus (2.7) implies (2.6).
Next, assume (2.6) or (2.7) (and hence both) hold. Then since v is slowly
varying, we obtain by taking limits from the left in (2.6) that also

G
xP(1X| > x) ’

X — o,

Multiplying this by (2.7) yields (2.8).
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To complete the chain of implications in Theorem 2.1, we show that (2.8)
implies (2.5). To prove this, we wish to choose B, such that

V(B,)
e ﬁ 0,
[nv3(B,)]

n — o,

(3.19) B, 10, nP(X| > B,) » 0 and

If we can find such B,, then
P{Sn =y XI(X,] < Bn)} <nP(X|>B,)—0, n-—-owo,
i=1
while, by Chebyshev’s inequality,
-1 X, 1(X;| <B,)
—
nv(B,) g
Thus (3.19) will imply (2.5) for » = 1 and hence (2.3) and (2.5) for all r. It
remains to construct B, satisfying (3.19). Assume (2.8) holds and define
x, = inf{x: nP(1X] > x) < 1}

and

V(x)P(IX| > x)
kZ = sup 5 .
x>x, vi(x)

Then x, T and &, | 0. Finally, let

B, = inf{x: nP(IX| > x) < k,}.
Then

B,1~ and nP(X>B,)<k,—0, n-—owo

Also nP(|X| > B,) > k, and B, > x,, so that, by the definition of %,

-V(B,)P(X|=B,)
A(Byy <P
and
V(B,) &
[nv2(B,)] =%,

=k,—0, asn — o,
as required.

REMARKS 8. Note that we have also proved that (3.7) and (3.17) are
equivalent to the conditions of Theorem 2.1.

REMARK 9. When (2.4) holds, it is not difficult to show that u(e) ~ v(L(¢)),
as ¢ » 0, where L(g) =[L_(g) + L,(e)]/2.
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4. Proof of Theorem 2.2. We start with assuming the analytic condition
(2.13). This implies

(4.1) Jﬁ)—— — 0 asx > ®
' xP{IX| > x}) ’
To see this, let
H r
- %y

where H(x) = P(IX| > x). Then (2.13) says that [ f(x)dx/x converges. This
implies that
(4.2) inf  f(x) -0, k> w,

ef<x<ettl
Indeed if (4.2) failed there would be a § > 0 and an infinite set K such that
f(x) > 8 for all x € (e*, e*"1] and % € K, but then

eh+1 S5dx

> Z[ — 28 ) 1=0,

X9 x k€K e® x keK

giving a contradiction. Thus (4.2) holds and this implies that for each & we can
choose x, € (e*,e**1] such that f(x,) » 0, as k — . Equivalently, (4.1)
holds along the sequence x,. To prove (4.1) itself, take a large x, then choose
k = k(x) so that x, < x <x,,,. Then

X, <x <x,,, <ef"? <elx,.
Let T > 0 be fixed and assume without loss of generality that % is so large
that A(x,) > Tx,H(x,). Then
A(x) = A(x) + [ [1 = F(y) = F(=y)] dy
Xk

> Tx,H(x;) = (2 — ;) H(xy)
> (T — e*)x, H(x,)
> (T — e*)e %xH(x).

Thus (4.1) holds.
We next show that x/A(x) is eventually strictly increasing. Note that the

differential
d[ i ]= L g X [1- F(x) - F(—x)] dx
A(x) | A(x) A*(x)
1+o(1)
A(x)

as x — o, by (4.1). This is positive for large x since A(x) is positive for such x.
This strict monotonicity of A(x)/x means that it has no “flat spots”’; thus if

(4.3)
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we define
(4.4) B(x) = 1nf{ X(_) > x}

then, for large x > 0, B(x) is positive, continuous and strictly increasing and

satisfies
4.5 _B(i _
(45) A(B(x) ~

Now (2.13) and (4.3) imply

[(tewa> )| 5] <

This means the integral J, of Mori (1977) is finite, with Mori’s B(x) replaced
by x/A(x). The inverse functlon of this is just our B(-). The conclusion of
Theorem 1 of Mori (1977) then gives

Y8, — nA(B(n))

4. .S.
(4.6) B(n) -0 as,
provided we check Mori’s hypotheses:

B(x) . .
vy is increasing for some 0 < o < 2
and
B(2x)
is bounded.
B(x)

These follow from Bingham, Goldie and Teugels [(1987), Theorem 1.5.13] since
A(x) and hence also B(x)/x is slowly varying, as follows from (4.1). Thus
indeed (4.6) holds. Then since by (4.5) we have nA(B(n)) = B(n), (4.6) implies

(r—l)S'
B(n)
This is (2.14), and (2.15) follows from (2.14).
Now assume (2.15). To prove (2.11), we need the following lemma, which

provides a simpler proof of results of Kesten [(1972), equation (4.15)] and
Maller [(1984), Theorem 3]. .

-1 a.s.

LemMA 4.1. Let F(0) < 1. If C, and B,, are nonstochastic sequences with
‘B, >0, B,toand r =1,2,..., then either of

-G -1
. I(r )Sn - Cnl . |(" )Sn - Cnl
limsup ————— <® qa.s. or limsuyp ———— <» gq.s.
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implies (S,  — nv(B,))/B, —p 0 and hence, forall j > 0,

WS, — nv(B,) ¥8, — nv(B,)
—-p 0 and o
B P B

n n

» 0.

Proor. We need the following relations:

(4.7) |"=D§, —C7BS 1= 1X,| A IX)
and
(48) |X’(1r)| — rlgf]fn |(r—1)S'vj _(r_l)S~j—1|'

The first of these is due to Mori [(1976), page 192, equation (4)], and the
second follows easily from the first. By the Hewitt—Savage 0-1 law,
limsup |"~PS, — C,|/B, is a constant a.s., which by the first version of the
condition of the lemma is finite, so, for some ¢ > 0,

P{ max I(r_l)S"j - CjI > cBn} - 0, n — o,

r<j<n
Thus (taking C, = 0) we have from (4.7) that
(49) 1C,—C,_l<|""PS, —C,I+1""PS,_,—C,_.l + IX,I.
Since X, /B, —p 0 this means that
limsup IC, — C,_,|/B, < 2c,

n—o
which further implies that

limsup max |C;, - C;_,|/B, < 2c.
n—ow 1l<j<n

From (4.8) we now obtain
P{|X,(lr)| > (40 + l)Bn} - 0, n — o,

and since the number of X; with |X;| > (4c + 1)B,, has a binomial distribu-
tion with n trials and success probability P(|X| > (4c + 1)B,), we see that
also

P{X® > (4c + 1)B,} -0, n—o.
Thus, for r = 2,3,...,
PIXP| + -+ +1XE Y > (4c + 1)(r = 1)B,} =0, n->o

Then since

S, —C,=""PS, -C,+ XD+ +XD,
we obtain '
(4.10) P{S, - C,| > (4c + 1)rB,} > 0.

Now argue as follows. Given any sequence n' — « of integers, use Helly’s
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theorem to find a subsequence so that (S, — C,)/B,, —p Z', where Z' is a
random variable which is proper by (4.10) and infinitely divisible. We must
have
P(1Z'| > (4c + 1)r) =0,

and a result of Feller [(1971), page 177] tells us that Z’ is constant a.s. So we
have shown (S, — C,)/B, —p Z'. Symmetrizing in the usual way gives
S5/B,, »p 0, which holds for all subsequences, so S5/B, —p 0 and (S, —
nv(B,))/B, —p 0, where the choice of nv(B,) as centering constants is
justified by Gnedenko and Kolmogorov [(1968), page 124]. The same reference
shows that nP(|X| > ¢B,) — 0 for every & > 0, whence |S, —’S,|/B, —p 0.
This proves the lemma when trimming by absolute values.

For trimming by large values, the proof is similar if (4.7) and (4.8) are
replaced by

(r—l)sn _(r—l)sn_1 _ Xn A M’(lr)
and
M = max{(’_l)Sj -YS. ir<j< n}
for r=1,2,... and n > r. We omit the details of this. O
Returning to the main proof, if (2.15) holds, then, by Lemma 4.1, (" "S, —
C,)/B, —p 0, where C, = nv(B,). This means C, < B, otherwise we could

take a subsequence through which “~S, /B, —» 0 or » a.s., contradicting
(2.15). By (4.8) and (2.15) we have

limsup |X{”|/B, = limsup max I(r_l)S'j —r= 1).S~J~_1|/Bn <o a.s.,

n—o n—ooo r<j<n
so Lemma 3 of Mori (1976) shows that
(4.11) Y n""Y1 - F(¢B,) + F(—¢B,)] <
n>1

holds for some ¢ > 0. Also, by Lemma 4.1,
(Sn/Cn) -1= [(Sn - Cn)/Bn](Bn/Cn) —p 0’

showing that S, is relatively stable with norming sequence C,. The sequence
C, is regularly varying of index 1 [see (1.9) and Bingham, Goldie and Teugels
(1987), Theorem 1.5.13], and, since B, < C,, B, < B,, /2 for some A > 1 and
all large n. This means that (4.11) holds for every ¢ > 0, by, for example, a
proof like that of Lemma 1 of Maller (1978). Lemma 3 of Mori (1976) then
gives X{”/B, — 0 a.s., n — «, which together with (2.15) implies (2.11).

Trivially (2.11) implies (2.12), and we now show that (2.12) implies (2.13).
Define L, =1 <L, < ‘- as the successive indices at which |X,| takes on a
maximum, that is,

IX,| > max{|X;|: i <n} ifandonlyif n is one of the L.



1832 H. KESTEN AND R. A. MALLER

Define for T > 0 and & > 0 the following events:

(412) T(n,r,T,e) = {0 <8, < TIX?| and X7 V| < 21X}

and

(4.13) A(j,r,T,e) = {j is some L,, S, < TIX{"| and |X{"" V| < élX}’)l}.

We first show that a necessary condition for (2.12) is that
(4.14) Y P{I'(L,,r,T,&)} <o
1

for all T > 0, ¢ > 0, for which

liminf 8§, /IX7| > T + re as.
n—o
Such T and ¢ exist, since by the Hewitt-Savage zero-one law,
liminf, .S, /IX{"| is a constant a.s.
Assume that the sum in (4.14) diverges for some such T and e. Let
m >n +r and assume that I'(L,,r,T,¢) and I'(L,,r,T, &) occur. Then

the r + 1 largest values among |X; ,.l,...,[X, | are just X1,
.., |IX{ V. Hence
L,
Y. X, — r largest (in absolute value) among X; .i,..., X
L,+1
=(r)SLm - SLn

<TIXP) = 8,

< TIX{| =08, + Xl
< TIX{| +rlX§ 0|

< (T + re)lX{).

Hence on I'(L,,r,T,e) N I'(L,,,r,T,¢), also A(L,, — L,),r,(T + re), ¢) oc-
curs among X; .y,..., X, ,and

{T(L,,7,T,2) N [A(L 7, (T +re), )
occurs among X; ., Xy ,3,... at most N times]}
c{r(L,,r,T,e) n[T(L,,r,T,¢)

occurs for at most (N + r) values of m > n]}.
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Consequently,

Y, P{L(L,,r,T,e)}P{A(j,r,(T + re), ) occurs for at most N values of j}
n=1

< Y P{1(L,,r,T,¢) N [[(L,,,r,T,¢)
n=1

occurs for at most (N + r) values of m > n]}

<N+r+1.

Since we assumed that

iP{F(Ln, r,T,e)} =,
1

this shows that
P{A(j,r,(T + re), €) occurs for at most N values of j} = 0.

This proves that w.p.1 A(j, r,(T + re), ¢) occurs for infinitely many j. How-
ever, A(j, r,T + re, ) implies that (r)SJ- < (T + re)IX("|. Thus, for our choice
of T and &, (2.12) shows that A(j,r,(T + re), ¢) occurs a.s. only for finitely
many j, and we have arrived at a contradiction. In other words, (2.11) implies
(4.14), as claimed.

Now,

0

Y. P{I'(L,,r,T,¢)}
1 :

= E{number of n for which 0 < S, < TIX{"| and |X{"*"| < s|Xg3|}
= E{number of j for which j equals some L,, 0 s(”Sﬂj < TIX{"|

and [X{"+V] < el X"}

HMS

P{A(j,r,T,a) n (78, = 0)}.

. Thus we also have

(4.15) iP{A(n, r,T,e) N (78,2 0)} <
1



1834 H. KESTEN AND R. A. MALLER
for the same T and ¢ as in (4.14). Next we observe that, for r > 2,
P{A(n,r,T,€) n (78, = 0))

= P{0 <S, < TIX{"|, IXP| = IX,,|, IX¢ D] < el Xl

= PIXl 2 27 HX*V], 0 <8, < TIXPL, 1IXD) = 1X,[)

v

1 -
7E{#j: IX;| = 1X) > e 71XV, 0 <08, < TIXOL, IXO] = 1X,])

| < I1X,I,

lr—2

1n-1
— L YP0<sT L X <IXI<IX|< - <IX,
i

Xl < elX)l for i & (i1, 5,5, /,n)}.

Here the notation X* denotes summation over subsets of (r — 2) distinct
integers in [1,n — 1]\ {/}, and the notation ©* denotes summation over
l1<i<n-1,i¢{iy,...,i,_y j} It follows that, for some constant C,,

P{A(n,r,T,e) n (78, = 0)}
n—1

r

>

(rif :g)Lw[P{IXI > x)]" !

XP{ max |X;| <exand0<S,_, < Tx} dh(x)

i<n-r

> Cln"lfow[P{IXI >x)]7!

XP{ max [X;| <exand0<S,_, < Tx} dh(x),
t<n—r
where h(x) = P{|X| < x}.- The last estimate remains valid for r = 1.
At this stage we use the fact that
"G

n

>0 a.s.

lim inf
now | X

implies, for some T > 0,
P(7S, > TIX{l} - 1.
Then by Theorem 2.1 (see also Lemma 3.2), (4.1) must hold and this implies

S, )
_)
B(n) F

(4.16)
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with B(n) satisfying (4.5). That this choice of norming constants is permitted
was proven by Rogozin (1976), or it can be obtained by an easy Chebyshev
estimate, truncating X; at B(n) and using
B(n)
A(B(n))
We can choose an x, large enough for A(x) > 0 when x > x,, and, as we saw

in the proof of Theorem 2.1, (4.16) also implies X{"/B(n) —p, 0. These,
together with (4.16), show that if x, is large enough, x > x, and

nP{|X| > B(n)} = P{IX] > B(n)} - 0.

Tx
(4.17) B(n) < 5

then
P{X,| <ex fori <nand0 < S, < Tx}

> P{0<S, < 2B(n)) - P{lx,gw > SB;n) }

I\
[\

In particular, this holds for all
Tx
< —/——-.
"= 1A(x/4)
This can be seen from the definition of B(n), since for such =,
Tx Tx
~ > 2
2A(Tx/2)  2A(x/4)
because A is slowly varying under (4.1). It follows that, for some constants
Ci = Ci(E) > 0,

(4.18)

n

iP{A(n, r,T,e) N (78, > 0)}
1

>Cf  [P(XI>x)]"" )y n"~!dh(x)
[xg,) n<Tx/(4A(x/4))

> Cgflx [P > x}]’_l[A—(%]rdh(x).

In view of (4.15) this implies

(4.19) Ji yw)[P{|X|z‘x}]”‘1[%x)] dh(x) < co.

Xo

To connect this with (2.13), we require a formula for the differential dA"(x),
which can be obtained as follows. If r=1,2,..., let m,=min,_,_, Y,



1836 H. KESTEN AND R. A. MALLER

where Y,,Y,,...,Y, are independent and identically distributed random vari-
ables with distribution G. Interpret min, ;_;_,Y; and min, _;_,Y; as ». We
can calculate, for any x,

P{m,>x) = ¥ P{m, > x, exactly j of Y, = m,}
j=1
" (r
= NP{ix <Y, = =Y. < in Y
Ii)ple<r <, min_ ¥
(4.20) . |
= st:'l (j)f(x,w)P{x <Y, = - =Y, <y} dP{lSI?SiI:_j Y, Sy}
T(r .
= ; AG(z J_ldGz}dP m,_; <y},
‘/(‘x,oo)jgl(-]){/(‘xyy)[ ( )] ( ) { J y}
where

AG(z2) =G(2)— G(z—) =P{Y =2}.
Define also G(x) = 1 — G(x), so that
Plm,_;>z} = [C_}(z)]r_j.

Then, using Fubini’s theorem to interchange integrations, we have from (4.20)
that

P(m,>x) = [ T (j)la6@1 (@) d6(2)
(4.21) et
=j(x &) dG(2), say.

Now, if AG(2) > 0,
ol 7 )186V ()] - [G)]

g.(2) = AG(2)
_[aG(2) +G(2)] - [G(»)]
B AG(z)
G0 -]
B AG(z2) ’

Thus
r—1-—j

-1 .
&(2) = L [6E 6],

and, from (4.21), the last expression is still correct if AG(z) = 0, since then
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g,(2) = r[G(2)]""*. Thus we have shown that

(4.22)  P(m,>x} = [G()] = [ ¥ 66 -))'[6(2)]

)J—

r—1—j

dG(z).

In other words, a version of the Radon-Nikodym derivative of [G(x)]" is

d[G(x)]" d[G(x)]" 2l
4.23 - = — = G(z — G
(4.23) GG~ dgm - 5|8 TEE)]
[See also Goldie and Maller (1992) for a related discussion.]
Returning now to the proof of (2.13), we see that (4.23) with Y; replaced by

|X;| implies

rlj

r—1

—d[P{X] > x}]" = ¥ PH{IX| > x} P 19{X] > x}(—dP{IX] > x})

(4.24) < rP"YIX| > x}(—dP{IX] > x})

=rP " Y|X| = x} dh(x).
Then (4.19), together with (4.24), shows that

- i -rd[P|X|> " < oo
[xo w)[A(x) J (11 > ) ’

after integrating by parts this gives
P )
| A(%) | [ A(x) |
[Note that x/A(x) is continuous so that
x 1 e 177l 1 g

Y55) ~am) A7)

does not need the elaborate justification of (4.24).] Finally, (4.3) shows that

(4.25) implies (2.13).
Finally, we show that (2.13) holds with » = 1 if and only if

0 <EX <E|X| < o».
If (2.13) holds, then since, for x > x;,

0 <A(x) = /0"[1 ~F(y)- F(-y)] dy < [:[1 ~ F(y)— F(—y —)] dy

(4.25) /[ )[P{IXI > x}]

Xp,®

< [1L=F(») + F(=y =)l dy = ["H(y) dy
{where H(x) = P{|X] > x}], we have

f _Hy) dr <o
o J§H(y) dy ’
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and, by the Abel-Dini theorem, this is only possible if
EIX| = [ H(y)dy < .
0

Now EX =lim,_, A(x) > 0, but EX = 0 is impossible. This would imply
A(x) » 0 as x — », and thus the integral [J[1 — F(y)— F(—y)ldy would
converge (absolutely, since E|X| < ) and equal 0. However, then

0<A(x) =~ [[1 - F(»)~ F(~y)] dy < [ H(y) dy

would give

rH(x) r H(x)
L aw “= L Gy ™

]S
S\ CH() dy

This contradicts (2.13) when » = 1. Thus 0 < EX < E|X| < © as claimed.
Conversely, 0 < EX < E|X| < « implies A(x) - EX > 0, so

o H(x)
e

}—)oo, T — .,

dx < wa(y) dy < E|X| <
X0

and (2.13) holds. This completes the proof of Theorem 2.2. O

5. Proof of Theorem 2.3. When X, > 0 a.s., Theorem 2.3 follows from
Theorem 2.2, and for the general case we show that the contribution of the
negative tail is negligible with respect to that of the positive, as outlined in
Section 2, when (2.18b) holds. To do this, recall that X;= max(X;,0) and
X7 =X/—-X,, and let (X" < -+ <(X")P denote Xi,..., X, arranged
in increasing order, with a convention for breaking ties. Since F(0) < 1,
P(M{” <0i.0.)=0,s0

(5.1) P(MY # (X*){i.0.) =0 for each fixed ;.
Let (2.16) hold. This implies (2.17), which implies
T X - Tp X - (X)) - (X))

1=

52 lim inf >0 a.s.
(5.2)

n-—-o (X+ (I‘)
A fortiori,
X (X)W - = (X))

(5.3) li,{ri.igf x o) >0 as.,
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from which (2.18a) follows by applying Theorem 2.2 to X;". Also, we see from
(5.2) that

(5.4) lim sup <1 as.

n + =
n-—o i=1Xi

From this (2.18b) follows by Erickson [(1973), Lemma 3] or Pruitt [(1981),
Lemma 8.1].
To prove that (2.18) implies (2.19), the following lemma is useful.

LeEmMA 5.1. Suppose E|X| = . Forr =1,2,..., (2.18b) is equivalent to
i Xy

(5.5) — — — 0 a.s.
i=1Xi+_M'(ll) _ .. _Mr(L 1

Proor. For r = 1, (5.5) is to be interpreted as
———;LIX; -0 as;
-1 X7 o

this case was proved in Pruitt [(1981), Lemma 8.1], so we assume it here.
Thus, defining

X 1
TG -FO)ldy  JI1 - F(ay)ldy’

the case r =1 tells us that E(B(X7)) < . Also (5.5) for some r implies

(56.5) for r =1 and hence (2.18b). Next assume (2.18b) or, equivalently,

E(B(X7)) < «. It is easy to check that 8 is subadditive, so for any r > 1,
E(B(X{+ - +X])) <rE(B(X7)) <.

Now take r = 2,3,... and fix j € [0,r — 1]. Define independent and identi-
cally distributed random variables Y,, k£ > 1, by

B(x)

Yk_= X};r-ﬁ-j + X}:r'-i—j+1 + o +X(_k+1)r+j—1’

+ e Y- = X- - .. = X— -
Y= {Xkr+j’ if Xkr+j_Xkr+j+1_ _X(k+1)r+j—1_ 0,
=

Then for x > 0,

0, otherwise.

r—1 r

P(Y,>x) = P{ Y Xirsjim> x} = P{ Y X7 > x}
m=0 i

and

i

P(Y,>x) =P(Y;>x)=P(X},,;>%, X1 ;4m=0,0<m <r—1)
= [1 - F(x)] P""}(X > 0).
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By the Pruitt-Erickson result, £7_,Y, /X7?_,Y;'— 0 a.s. provided

oo X _
I {mws sy Jaror> o <o

and this is true if

[:{ IV :“(y)] dy}‘dp{iéIXi_ }

j B(x) dP{

“#e( £ )

is finite. However, we showed at the beginning of the proof that this is so. So
indeed we have X};_ Y, /X}_ Y, — 0 as. and this implies, for each 0 <j <
r—1,

—_— ||Mx
v

n
(5.6) Y X = o{ b X;',Jrj} a.s.

i=1 ir+j<n
Now M, ..., M~ can occur at times lying in at most r — 1 residue
classes, mod r. Thus one sequence X;,, »1=1,2,..., does not contain any of

M®, ..., MY, so (5.5) follows from (5.6). O

Let (2.18) hold and suppose first that E|X| = . (2.18a) implies, by (5.1) and
Theorem 2.2 applied to X, that

T Xf— MO — o D
B

for some increasing B,. (2.18b) implies that ¥?_,X; is, by Lemma 5.1, of
smaller order than the numerator here, so £7_,X; /B, — 0 a.s. Consequently,
(2.19) holds and this of course implies (2.20).

The proof of (2.16) from (2.20) is the same as that of (2.11) from (2.15).

We next consider the case when E|X| < ». We now replace (2.18a) and
(2.18b) by E(X™) < E(X™) < . If the revised (2.18a) and (2.18b) hold, then
clearly (2.16)-(2.20) hold for any r > 1. It remains to show that any of (2.16),
(2.17), (2.19) or (2.20) for some r imply E(X~) < E(X*), knowing that
E|X] < . Now (2.16) obviously implies (2.17), which implies (5.4). Thus
E(X™) < E(X*) < ». However, if E(X~) = E(X"), then E(X) = 0 and S, is
recurrent, giving P(S, < 0 i.0.) = 1. Since S, =S, - M — M(’) <
S, eventually, a.s., we also have P("S,/M¢ ) <0 i0)=1, contradlctlng
(2.17). Thus (2.16) or (2.17) imply E(X~) < E(X*) < . Next, (2.19) lmphes
(2.20), and when E|X| < «, (2.20) implies E(X) > 0, again because E(X) =
would make S, recurrent. .

" Next we show that any one of (2.16)-(2.20) for r = 1 implies E|X| < .
Again (2.16) implies (2.17), which implies (5.3) with r = 1. This implies
EX™ < =, by Kesten (1971). Alternatively, by Theorem 2.2 applied to X;, (5.3)
implies (2 18a) for » = 1. But (2.18a) with r = 1 is equivalent to EX +< o by

-1 a.s.

n
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the Abel-Dini theorem [or see Erickson (1973)]. Also, (2.17) implies (5.4) and
hence EX < EX*< «. As just stated, (2.18a) for r = 1 implies EX* < « and
hence lim, ., A,(x) < ». Then (2.18b) shows again that EX < . Finally,
(2.19) implies (2.20), clearly. If (2.20) holds with » = 1, then S, /B, < 1 as.
and by Chow and Robbins (1961), Kesten (1971), or Maller (1978), we have
E|X| < ». This completes the proof of Theorem 2.3. O
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