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SAMPLE PATH PROPERTIES OF THE LOCAL TIMES
OF STRONGLY SYMMETRIC MARKOV PROCESSES
VIA GAUSSIAN PROCESSES!

By MicHAEL B. MARCUS AND JAY ROSEN
City College of CUNY and College of Staten Island, CUNY

Necessary and sufficient conditions are obtained for the almost sure
joint continuity of the local time of a strongly symmetric standard Markov
process X. Necessary and sufficient conditions are also obtained for the
almost sure global boundedness and unboundedness of the local time and
for the almost sure continuity, boundedness and unboundedness of the
local time in the neighborhood of a point in the state space. The conditions
are given in terms of the 1-potential density of X. The proofs rely on an
isomorphism theorem of Dynkin which relates the local times of Markov
processes related to X to a mean zero Gaussian process with covariance
equal to the 1-potential density of X. By showing the equivalence of sample
path properties of Gaussian processes with the related local times, known
necessary and sufficient conditions for various sample path properties of
Gaussian processes are carried over to the local times. The results are used
to obtain examples of local times with interesting sample path behavior.

1. Introduction. Let S be a locally compact metric space with a count-
able base and let X = (Q, %, X,, P*), t € R™, be a strongly symmetric stan-
dard Markov process with state space S. In saying that X is symmetric, we
mean that there is a o-finite measure m(-) on S such that the Markov
transition function P, satisfies

(P,f,g)=(f,Pg) VteR"

for all measurable functions f and g in L%(S), where (f, g) = [fgdm is the
usual inner product. In saying that X is strongly symmetric, we mean that in
addition to X being symmetric the measure U* = U%(x, - ) given by

U«(x, )_j e *P,(x,)dt

is absolutely continuous with respect to m for some a > 0 (and hence for all
a > 0). In this case, there is a canonical symmetric a-excessive density u® =
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u®(x,y) for U*. Moreover a strongly symmetric standard Markov process X
has a symmetric transition density function p,(x,y) and

u*(x,y) = /0 e *p,(x,y)dt.

(A strongly symmetric Borel right process is standard.)

In this paper we study the sample path properties of the local time L = {L?,
(¢,y) € R*Xx S} of X. It is known that a necessary and sufficient condition for
the existence of a local time for a strongly symmetric standard Markov process
is that

u*(x,y) <o Vx,y€S.

This condition is assumed throughout this paper.
The local time is normalized by setting

(1.1) E"(/me‘“t dL;V) = u(x,y).

0
[If (1.1) holds for any a > 0, it holds for all « > .0.] The function u*(x,y) is
positive definite on S X S for each a > 0. Therefore, for each a > 0, we can
define a mean zero Gaussian process {G,(y), y € S} with covariance

E(G,(x)G(y)) =u*(x,y) Vx,y€S.

The processes X and {G (y), y € S}, which we take to be independent, are
related through the a-potential density u“(x,y). We will refer to them as
associated processes. To simplify the statement of our results, we will always
consider X and the associated Gaussian process corresponding to a = 1, that
is, {G(y), ¥y € S}. In what follows we denote this process by G = {G(y),
y e S}

In this paper we relate the sample path properties of the local time L of X
to those of G. Our results make more precise some of the relationships
between Gaussian processes and the local times of symmetric Markov pro-
cesses put in evidence by an isomorphism theorem of Dynkin, which is at the
foundation of all of our results. But, perhaps more significantly, since a great
deal is known about Gaussian processes, we obtain concrete necessary and
sufficient conditions for many important properties of the local times.

In what follows, whenever we say that the local time L} of a Markov
process X is continuous almost surely, we mean that we can choose the local
time L? in such a way that it is continuous almost surely. Also we employ the
usual convention that the statement that a property of a Markov process holds
almost surely means that it holds almost surely with respect to P* for all
x€S.

We now present many results which show the equivalence of sample path
properties of the local time L of X with those of the Gaussian process G
associated with X.

THEOREM 1. Let X be a strongly symmetric standard Markov process with
finite 1-potential density u' and let G ={G(y), y € S} be the associated
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Gaussian process [i.e., G is a mean zero Gaussian process with covariance
EG(x)G(y) = ul(x, y)l. Let {L?, (¢,y) € R*X S} be the local time of X. Then
{L2, (¢t,y) € R*X S} is continuous almost surely if and only if {G(y), y € S} is
continuous almost surely.

Talagrand (1987) gives concrete necessary and sufficient conditions for the
continuity almost surely of {G(y), y € S} in terms of the metric

d(x,y) = (E(G(x) - G(»))?)"

= (u'(x,x) +u'(y,y) — 2u1(x,y))1/2.

Thus, we now have these conditions for the continuity almost surely of the
local times of the associated Markov process. These conditions are given in
Theorem 8.1.

(1.2)

THEOREM 2. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and let G = {G(y), y € S} be the associated
Gaussian process. Let L = {L}, (¢,y) € R*X S} be the local time of X and let
K c S be a compact set. Then {L}, (t,y) € R*X K} is continuous almost surely
if and only if {G(y), y € K} is continuous almost surely.

Clearly, Theorem 1 implies that if the Gaussian process is continuous on S,
then L, the local time of the associated Markov process, has the property that
{L?, (¢,y) € R*X K} is continuous almost surely for all compact subsets K of
S. However, we show that the relationship between G and L is a local one.
Thus, for example, all we need to know is that G(y) is continuous on K to
determine that {L}, (¢,y) € R*X K} is continuous and conversely. All the
results that follow will emphasize the local nature of the relationship between
the local time of a Markov process and the Gaussian process associated with
the Markov process.

To our knowledge there'is no general theory which allows us to assume that
the local time of a Markov process has a separable version. In our proofs of the
continuity of the local time we are able to construct such a version. However
we are not able to do this, for example, for local times that are bounded but
not necessarily continuous. For this reason, in what follows, we will often
consider the local time process {L?, (¢,y) € R*X D}, where D is some count-
able subset of S. Since D is arbitrary, the results are still quite strong.

THEOREM 3. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and let G = {G(y), y € S} be the associated
Gaussian process. Let {L?, (t,y) € R*X S} be the local time of X and let D c S
be countable. Then for any compact subset K of S, {L?,(¢t,y) € [0,T]1xX D n K}
is bounded for all T < « almost surely if and only if {G(y), y € D N K} is
bounded almost surely.



1606 M. B. MARCUS AND J. ROSEN

Let 9 be a topological space. We say that a function f: 9 — R is
unbounded at y, if

(1.3) lim suplf(y)| = o
Y=Yo

and that f has a bounded discontinuity at y, if

(1.4) 0 < limsuplf(y) — f(yo)l < .
Y=
In the next theorem we consider the behavior of the local time at a fixed
point of S.

THEOREM 4. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and let G = {G(y), y € S} be the associated
Gaussian process. Let {L?, (¢,y) € R*X S} be the local time of X, let D C S be
countable and y, € D. Consider the process L} = {L}, (¢,y) € R*X D}. Then,
with the definitions of bounded and unbounded discontinuity given in (1.3)
and (1.4), we have:

L} is continuous at y, for each t > 0, P} almost surely, if

(4.1) and only if G(y) is continuous at y, almost surely;

L} has a bounded discontinuity at y, for each ¢t > 0, PY°
(4.2)  almost surely, if and only if G(y) has a bounded discontinu-
ity at y, almost surely;

LY} is unbounded at y, for each t > 0, P”° almost surely, if

(4.3) and only if G(y) is unbounded at y, almost surely;

and for each y, € D, precisely one of these three cases holds. Furthermore this
theorem remains valid with the term “each t” replaced by “some t’ in parts
(4.1)-(4.3).

Necessary and sufficient conditions for continuity at a point and for bound-
edness of Gaussian processes are also given in Talagrand (1987) [or can be
derived from the results of Talagrand (1987)]. These are given in Section 8.

It is well known that continuity, boundedness and unboundedness, both
globally and locally, are probability 0 or 1 properties for Gaussian processes.
Thus, by the above results, they are probability 0 or 1 properties for the local
times of the associated Markov processes. However, a certain degree of care is
necessary in expressing this phenomenon. For example, if we know that a
Gaussian process is unbounded almost surely on some compact set K C S,
then we know that there exists a point y, € K such that the process is
unbounded almost surely at y,. Roughly speaking, this implies that the local
time of the associated Markov process will also be unbounded at Yo, but only if
the Markov process hits ¥o- Thus we can say that for L} as given in Theorem
4, the events L} is continuous at y, for each ¢ > 0 L? has a bounded
discontinuity at y, for each ¢ > 0 and L} is unbounded at y, for each ¢ > 0
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each have P?° probability 0 or 1. Furthermore, this statement is also true with
the term “each ¢ replaced by ‘“some ¢.”

To clarify some of the implications of the above results, we give the
following three theorems which are immediate consequences of the above
theorems.

THEOREM 5. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and local time {L}, (¢,y) € R*X S}. Let
K c S be a compact set. Then either (L, (¢,y) € R*X K} is continuous almost
surely or else there exists an x, € K such that for any countable dense set
D c K, with x, € D, the event ‘“{L}, (¢,y) € R* X D} is continuous” has P*
measure zero.

THEOREM 6. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and local time {L}, (t,y) € R*X S}. Let
D c S be countable and let K C S be a compact set. Then either {L}, (t,y) €
[0, T] X D N K} is bounded for each T < « almost surely or else there exists an
xo € D N K such that the event “{L}, (t,y) € [0,T] X D N K} is bounded for
some T < ©” has P*° measure zero.

THEOREM 7. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and local time {L}, (t,y) € R*"X S}. Let
D c S be countable and let K C S be a compact set. Then:

if {L},y € K} is continuous for some t > 0 almost surely,
then (L}, (¢,y) € R*X K} is continuous almost surely;

if {L?,y € D N K} is bounded for some t > 0 almost surely,
(7.2)  then{L},(t,y) €[0,T] X D N K} is bounded for each T <
almost surely.

(7.1)

The next theorem shows that continuity of the local time at each point in
the state space almost surely implies that the local time is jointly continuous.
(Many Markov processes, such as most Lévy processes, are continuous at each
point of their parameter space almost surely, but are not continuous on any
compact subset of their parameter space.)

THEOREM 8. Let X be a strongly symmetric standard Markov process with
continuous 1-potential density u' and local time {L}, (t,y) € R*X S}. Let
K c S be compact and consider the local time process L} ={L?, (t,y) €
R*X K}. Then LY is continuous at y, for each t> 0 almost surely for all
yo € K if and only if {L}, (t,y) € R*X K} is continuous almost surely. Fur-
thermore, this theorem remains valid with the term ‘“‘each t” replaced by
“some t.”

Uniform and local moduli of continuity for Gaussian processes can be used
to obtain similar properties for the local times of the associated Markov
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processes. We will state some of our results about this in Theorems 9-12,
although we will defer their proofs until a later paper [Marcus and Rosen
(1991)]. In these results we will assume that S is a locally compact metric
space with respect to the metric d given in (1.2). [The fact that d is a metric
and not a pseudometric is due to properties of u'(x,y) as we show in Lemma
3.6.] This, of course, is a natural choice, although it is not necessary in
Theorems 1-8. Let K ¢ S be compact. Under very general conditions, when-
ever a Gaussian process {G(y), y € K} has continuous sample paths it also has
both an exact uniform and an exact local modulus of continuity. To be more
precise, we call w(8) an exact uniform modulus of continuity for {G(y), y € K}
if

IG(x) — G(y)
(1.5) lim sup __(_)—(y)_=1
-0 g(x,y)<8 w(d(x,y))
x,ye€K

We call p(8) an exact local modulus of continuity for {G(y), y € S} at some
fixed y, € S if

G -G
(1.6) lim sup G ~ Gloll _ 1
50 4y yo<s  P(A(Y,90))
y€S

We use the expressions uniform and local moduli of continuity for functions
(8) and p(8) for which the equality signs in (1.5) and (1.6) are replaced by
“less than or equal”’ signs. We will always assume, in our discussions of
moduli of continuity, that {G(y), y € K} is continuous.

Our methods for studying moduli of continuity of local times enable us to
only consider the Markov processes up to, but not including, their lifetime. We
shall denote the lifetime of the strongly symmetric standard Markov process X

by ¢£.

THEOREM 9. Let X be a strongly symmetric standard Markov process and
let G ={G(y), y €S} be the associated Gaussian process. Let {L}, (¢,y) €
R*x S} be the local time of X. Then if p(8) is an exact local modulus of
continuity for G at y, € S,

. 1m sup —————
30 g(y, y)<s P(d(yayo))
y€S

= 1/§(L§’°)1/2 for almost all t € [0,{) a.s.

We note that if p(8) is simply a local modulus of continuity for {G(y),

y € S}, then the expression in (1.7) holds with the equality sign replaced by a
‘““less than or equal” sign.

" THEOREM 10. Let X be a strongly symmetric standard Markov process and

let G = {G(y), y € S} be the associated Gaussian process. Let {L}, (t,y) €

R*X S} be the local time of X and let K C S be compact. Then if »(8) is a
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uniform modulus of continuity for {G(y), y € K},

. ’Lf B Lg’l 1/2
im sup ———— < sup
1 2 Ly
(1.8) -0 d(x,y)<é w(d(x,y)) yeK
x,y€K

for almost all t € [0,{) a.s.

The next theorem shows that if »(8) is an exact uniform modulus of
continuity for G, then it is “best possible’’ in (1.8).

THEOREM 11. Let X be a strongly symmetric standard Markov process and
let G ={G(y), y € S} be the associated Gaussian process. Let {L}, (t,y) €
R*X S} be the local time of X and let K C S be compact. Then if «(5) is an
exact uniform modulus of continuity for {G(y), y € K}, there exists a y, € K
such that

IL; - LI
(1.9) lim sup - V2 (LY)"?  for almostallt € [0,{) a.s.

t
—_— =
60 d(x,y)<8 w(d(x’y))
x,y€K

We can improve on (1.9) when the associated Gaussian process and the state
space S have sufficient regularity.

THEOREM 12. Let X be a strongly symmetric standard Markov process and
let G ={G(y), y € S} be the associated Gaussian process. Let {L}, (t,y) €
R*X S} be the local time of X. Furthermore, let (S, d) be a locally homoge-
neous metric space, that is, any two points in S have isometric neighborhoods
in the metric d, and let K € S be a compact set which is the closure of its
interior. Then if w(8) is an exact uniform modulus of continuity for {G(y),
y € K},

ILF — L7|
lim  sup — g sup(L’y)l/2
(1.10) 50 gz, <5 @(d(%,7)) yeK
x,yeK

for almost all t € [0,{) a.s.

The main tool in the proofs of these theorems is a version of an isomor-
phism theorem of Dynkin [(1983), (1984)]. This version relates the Gaussian
process with covariance z'(x,y) to the local time of a Markov process which is
closely related to the Markov process with 1-potential density u!(x,y). To be
more specific, we develop two examples of the isomorphism in Section 4. In one
‘we relate the Gaussian process to the local time of the associated Markov
" process killed at an independent exponential time. In the other, we relate the
Gaussian process to certain A-transforms of the original Markov process. It
seems reasonable from the form of the isomorphism that continuity of the
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Gaussian process should imply continuity of the local time and we show that it
does.

It is not immediately clear from the isomorphism theorem why irregularity
of the Gaussian process implies irregularity of the associated local time. We
show that it does by using results of Ité6 and Nisio (1968a) and Jain and
Kallianpur (1972) for bounded discontinuities and Borell’s inequality [Borell
(1975)] for unboundedness. There are only certain kinds of discontinuities that
a Gaussian process can have and their properties are understood very well.
Several of these properties are used in our proofs. Our results on local and
uniform moduli of continuity depend strongly on the fact that these are
probability 0 or 1 properties for broad classes of Gaussian processes.

There is an extensive literature on the continuity of local times of Markov
processes beginning with Trotter’s (1958) celebrated result on the joint conti-
nuity of the local time of Brownian motion and the results of McKean (1962)
and Ray (1963) which give the exact uniform modulus of continuity for the
local times of Brownian motion. Boylan (1964) found a sufficient condition for
the joint continuity of the local time for a wide class of Markov processes that
inspired considerable efforts to obtain necessary and sufficient conditions. A
variation of Boylan’s result is given in Blumenthal and Getoor [(1968), V 3]
following an approach of Meyer (1966). Further improvements are given in
papers by Getoor and Kesten (1972) and Millar and Tran (1974). Barlow and
Hawkes [Barlow (1985), Barlow and Hawkes (1985)] obtained a sufficient
condition for the joint continuity of the local times of Lévy processes which
Barlow showed in Barlow (1988) was also necessary. This result gives our
 Theorem 1 for symmetric Lévy processes. It motivated us to look for a proof of

this relationship that was more directly connected to Gaussian processes.
[Gaussian processes do not enter into the proofs of the results in the work of
Barlow and Hawkes, although observations on the connections between Gauss-
ian processes and the local times of Markov processes are given in Barlow
(1988), Barlow and Hawkes (1985) and Hawkes (1985).] Barlow also obtains
the exact uniform modulus of continuity for a wide class of Lévy processes in
Barlow (1988).

We must point out that none of the references in the preceding paragraph
impose the restriction that the Markov processes be symmetric. We are forced
into this condition because in our work the 1-potential is taken to be the
covariance function of a Gaussian process. On the other hand, the methods
that we use enable us to give many necessary and sufficient conditions for
properties of the local times of symmetric Markov processes and provide a new
way of looking at the local times of Markov processes which we think will have
other applications besides the ones given here.

This paper uses many results from the theory of Gaussian processes and
Markov processes. In order to appeal to researchers in each of these specialties
we have provided many details and introductory remarks. Section 2 is devoted
to Gaussian processes. Statements are given of most of the main results that
we use. Section 3 contains the definitions of the various Markov process terms
that are used. We are particularly concerned with the consequences of our
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assumptions on the 1-potential density since this defines the associated Gauss-
ian process. We show that the Markov processes that we are considering are
Hunt processes. This is critical in Theorems 1-8 because it enables us to
extend the continuity of the local time up to the lifetime of the process.

In Section 4 we give a proof of the isomorphism theorem of Dynkin. In
Section 5 we obtain necessary conditions for the continuity and boundedness
of the local times. The methods we use are from the theory of Gaussian
processes. The local time enters only as a stochastic process that satisfies the
conditions of the isomorphism theorem. In Section 6, in which we obtain
sufficient conditions for continuity and boundedness of local times, the meth-
ods are strictly Markovian. Gaussian processes enter through the isomorphism
theorem but the only property of them that we use is their assumed continuity
or boundedness. At this point in the paper essentially all the results necessary
to prove Theorems 1-8 have been obtained. In Section 7, which is brief, we go
over the proof of each of these theorems.

In Section 8 we give Talagrand’s necessary and sufficient conditions for
continuity and boundedness of Gaussian processes as well as other one-sided
conditions which may be easier to apply. Because of Theorems 1-8, these
results are immediately applicable to local times. Lastly, in Section 9, we give
examples of symmetric Markov chains with a single instantaneous state for
which the local time has a bounded discontinuity. We also present a result,
which we think is new for Gaussian processes, that follows from our results
and Markov process considerations and make some comparisons between our
work and some of the references cited above.

2. Gaussian processes. In this section we review some results about
Gaussian processes which will be used in this paper. A real-valued stochastic
process {G(2), z € T} is said to be a mean zero Gaussian process if EG(z) = 0
for all z € T and if for all z,,..., 2, € T and real numbers a, ..., «, and for
all n > 1, ¥7_,;G(z,) is a real-valued normal random variable with mean zero
and variance E(X7_,a;G(2;))%. There is a large literature on Gaussian pro-
cesses. Some more comprehensive treatments can be found in Adler (1991),
Dudley (1973), Fernique. (1975), Jain and Marcus (1978) and Ledoux and
Talagrand (1991). The last reference is recent and most comprehensive. It also
contains an extensive, up-to-date bibliography. In this section we will state the
results that will be used in this paper. We make no attempt to give these
results in their greatest generality. To the contrary, we will try to make the
statements as simple as possible consistent with the needs of this paper. The
most important result from Gaussian processes used in this paper is a conse-
quence of Borell’s Brunn—Minkowski inequality in Gauss space [Borell (1975)].
It shows the symmetric nature of the extremes of a Gaussian process.

, THEOREM 2.1. Let X = {X(2), z € T} be a real-valued mean zero Gaussian
process, where T is a finite set. Let a be the median of sup,.p X(2), that is,

(2.1) P(supX(z) > a) = P(supX(z) < a) =1/2,

zeT zeT
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and let

o= sup‘(EXz(z))lﬂ.
zeT

Then, fort > 0, we have

(2.2) P({fggX(z) >a— ot} N {S:El}; -X(2) >a - (rt}) >1-29(¢)
and
(2.3) P(supX(2) <a+ot) = 1- (1),
zeT
where
(2.4) @(¢) = %[tme-uz/z du.

These inequalities are usually stated somewhat differently in the literature
so we will give a proof of Theorem 2.1 starting from Borell’s theorem [Borell
(1975), Theorem 3.1] adapted to {5 (i.e., R™ with the Euclidean metric).

THEOREM 2.2 (Borell). Let vy, be the canonical Gaussian measure on R",
that is, the measure induced by ¢ = (¢4, ..., £,), where (¢}, are i.i.d. normal
random variables with mean zero and variance 1. Let A be a measurable subset

of R"™ such that

1 b r
2.5 A) = — /2,
(25) (A = =["e ¢

Then, fort > 0,

1 b+t T
2.6 - A+1tB) > — —EE24¢,
(26) YA+ 1B) = = [""e ¢
where B is the unit ball in 13.

Proor or THEOREM 2.1. Assume first that the covariance matrix, say R, of
{X(2), z € T} is strictly positive definite. This implies that R is invertible and
that we can write R = PTDP, where P is orthogonal and D diagonal with
positive entries. Let n = card{T'} and let p, denote the measure induced by
{X(z2), z€ T}on R". For &/C R™, we have
@7 () f / ( xTR_lx) dx

. N =/-- exp — — .

‘P o P 9 (2m) 72 |R|1/2

Under the change of variables-u = D~ '/2Px, we get
' uTu du

2.8 — “oe _——_
(2.8) () = [ fD_l,ZPM(9XP 5 ) o)
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so that
(2.9) pu( ) = v,(D"V2PSL).

Let f: R® — R be given by f(x) = sup, x,, where x = (x,,...,x,). Let a be
the number for which p,({f < a}) = 1/2. We now set &/= {f < a}. By (2.5)
and (2.6) with b = 0, we have

v.(D"Y?Po/+ tB) > 1 — ®(¢)

and, by (2.9),

(2.10) p.(Z+ tPTDY?B) > 1 — ®(t).

We will now show that

(2.11) &+ tPTDYV?’B c {f<a + ot},

where

(2.12) o= sug(EX2(z))1/2 = Sl].:pl(R)kkll/2.
ze

[For any matrix A, we use (A);, to represent the j, kth element of A.] To see
(2.11), suppose that x = a + tPTD'?B, where a € &7, B € B; then

(2.13) sup-, <a+ tSl;p|(PTD1/ZB)k|.
Note that
(PTDV?B), = i (PTDV2), 8,
j=1
and also that
¥ (PTDV2)}, = 3 (PTDY3)4,(PTDY2)s, = ¥ (PTDM2),,(P DV,
j=1 j=1 Jj=1

— ((P™DV?)(PTDV®)"),, = (PTDP),.
Therefore, by the above, Schwarz’s inequality and (2.12), we get

" 1/2
(2.14)  [(PT™DV?B), < ( > (PTD1/2)ij) =|(R)ul* < 0.

j=1
We now see that (2.11) follows from (2.13) and (2.14). Thus (2.10) implies
p,{f<a+ot) >1— ®@) or, equivalently, that

(2.15) P(supX, <a+ot) =1 - (1),
k

which gives us (2.3).
"To obtain (2.2), consider the set &' ={f=>a}. Since p (') =1/2, we
have, as in (2.10), that

(2.16) p (' +tPTDY2B) > 1 — ®(¢).
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Also, we have

(2.17) (o' + tPTDV?B) {supxk >a- at},
k

since if « € &’ and B € B and x = a + tPTD'/?B, then

supx, > a — tsup|(PTD'/?),| > a — ot
k k

by (2.14). It follows from (2.16) and (2.17) that

(2.18) P(supX(2) >a - o-t) >1-d(t).
zeT
Also, since X(z) and —X(2) are equal in distribution, we have
(2.19) P(sup - X(2) > a - ot) =1 - d().
zeT

The inequality in (2.2) follows from (2.18) and (2.19).

We now remove the condition that the covariance matrix of X is strictly
positive definite. The Gaussian process X = {X(z), z € T'} that we are consid-
ering can be thought of as a Gaussian vector in R™ given by X =
{X(z)),..., X(2,)}. Let {g;}".; be a sequence of independent normal random
variables with mean zero and variance 1 which is independent of X and let
{b,);—1 be a sequence of real numbers with lim, _,, b, = 0. Let X, = {X(2;) +
b,81, ..., X(z,) + b,g,}. It is easy to check that the covariance matrix of X, is
strictly positive definite. Let a;, = median of sup, . X,(¢). Since the distribu-
tion of the maximum of a Gaussian vector in R” is absolutely continuous with
respect to Lebesgue measure, we see that lim,_ . a, = a. Therefore, for
k > k, for some &, sufficiently large, a, — ot > 0. We can now use (2.18) to
get that

P(supXk(z) >a, — at) >1-P(2).
zeT
Since lim,, ., X, = X almost surely we get (2.18) for X. The same argument
gives (2.19) for —X and hence we get (2.2). In the same way, we can obtain
(2.13) without the restriction that the covariance of X is strictly positive
definite. This completes the proof of Theorem 2.1. O

ReMARK 2.3. Under the same hypothesis as in Theorem 2.1, it follows from
(2.15) and (2.18) that
(2.20) P( supX(z) — a\ < at) >1-2®(¢t) Vit=>0.

zeT

This kind of relationship is sometimes called a concentration inequality since
it shows that sup,., X(2) is concentrated at its median when a is large
relative to o.

It is customary to express the concentration inequality in a somewhat
different form. Let {X(z), z € S} be a separable Gaussian process where S is
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an arbitrary index set. The median of sup,. 3/X(2)| is well defined. It is the
real number m satisfying both

(2.21) P(supIX(z)I < m) > 1 and P(supIX(z)I > m) > 3.
zeS zeS
Another consequence of Theorem 2.2 is that
(2.22) P( sup|X(z)l — m~ < o-t) >1-2P(¢) V=0
zeS

[see, e.g., Ledoux and Talagrand (1991), Lemma 3.1]. This form of the inequal-

ity does not give (2.18) which we need in (2.2). Nevertheless, the proofs in

these different cases are similar. This was pointed out to us by M. Talagrand.
It is shown in Hoffmann-Jgrgensen, Dudley and Shepp [(1979), Theorem

1.2] that the median m defined in the previous paragraph is unique. Also it

follows immediately from (2.22) that

(2.23) EsuplX(z)l — m‘ < 0@.

zeS
The inequality in (2.22) yields the following useful result. If {G(2), z € T},
T an arbitrary index set, is a mean zero, real-valued Gaussian process such
that sup,  7|G(2)| <  almost surely (this is actually a 0-1 event; see Theorem
2.7), then
(2.24) EsuplG(2)" <o Vn=x=0.
zeT

The following lemma will be used in Section 6.

LEmMMA 2.4. Let G = {G(2), z € S}, (S, p) a separable metric space, be a
real-valued, mean zero, Gaussian process. If G has continuous sample paths
and K is a compact subset of S, then
(2.25) : ;in:) E sup |G(y) -G(2)I"=0 Vn=0.

p(y,2)<8
y,2€K

If G is continuous at y,, then

(2.26) limE sup |G(y) —G(y)"=0 Vn=0.
320 {y:p(y, y0)<8)

Proor. The statement in (2.25) follows immediately from (2.24) and the
dominated convergence theorem. To obtain (2.26) we note that if G is continu-
ous at y,, then it must be bounded in some neighborhood of y, with positive
probability. Since boundedness is a 0-1 event (see Theorem 2.7), G is bounded
almost surely in some neighborhood of y,. Thus we get (2.26) as we did (2.25),
by (2.24) and the dominated convergence theorem. O

-A Gaussian process with continuous covariance can only have certain kinds
of discontinuities. This was put in evidence by the work of It6 and Nisio
(1968a) and Jain and Kallianpur (1972) on the oscillation function of a
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Gaussian process. Let G = {G(z), z € S} be a mean zero Gaussian process,
where S = (S, p) is a separable metric space with metric p. We assume that
the covariance of G is continuous on (S, p). Consider the function

(2.27) We(z9, ) = lim  sup |G(2) — G(y)l,
=0, yeB(z, 5 -

where

(2.28) B(z,,8) = {z € S: p(z,24) <$8}.

We can always choose a separable version for G so that the supremum in
(2.27) is taken over a countable separating set for G. Since this is the case we
will always assume that G is a separable process and that limits, where
indicated, are taken over countable separating sets.

THEOREM 2.5 (Jain and Kallianpur). Let {G(2), z € S}, (S, p) a separable
metric space, be a mean zero Gaussian process with continuous covariance.
Then there exists a real-valued upper semicontinuous function B(z) = Bg(2),
2z € S, which does not depend on w, such that

(2.29) P({olWs(z, w) = B(2) for everyz € S}) = 1.
Furthermore, for every z, € S,
z
p ;in}) sup G(z) = G(zy) + 3(20) ,
(2'30) 2€B(zy,8)
B(z)
li inf G(z)=G - =1.
It (2) = G(2) 2

We call the function B(z) the oscillation function of the Gaussian process G
at z. When B(z,) > 0, (2.30) shows that the oscillations of G(z) are symmetric
about G(z,). This property will be used in Theorem 5.1.

Sample path properties of Gaussian processes that one may expect to satisfy
0-1 laws, generally do. This greatly simplifies the characterization of these
properties. Theorem 2.5 implies many 0-1 laws for Gaussian processes. For
example, if a Gaussian process satisfying the hypotheses of Theorem 2.5 is
unbounded with positive probability at a point z, € S, then B(z,) = © and
hence the process is unbounded almost surely at z,. Nevertheless, it is easier
to understand and obtain 0-1 laws for Gaussian processes by considering the
Karhunen-Loeve expansion for these processes. Indeed, this expansion is the
starting point of the proof of Theorem 2.5. The next theorem is presented only
in the degree of generality necessary for this paper. The theorem, as stated,
combines the development of the orthogonal expansion in Jain and Marcus
[(1974), III 3] and an important result of It6 and Nisio (1968b) [see also Jain
and Marcus (1978), II 3.7]. ‘
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THEOREM 2.6. Let G = {G(2), z € S}, (S, p) a separable metric space, be a
mean zero Gaussian process with continuous covariance and let {¢;}7_, be an
independent identically distributed sequence of normal random variables with
mean zero and variance 1. Then there exists a sequence of continuous functions
{¢,(2);_ such that ¥3_.¢,¢;(2) converges almost surely and

(2.31) G(z) = L &o,(2), zeS,
j=1

where equality means that the two processes G and Y5_.¢;¢,(2) are equal in
law. Moreover, when (S, p) is compact and G has a version with continuous
sample paths, the series in (2.31) converges uniformly almost surely and hence
can be taken to be a concrete continuous version for G.

Regardless of whether G has a continuous version, the series in (2.31) is a
version for G. Since the sum of the first n terms of the series is a continuous
Gaussian process, it is clear that properties of irregularity for Gaussian
processes are tail events. We will list some of the 0-1 properties that we will
use in this paper in the next theorem.

THEOREM 2.7. Let G = {G(2), z € S}, (S, p) a separable metric space, be a
mean zero Gaussian process with continuous covariance. Let z, € S and T be a
subset of S. The following events have probability 0 or 1:

(2.32) G is continuous at z,.
(2.33) G has a bounded discontinuity at z,.
(2.34) G is unbounded at z,.
(2.35) G is continuouson T.
(2.36) G has a bounded discontinuity on T.
(2.37) | G is unbounded on T.

The following lemma will be used repeatedly in the proofs of the theorems
of Section 1.

LEmMA 2.8. Let G ={G(2), z € K}, (K, p) a compact, separable metric
space, be a mean zero Gaussian process with continuous covariance and
oscillation function B(z), z € K, as defined in Theorem 2.5. Then:

G is continuous on K almost surely if and only if B(z) = 0
forallz € K,

(2.39) G isbounded on K almost surely if and only if B(z) <« forallz € K.

'

(2.38)

Proor. B(z) = 0 for all z € K if and only if G is continuous on K almost
surely by the definition of the oscillation function. If B(z,) = « for some
2, € K, then by definition G is unbounded at z,. Finally, suppose that G is
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unbounded on K with probability greater than zero. Then by (2.37), G is
unbounded on K almost surely. Let {¢;}7_; be a decreasing sequence of
positive numbers satisfying lim; ., ¢; = 0. Let {B(z;, £,)}{2, be a cover of K.
If

sup [G(2)l <

2€B(z,¢;)

on a set of positive measure, then, by Theorem 2.7, it is finite almost surely.
Hence, if G is unbounded almost surely on K, there exists a z, € K such that

(2.40) sup |G(2)l =» as.

2€B(z,,¢;)

Note that since the covariance of G is continuous, for each z € K, G(2) is just
a mean zero random variable with finite variance. Thus (2.40) implies that

sup |G(y) — G(2)l == as.

¥,2€B(z;, ;)

Since K is compact there exists a subsequence {z,;)_; of {z,};_, such that
lim; ,, 2, = 2, for some 2z, € K. It is easy to see that

sup [G(y) —G(2)l=» as. Ve>0
y,2€B(zq, €)

and this implies that Wy(z,, ») defined in (2.27) is infinite almost surely and
hence, by Theorem 2.5, B(z,) = «. This completes the proof of Lemma 2.8. O

3. Markov processes. In this section we review some results on Markov
processes which will be used in this paper. We also obtain some new properties
of Markov processes which are used to relate Markov and Gaussian processes.

Let (S, p) be a locally compact metric space with a countable base and let .
denote the Borel sets of S with respect to the topology induced by the metric
p. We assume that there is a o-finite measure m(-) on (S, ). Let b and
bp.” denote, respectively, the bounded and bounded positive measurable
real-valued functions on (S, ). Let X = (Q, &, X,, P*), t € R", be a stan-
dard Markov process with state space S [Blumenthal and Getoor (1968), I 9.2].
Let 6, denote the shift operator associated with X, { the lifetime of X, A the
cemetery state for X and o € Q the elements of (2. The transition semigroup
P, is a contraction on bp.” which we denote by

(3.1) P, f(x) = P(x, f) = [P(x,dy) f(3) = E*(f(X))),

where E* is the expectation operator associated with P*. Define the semi-
group P = e *'P,. The resolvent or a-potential operator U® is defined by

(32) U*f(x) =U%(x, f) = [:e-atpt(x, f) dt = Exj:e-atf(x,) d.

Let I, denote the indicator function of the set A € . Then U%(x, A) =
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U%(x, 1,) is a measure on (S, .”). We will sometimes refer to U*(x, - ) as a
measure on (S, .”).

In this paper we will assume that the Markov process X is strongly
symmetric. The condition of symmetry means that the transition semigroup P,
satisfies

(3.3) (P.f,g)=(f,Pg) VteR"

for all measurable functions f and g in L%(dm), where (f, g) = [fgdm is the
usual inner product and || fll; = (£, f)'/2. The condition of strong symmetry
means that in addition to symmetry we have that for some a > 0,

(3.4) U<“(x, ') is absolutely continuous with respect to m () Vxes.
THEOREM 3.1. A strongly symmetric standard Markov process X has a

unique set of transition probability densities p(x,y) for allx,y € Sand t > 0
such that

(3.5) (t,x,y) = p(x,y) isjointly measurable,
(3.6) p(x,y) =Py, %),

(3.7) Pees(%,5) = [P, 2)p.(2,7) dm(2),
(3.8) P,f(x) = [pdx,5) f(3) dm(y).

Proor. This follows from (3.3), (3.4) [Fukushima (1980), Theorem 4.3.4]
and Wittman (1986). O

It is clear from Theorem 3.1 that

(39) u'(x,) = [ “e~atp,(x,y) dt

is a symmetric density for U%(x, - ) for all a > 0.

Following convention we denote ©°(x, y) by u(x,y). In this paper we will be
particularly concerned with u(x,y) and u(x,y). There is nothing special
about u!(x,y) except that it is of the form u*(x,y) for some a > 0. Later we
will identify the Markov process X with a mean zero Gaussian process. For
specificity and to avoid confusion, we choose the Gaussian process with
covariance function given by u!(x,y). Therefore, some of the results that
follow are stated for u'(x,y) even though they are true for u*(x,y) for a > 0.

A continuous additive functional (CAF) of the Markov process X is a family
of random variables satisfying:

t » A,(w) is almost surely continuous and nondecreasing
with Ay(w) = 0and A, (w) = A, (w) forall t > ¢,

(3.11) A e,
(3.12) A, (0) = A (w) + A,(6,0) foralls,t>0as.

- (3.10)
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For A, a CAF we set
Ra(o) = inf{t|A,(w) > 0}.
A, is called a local time at y if
PY(R,=0)=1,
P*(R,=0)=0 Vx=#y.
The reason that A, is called a local time at y (for the Markov process X) is
that the function ¢ — A, is the distribution function of a measure supported
on the set {¢|X, = y} [see, e.g., Blumenthal and Getoor (1968), V -3]. The next

theorem gives necessary and sufficient conditions for the existence of a local
time.

(3.13)

THEOREM 3.2. Let X be a strongly symmetric standard Markov process. A
necessary and sufficient condition for X to have a local time at y is that

(3.14) u*(y,y) <o forsome a > 0.

This theorem is proved using Fitzsimmons and Getoor [(1988), Proposition
4.15], Blumenthal and Getoor [(1968), V 3.13] and the fact that for strongly
symmetric standard Markov processes semipolar sets are polar. [On this last
point, see Blumenthal and Getoor (1968), VI 4.]

We will impose (8.14) for all y € S, in all that follows.

Local times are defined up to a multiplicative constant [Blumenthal and
Getoor (1968), V 3.13]. We can choose a version of the local time at y, which
we will denote by L7, by requiring that

(3.15) Ex(fwe_‘dL{) =ul(x,y) VxeS
0

[see, e.g., Blumenthal and Getoor (1968), VI 4.18]. This equation uniquely
determines ¢ — L}, except possibly on a set of measure zero for each y € S.
We note that this implies that for all 0 < a < o,

(3.16) E"(fme‘“‘ dLg’) =u(x,y) VxzeS.
0

Furthermore, (3.16) holds for « = 0 whenever (3.14) holds for « = 0.
In the next theorem we develop the tie-in between Gaussian processes and

Markov processes.

THEOREM 3.3. Let X be a strongly symmetric standard Markov process
satisfying (8.14) for all y € S. Then its 1-potential density u'(x,y) is symmet-
ric and positive definite and as a consequence satisfies

(3.17) ul(x,y) < (u'(x, x)ul(y,y))l/2 Vx,y€S.

Proor. The symmetry follows from (3.6) and the positive definiteness of
u'(x, y) follows immediately from the fact that p,(x,y) is positive definite for
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all £> 0. To see this note that by (3.7), for all sequences of real numbers
{a; )", and all n, we have

Z a’iajpt(xi’yj) = Z aiajfpt/2(xi’z)pt/2(z’xj) dm(z)

i,j=1 i,j=1
(3.18) ) \
= Zaipt/z(xi,’) ,
i=1 2
where || - ||z is the L? norm with respect to m. The statement in (3.17) is a

consequence of u'(x,y) being positive definite. O

Theorem 3.3 enables us to make the following definition that associates
Markov processes and their local times with Gaussian processes.

DerINITION 3.4. Let X be a strongly symmetric standard Markov process
with finite 1-potential density. Let L = {L2, (¢,y) € R*X S} be the local time
process of X and let G = {G(x), x € S} be a mean zero Gaussian process with
covariance u'(x, y). These processes will be called associated processes. When-
ever we say that a Markov process X is associated with a Gaussian process G,
we mean, among other things, that X is a strongly symmetric standard
Markov process with finite 1-potential density.

REMARK 3.5. It is clear from the above that a strongly symmetric standard
Markov process with finite 1-potential density has an associated Gaussian
process. However, not every Gaussian process can be associated with a strongly
symmetric standard Markov process because a covariance function need not be
a l-potential density. For example, the Gaussian processes associated with
real-valued symmetric Lévy processes are stationary and have spectral densi-
ties. [See, e.g., Getoor and Kesten (1972) and the material following our
Theorem 8.3.] Furthermore, if a real-valued mean zero stationary Gaussian
process is associated with a Markov process, then the Markov process must
have independent homogeneous increments, that is, it must be a Lévy process.
Thus, in particular, stationary Gaussian processes with discrete spectra cannot
be associated with strongly symmetric Markov processes on the real line.

We really understand very little about what restrictions must be imposed
upon a covariance for it to be the density of the potential of a symmetric
Markov process. However, we do have the following results which will be
useful in this paper.

LEMMA 3.6. Let X be a strongly symmetric standard Markov process with
finite 1-potential density u'(x, ¥). Then

(3'.19) ful(x,y) dm(y) <1 VzxeS8,

(3.20) ul(x,y) < ul(x,x) Aul(y,y) VxyeSs,
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with strict inequality when x # y and consequently
(3.21) ul(y,y)>0 VyeS.

Proor. The integral relationship follows from (3.9). The inequality in
(3.21) follows from (8.20) since u'(x, x) = 0 implies that «'(x,y) = 0 for all
y € S, which is impossible.

For the proof of (3.20) we define T,, to be the first hitting time by the
Markov process X of the point y € S. Note that by the strong Markov
property

u'(x,y) = E"(fwe_s dL;") = Ex(fw e’ dLg)
(322) 0 T(y)
_ Ex(e_T‘y’)Ey(,[ e~ dL? ) = E*(e”To)ul(y, ).
0

Thus we obtain (3.20) since x and y are interchangeable. O

The next theorem shows that if a Markov process has a jointly continuous
local time, then the associated 1-potential density must be continuous.

THEOREM 3.7. Let X be a strongly symmetric standard Markov process as
described in the beginning of this section and assume that the 1-potential
density u'(x, y) is finite for all x,y € S. Let LY = {L?, (¢,y) € R*X S)} be the
local time of X. If {L}, y € S} is continuous for all t € R* almost surely, then
{ul(x,y), (x,y) € 8 X S} is continuous.

This theorem will be proved at the end of Section 4.

A consequence of the continuity of the 1-potential density is that it implies
that the Markov processes that we are considering are Hunt processes [see,
e.g., Blumenthal and Getoor (1968), I 9.2 or Sharpe (1988), 47.3]. The ideas for
the proof of this result, which is given next, are due to P. Fitzsimmons. The
hypotheses on the Markov processes are weaker than those that we have been
generally requiring. A standard Markov process X is called a Hunt process if
T, 1T implies that X — X, almost surely on {T < «}, where the T, and T
are stopping times.

THEOREM 3.8. Let X be a standard Markov process with reference measure
m and with continuous a-potential density u®(x,y). Then X is a Hunt process
and

(3.23) P%I}Xt =X, existsforall { < .

ProoF. Our assumption that u*(x, y) is continuous, together with Fatou’s
lemma, shows that

(3.24) Uf(x) = [u(x,5) F(y) dm(y)
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is lower semicontinuous for any f € b.”. Therefore, by the resolvent equation
[Blumenthal and Getoor (1968), I 8.10], we see that UPf is lower semicontinu-
ous for any B > 0. It follows from Blumenthal and Getoor [(1970), (4.7) and
(4.8)] that X is a special standard process. Therefore, by Sharpe [(1988), (47.6)
(ii) and (iii)], we see that X is a Hunt process in the Ray topology. We now
show that X is a Hunt process in the original topology on S.

Let {; be the totally inaccessible part of {. It follows from Sharpe [(1988),
(44.5) and (46.3)] that

X, exists for {; <o
and equals the corresponding limit in the Ray topology. (In fact, X, _€ S since

X, = A). Now, by the above references, since X is special, it only remains to
show that

(3.25) X, =A for £, < o,

since this again is the corresponding limit in the Ray topology. To see this, let
us note that by (3.24),

h(x) = [u*(x,y) dm(y)

is a strictly positive lower semicontinuous function. Therefore, it is bounded
away from zero on compact subsets of S. Set

R(X,)_= limh(X,).

In order to establish (3.25) we need only show
(3.26) h(X;) =0 for{, <.
Let us note that h(x) is a-excessive. Therefore

| h(le)— exists for ¢, < o

and (3.26) follows from Blumenthal and Getoor [(1968), III 6.4]. This com-
pletes the proof of Theorem 3.8. O

In our proof of the joint continuity of the local time of a Markov process X,
we need to consider the Markov process obtained by killing X at the first
instant that it leaves a compact set and the Gaussian process associated with
the Kkilled process. We will develop the necessary machinery now. The main
point that we establish is that if X can be associated with a continuous
Gaussian process, then the killed process can also be associated with a continu-
ous Gaussian process. )

In what follows, we take X to be a strongly symmetric standard Markov
process. Let K < S be a compact set. Following Blumenthal and Getoor
[(1968), II 1.2] we define

(3.27) Tk = inf{t > 0|X, ¢ K}.
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For all f € bp” and a > 0, we have Dynkin’s formula

(3.28) U(x, f) = V(x, f) + P&U%(x, f),
where

(3.29) ve(x, f) = E¥ [0 Txco-atr( X,y dt
and

(3.30) Pi(x, f) = E*(e™*"=f(Xp,.)).

By Theorem 3.1, U*(x, - ) has a symmetric density u*(x,y). It follows that
Pg.U%x, ) is also absolutely continuous with respect to m and that its
density can be taken to be Pg.u®(x,y), where the operator Pg. acts on the
function u“(-,y) as a function of its first variable.

We recall Hunt’s switching formula,

(3.31) Pgu®(x,y) = Pgu®(y, x),

which is contained in Blumenthal and Getoor [(1968), VI 1.16].

Setting
(3.32) 0%(x,y) = u*(x,y) — Pgu*(x,y),
we see that V*(x, - ) is also absolutely continuous with respect to m and has a
symmetric density 7%(x, y).

The next two lemmas, which are critical in our proof of the continuity of
local times, relate Markov processes and Gaussian processes. Lemma 3.9 is
fundamental. Lemma 3.10 follows as a relatively simple consequence using
elementary facts about Gaussian processes.

LEMMA 3.9. Let X be a strongly symmetric standard Markov process with
continuous l-potential density u'(x,y). Let '(x,y) and Pi.u'(x,y) be as
defined above. Then all three of these functions are finite, positive, symmetric,
positive definite and continuous. Furthermore, 9 (x,y) = 0 if either x or y is
contained in K°.

LeEmMa 3.10. Let u'(x,y), 6%(x,y) and Pg.u'(x,y) be as defined above. If
u'(x, y) is the covariance function of a continuous mean zero Gaussian process
on S, then both 5'(x, y) and Pi.u'(x,y) are covariance functions of continuous
mean zero Gaussian processes on S.

We proceed to develop material needed to prove Lemma 3.9. Recall that a
positive, finite real-valued function f on S is called a-excessive with respect to
a standard Markov process X if
{(3.33) Prf(x) < f(x) VxesS

" and
(3.34) lintl)P;"f(x) T f(x) VxesS,
t—
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where P = e”*P, for P, the transition semigroup of X. This definition is
valid for 0 < a < «. A zero excessive function will simply be called an excessive
function.

The a-potential density u*(x, y) of a strongly symmetric standard Markov
process given in (3.9) is obviously a-excessive in each variable, that is, u°(-, y)
is an a-excessive function of the first variable for y fixed and u*(x, - ) is an
a-excessive function of the second variable for x fixed, since

Prfu*(x,y) =j; e **p,(x,y)ds.

By (3.30) and Fubini’s theorem, we see that Pg.u*(x,y) is an a-excessive
function of the second variable. Furthermore, by the symmetry of u*(x, y) and
(38.31), Pg.u*(x,y) is also an a-excessive function of the first variable. Thus
both u*(x,y) and Pg.u*(x,y) are a-excessive in each variable. Let us note
that 7*(x,y), defined in (3.32) is the difference of two functions which are
a-excessive in each variable.

The next lemma will be used in the proof of Lemma 3.9.

LEmMA 3.11.  Let h{(x,y) and hy(x, y) be positive finite functions on S X S
which are a-excessive in each variable with respect to a strongly symmetric

standard Markov process X. Let h(x,y) = h{(x,y) — hy(x,y) also be positive
and assume that

(3.35) [ [A(x,9)f(2) f(y)dm(x)dm(y) 20 ¥ fe L¥(dm);
then h(x,y) is a positive definite function on S X S.

Note that, trivially, the constant 0 is an excessive function. Therefore
Lemma 3.11 holds if A(x, y) itself is excessive.

Proor. Assume that h(x,y) satisfies (8.35). This implies that for any
real-valued function g(x), » € S, which satisfies

(3.36) [ Jh(x,9)g(x)llg(y)l dm(x) dm(y) <=,
we have
(3.37) [ [1(x.9)8(x)&(y) dm(x) dm(y) = 0.

This is because we can find a sequence of functions {g,(x)};,_; which are

,bounded and have compact support such that |g,(x)| < |g(x)| for all » > 1 and
lim,: o 8n(x) = g(x) almost surely with respect to the measure m. Since the
functions g,(x) € L%(dm) we can use (3.35) to show that (3.37) holds with g,
replacing g for all n > 1. We can then get (3.37) by using (3.36) and the
dominated convergence theorem.
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Recall that, as we stated in Theorem 3.1, a strongly symmetric standard
Markov process has a unique probability density p,(x,y), ¥V x, y € S and
s > 0. Consider the function

(3.38) g(x) = Z a,e”*py(z,x),
i=1

where {a;}"_, are real numbers. Let P, (resp., P{,) denote P2 operating on
the first varlable (resp., second variable) of h(-, ) so that

P iPih(z;,2;) = [ [e7p,(2;, £)py(2;, ) R (%, 5) dm(x) dm(y)

(3.39)
Vi,j=1,...,n

Using this and (3.33) we have

[ 75, )le(0)le ()] dm(x) dm(y)

IA

la;la;|P P oyh(z;, 2))l

~.
[y

(340) 'a’ la’ 'Ps 1Ps Zh (Zl,Z ) Pso,‘IPsa,!2h2(zi7zj),

~.
-

A
s S SME S

IA

|ai'aj'(Psof1Psofzh1(zi,Zj) + Py P“zhz(zl,z ))

-

~.

IA

Z lailajl(hl(zi,zj) + hz(zi,zj)) < o

i,j=1
Thus, (3.36) holds and using (3.39) in (3.37) we see that
(3.41) ) a;a;P Piyh(z;,2;) 2 0.
i j=1

Since h(x,y) is a-excessive in each variable, so are P2 h(x,y) and
P2yh(x, y). It follows that

P Pfoh 1 Piyhy ass— 0
and
PP hyt PPhy ass — 0.
Thus for 0 < s < ¢, we have A
P2 Plohy > P Pk,
, ;;vhich implies that
sli_l)T(l)PsﬂPs?zhl = Pfyhy
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and, since this holds for all ¢ > 0, we get
(3.42) lin})P;’ijs"fzh1 > h,.
Ss—

However, since &, is excessive in each variable, we also have
(3.43) Py Pk < h,.

Therefore, by (3.42) and (3.43) and the fact that the left-hand side of (3.43) is
increasing as s — 0, we get

(3.44) Py Pioh,Th, ass— 0.

Obviously (3.44) also holds for %,. In particular, we get

(3.45) lirx(l)Ps"flPs"fZ(h1 —hy) =h, — h,.
s§—

Using (3.45) in (3.41) with A = h; — h,, we get

Y. a;a;h(z,2,) >0
i,j=1
for all sequences {a;} ; of real numbers and {z,}_; of elements of S and for
all n > 1. Hence h(x,y) is positive definite. This completes the proof of
Lemma 3.11. O

Proor or LEmMMA 3.9. That u'(x,y) is symmetric and positive definite is
proved in Theorem 3.3. The positivity of u!(x,y) is obvious as can be seen in
(8.9). Also, we point out in (3.31) and the paragraph containing (3.32) that
Pi.u'(x,y) and #'(x,y) are symmetric. It is obvious that Pg.u'(x,y) > 0 and
since ul(x,y) is l-excessive in each variable, we have by Blumenthal and
Getoor [(1968), II 2.8] that

(3.46) 0 < Pgeul(x,y) <ul(x,y) <.
Of course, u'(x, y) < » because it is assumed to be continuous.
The inequalities in (3.46) show that Pi.u'(x,y) and ©'(x,y) are positive

and finite. It remains to show that they are positive definite.
Let

(3.47) Q. f(x) = E*(f(X,); ¢ < Tge).

Using the strong Markov property it follows easily that @, is a semigroup of
operators [Blumenthal and Getoor (1968), III 1] and V* defined in (3.29) is its
a-potential operator. Since V¢ is symmetric on L%(dm), we have for f,g €
L3(dm),

(3.48) [e (@ f,8) dt = [ e(Qua, f) dt
0 z 0
for all @ > 0. Hence
(3.49) (Qf,8) = (Qué, f) foralmostall ¢ € R*.

If f and g are bounded continuous functions on S, then both @, f(x) and
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Q,g(x) are right continuous. Therefore (3.49) holds for all ¢ € R*. Finally,
using a similar argument to the one used in (3.18), we note that for all
f € L3%(dm), we have

J [ (2. 9) (%) f(3)-dm(x) dm ()
(3.50) = (V'f, f) = [ e7(Q.f, f) dt
0

= j;) e_’lth/gfng dt > 0.

It now follows from Lemma 3.11 that 5'(x, y) is positive definite.

To show that Pi.ul(x,y) is positive definite we note that since K¢ is an
open set, we have by Blumenthal and Getoor [(1968), I 11.9] and Sharpe
[(1988), 12.12] that

(3.51) Pheu(x,y) = PEPiul(x,y).
It follows by (3.31) that

Peul(%,y) = fPlc(x’dz)Pﬁ’cul(z’y) = fPI}c(x,dz)P}gcul(y,z)
(3.52)
— [ [Phe(x, d2) Pe(y, dw)u’(w, 2).

Let f be a bounded function on S with compact support and define the finite
" signed measure

v(") = [(x) Phe(x, ) dm(z).
By (3.52),

(353) [ [Pheul(x,y) f(x) f(y) dm(x) dm(y) = [ [u(w,2)v(dw)v(dz).

By (3.46) and the fact that (U'f, f) < « for all f € L?%(dm), we see that if the
left-hand side of (3.53) is greater than or equal to zero for all bounded
functions f on S with compact support, then it is greater than or equal to
zero for all f € L% dm). Therefore, by Lemma 3.11, in order to complete the
proof that Px.u'(x, y)is positive definite we need only show that the right-hand
side of (3.53) is greater than or equal to zero, and this follows from Fubini’s
theorem and the considerations of (3.18).

We now show that #(x,y) and Pi.u'(x,y) are continuous on S X S. Since
both these functions are positive definite, there exist mean zero Gaussian
processes G, = {G(x), x € S} and Gp = {Gp(x), x € S} with covariances
o%(x,y) and Pg.u'(x,y), respectively. We take G, and G, to be independent. It
is easy to see, using (3.32), that

(3.54) G,(x) = G(x) + Gp(x), x€8,
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is a mean zero Gaussian process with covariance u'(x,y) and

(8.55) E(G,(x) — G,(¥))* = E(G,(%) — G,(3))" + E(Gp(x) — Gp(y))".

Since the continuity of the covariance of a Gaussian process is equivalent to
the continuity of the process in L2 it is clear, by (3.55), that the continuity of
u'(x, y) implies the continuity of vl(x y) and Pi.u'(x,y).
Finally let us note that V!(x, A) = 0 for A c K¢ and since #'(x,y) is a
symmetric continuous density for V(x, - ) it must be zero if either x or y is
contained in K°. This completes the proof of Lemma 3.9. O

Proor oF LEMMA 3.10. We showed in Lemma 3.9 that #'(x,y) and
Pg.u'(x, y) are positive definite on S X S. Therefore, in the notation of the
end of the proof of Lemma 3.9, we can find independent mean zero Gaussian
processes G, and Gp with covariances §'(x,y) and Pi.u'(x,y). Let us define
G, and G, on a single probability space and consider

(3.56) G, =Gyx) =G,(x) + Gp(x), xe8S,
and
Gy = Gy(x) = Gy(x) — Gp(x), =x€8.

It is obvious that the covariance of both G, and G, is equal to u'(x, y). Since,
by hypothesis, u'(x, y) is the covariance of a mean zero continuous Gaussian
process, we can find a continuous version G, of G, and G, of G,. We now see
that (G, + G2) is a continuous mean zero Gaussmn process with covariance

o'(x, y), which is what we wanted to prove. A similar argument shows that
Pécul(x, y) is the covariance of a continuous Gaussian process. O

This lemma also follows immediately from Theorem 8.5 since by (3.55),

E(G,(x) - G,(3))" < E(G,(x) — G,(»))"

and similarly for Gp, where G, is as defined in Lemma 3.9.

Let us note that whenever a local time is jointly continuous on B*X S it is
a Radon-Nikodym derivative of an occupation measure, so that the two
common (and not necessarily equivalent) ways of viewing local times are the
same under this condition. The following result is essentially contained in the
more general results of Blumenthal and Getoor [(1968), V 3.41] and Getoor
and Kesten [(1972), Theorem 1].

THEOREM 3.12. Let X be a strongly symmetric standard Markov process as

defined in the beginning of this section. Assume that X has a jointly continu-
ous local time L = {L}, (t,y) € R_+>< S}. Then

(3.57) jALg dm(y) = [0‘1A(Xs) ds

forallt € R* and A € #, almost surely with respect to P*.
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RemMark 3.13. Under the hypotheses of Theorem 3.12, m is a Radon
measure. To see this note that since L is jointly continuous, we have by
Theorem 3.7 that {u!(x,y), (x,y) € S X S} is continuous and by Lemma 3.6
that u'(y,y) > 0 for all y € S. Also

fsul(y,z) dm(z) =U%x,S) < 1.

Therefore, m(B(y, €)) < » for some £ > 0, where B(y, ¢) is the ball of radius ¢
centered at y in (S, p). Since this is true for each y € S, we see that m is
finite on each compact set in S, that is, that m is a Radon measure.

4. Isomorphism theorem. In this section we present a theorem due to
Dynkin (1984) which provides a link between Gaussian processes and the local
times of their associated strongly symmetric Markov processes (see Definition
3.4). This theorem, which we shall refer to as the isomorphism theorem, is a
relationship between two independent families of random variables. One fam-
ily is jointly Gaussian and the other satisfies (4.1) below.

THEOREM 4.1. Let I ={l,}*_; and G = {G,}’_, be R*-valued random vari-
ables and let G, and Gy be real-valued random variables such that {G, G,, G}
are jointly Gaussian with probability space (Qg, Pg) and expectation operator
E;. Let (Q,Q) denote a probability or subprobability space of | and define
(G;,G;) = E5G,G,. Assume that for any iy, ...,i,, not necessarily distinct, we
have

4 Q(jljllij) B ;<Ga’G"w<1)><G"w<1>’Giw<2)> <Gi«r<n>’GB>’

where 1 runs over all permutations of {1,2, ..., n}. Then for all € measurable
nonnegative functions F on R*, we have

G? G?
(4.2) QEG(F(Z + 7)) - EG(F(y)GaGB),

where € denotes the o-algebra generated by the cylinder sets of R*.

A proof of Theorem 4.1 is given in Dynkin (1984). We will give a more
leisurely proof here which may be easier to follow because it does not make
explicit mention of Feynman diagrams. However, before going on to the proof,
we shall explore two examples in which (4.1) is satisfied for sequences [ of
values of the local times of certain Markov processes. In the first example, [
may be thought of as a sequence of local times of the Markov process
associated with G evaluated at an independent exponential time. In the second
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example, [ is a sequence of local times of the Markov process associated with G
considered as random variables on a probability space of a certain A-transform
of the Markov process.

ExampLE 1. Let X =(Q, %, X,, P*), t € R™, be a standard Markov pro-
cess with state space S as introduced in Section 3. Let 6, and { also be as
defined in Section 3. We define the measure

(4.3) Q*=P*xXpu onQXR*

where the measure p is defined by du(t) = e “dt. For any A € ., we define
the measure @* 4(-) by

Q*4(B) = @*(B N {(w,s)IX,(w) € A})

for measurable sets B in 0 X R*. For example, if B ={X, €A,,..., X, €
A,, s € I}, where I is some interval in R*, then

Q*4(B) = [e~P*({X, € A,,..., X, €A,, X, € A})ds,

I
so, in particular, the total mass of @*4(:) is
(4.4) Q®4QXR*) = f e P*({X,(w) € A)) ds = U'(x, A).
We note the following proposition for future reference.

ProrosITION 4.2. If {A,)7_, is an increasing sequence of subsets of S with
Ui=1An = S, then

(4.5) Q“*(B)1Q*(B N {(w,5)ls < {(w)}).

Proor. This follows since
Q*4(B)1Q%5(B) = @*(B N {(w, s)IX,(w) € S})
' = Q*(B N {(w,s)ls <{(w)}). o

We now identify / in Theorem 4.1 with a certain sequence of local times of
the Markov process X. Let {L?, (¢,y) € R*X S} be the local time process of X
and let {G,, x € S} be a mean zero Gaussian process with covariance u'(x,y).
Let Mw, s) = s. We will show that for any sequence of points y;,¥5,... in S,
the sequence of random variables 7, = L on (Q X R*, @™ 4) satisfies (4.1) for
G;,=G,, G,=G, and G; = [,G, dm(y) In order that G; = [,G, dm(y) be
well deﬁned we require that

(4:6) fAfAul(x;y) dm(x) dm(y) < .

(Whenever we apply these results A will be compact and so, by Remark 3.13,
(4.6) will be satisfied.)
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We proceed to verify (4.1) for this example. Let 1, denote the indicator
function of the set A. We have

@4 112

j=1
=f0 ‘SE"((JIZIIL;’U)IA(XS)) ds
=Ex( sﬁ

(4.7) f° /o
-LE (f e 1,(X,) [

T 0<r;<rg--- <r,<s

([: dLJr’ij)lA(Xs) ds)

f dLixw dLYir® - -+ dLYire ds

= ZE’C(];) N dLy'n(l)f e (2 rl)dLylwa)

3

e~ (rnTn1) dLy,,(n)f e~ (-1 (X)ds)

Tn-1

We now show by induction that

E( [0 e dL: [ le-<r2-f1>sz§ j e~ (X,) ds)

n

A8 ey W) [#02) dm(2)

=(G,, GG, , G, (G, G, G, Gp).
For the first step in the proof by induction note that
4.9 E*| | e *1,(X,)ds]| = Yx,2)dm(z2).
(49) ([ r1x) ds) = [ wi(z,2) ()
Let

(4100 H-= [0 e dLy:[ e s dLYs - f e~ 1, X,) ds
T2 n
and set
(4.11) H, = /we—(rz—rl) dLy - fwe—(s—rn>1A(Xs) ds=H-9,,
ry r,

where the final equality follows from (3.12). Contlnulng the proof by induction
we assume that

(1) EH) = 03w 30) [ (9, 2) dm(2).

Since E*(H) < ®, H, <e™H and L2 is continuous almost surely in r,, we
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see that H, is continuous almost surely. Also note that by (3.20), E*(H),
considered as a function of x, is bounded. Consider

E( [0 e "1 dLY: j e 2T LYz - - j e ¢ 1,(X,) ds
(4.13) ! "
= E([ e "H, sz;).
0
Using the continuity of H,, the fact that e ™H, is decreasing and the
monotone convergence theorem we see that

(4.14) E(fo “nH, dLyl) = lim ZEx( TP H 0 0, u(Lbgr — LY 1y/0) )

—)00 ._

Taking the conditional expectation with respect to % o+ and uéing the
Markov property we see that the right-hand side of (4.14) equals

(4.15) lim Z e /PEX(EXir (H)(Lgr — L 1)/91))-

k—oy_y
Note that by Blumenthal and Getoor [(1968), II 2.12],
(416)  EX(H) = (X, yo)u'(52,35) =+ [ #}(32) dm(2)

is right continuous as a function of ¢ and, as we remarked above, it is bounded.
Therefore, using the dominated convergence theorem, we see that (4.15) is
equal to

E*| [TenEX(H dLgl) =E"( e dL«;“)Eyl H
(4.17a) (fo (H) dL; Jye B

u'(x,y,) E"(H),

since the measure dL}! is supported on {r;|X, =y,}. Thus by (4.14) and the
proof by induction we obtain (4.8). Using (4.7) and (4.8), we obtain (4.1) for

Example 1.
It follows from Theorem 4.1, which we will prove below, that

(4.17b) Q¥ AEgF(L; + 3G?) = E4(F(3G?)G,G,).

In Example 1 we are compelled, in order to satisfy (4.1), to work with L;,
where A is an exponential random variable independent of the Markov process
* X. What interests us are results about L, for ¢t € R*. The next lemma is
crucial in all our work because it allows us to pass from L; to L;. We continue
with the notation developed above and also use ' to denote the elements of
Q. and 7 to denote Lebesgue measure on R™.
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LEMMA 4.3. Let B € ¢ be such that Pg(G2/2 € B) = 1. Then for almost
all (o', t) € Qg X R* with respect to Pg X T,

G*(o')
(4.18) P*\ L, + 2 € Bgiven thatt < (| =1
and for almost all o' € Qg with respect to Py,
G?*(w')
(4.19) P*|L, + g € B for almostall t € [0,{)] = 1.

Also, we can choose a countable dense set @ C R™ such that for almost all
o' € Q¢ with respect to Pg,

G*(o)
2

(4.20) P*|L; + €Bforallt e @n [0,4')) =1.

Proor. Let 1. be the indicator function of the set

{M G2(o)

2
By our assumption, 1z = 0 almost surely with respect to P;. Therefore,
EG(]'BCGGGB) = O
and consequently, by Theorem 4.1 [see also (4.17b)],

eBc}.

2
It now follows from Proposition 4.2 and (4.3) that
G?*(w')

27
PGQ"’A(L;(w) Ay eB"’) ~ 0.

(4.21) PGP",U,({L;(w) + e B”} n{t< g(w)}) = 0.

Therefore, for almost all (o',2) € Q; X R with respect to Py X 7,

el [ 4 G _
(o) + 2 €B°) Nn{t<{(w)}| =0.

That is,

P"({L;(w) LG ;w,)

which is (4.18).
Using (4.21) again we see that, for almost all ' € Q with respect to P,

we have

EB} U {t> {(w)}) =1,

P* . Gz(w,) ¢ =
wl{{L(w) + 7 eB Y Nn{t<i(w)}]| =0
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and therefore, for almost all @ with respect to P*, we have

: GHw')
M({Lt(w) t— €B } N {¢ <§(w)}) = 0.

That is, for almost all ¢ > 0, we have either that L)+ G*w')/2 € B or
¢t > {(»). This is equivalent to saying that L)(w) + G*(«')/2 € B for almost
all ¢ € [0, {(w)), which gives (4.19). Finally, we note that (4.20) follows immedi-
ately from (4.18). O

ExampLE 2. Let h be an excessive function. [See, e.g., the paragraph
containing (3.33).] Although the following construction can be very general, for
our purposes we will assume that %~ is continuous, bounded and strictly
greater than zero. For f € b, we define

1
(4.22) PMf(x) = mpt( fh)(x).
It is easy to see that P{® is a semigroup. By Sharpe [(1988), Theorem 62.19]
there exists a unique Markov process (Q, %, X,, P*/"), called the h-transform
of X, with transition operators P{®, for which

1
——P*(F(w)h(X,
for all F € b.%,. Note that (4.23) implies that P* and P*/* have the same null

sets.
In this example we assume that X has finite 0-potential density, that is,

that

(4.23) P/ (F(0) 1y < uy) =

u(y,y) =u’(y,y) <= VyeS.
Then, by (3.16), the local times L} of X satisfy

(4.24) E*(L2) = u(x,y).
Let {G,, y € S} be a mean zero Gaussian process with covariance u(x, y). We
now show that for any sequence of points y;,y,... in S, the sequence of

random variables [, = LY on (Q, P*/*) with
(4.25) h(x) = [ u(x,y) dm(y)
satisfies (4.1), where G; = G, , G, = G, and

4.26 G ! G, d
(4.26) s = h(—x)fA 'y dm(y)
for sdme A € . We assume that

(4.27) [A[Au(x,y) dm(x) dm(y) < o,
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so that G, is well defined. Note that % is an excessive function with respect to

X because u(-,y) is.
The proof of (4.1) mimics that of Example 1. Let E*/* denote the expecta-
tion operator of (2, %, X,, P*/"). Following (4.7), we have

E"/h( 1 ngzj) - E"/h( I1 jdezfj)
J=1 g

j=1"0

(4.28) = ZEW( j / dLYw -+ sz;wm)

O0<rj<ry:: <r,<o

= ;Ex/h(j: dLﬁ'liw(l)/: dLYir - - foo dLi'iw(n)) .

Tn-1

For n > 1, set

Hn=Hn(y1""’yn) =,/(’)de3‘,11[®sz22 /w dL{,’:
r ”

n—1

and set H, = 1. We will use a proof by induction to show that
(4.29) E*/"(H)) = (G,,G,)<G,,G,) (G, ,G, G, ,Gg).

Y1’

Using this in (4.28) shows that (4.1) is satisfied by this example. To begin the
proof by induction we see that

E*/"(Hy) = E¥*(Ly) = lim Y E**((L1% — L{—1),2) i sn<g)

—00 .
i=1

© 1
(4.30) = lim ¥ -——E*(h(X,,,)(Ly - L{1,4))

ke 73 h(%)

ﬁE( [hexyazy),

since by Blumenthal and Getoor [(1968), II 2.12], ~(X,) is bounded and right
continuous as a function of r. By the argument used in (4.17) we see that
(4.30) is equal to

1 1
(431) oS EX(L2AG) = (2 0h() = (6o, G, )Gy, G,

Let us now assume that

1
Ex/h(Hn—l) = Wu(xiyl)u(ylryZ) u(yn—.27yn—1)h(yn—1)

andlet H, , , = H,(y,,...,y,). Then

. 0 1
432) EN/MH, | ,) = ——
( ) ( 1,2) h(yl)

As in Example 1 we see that H,_ ; ,°6, 1H, ;, as r; > 0 and also that

u(y1,¥2) " U(Yn-1,Y0) B (30)-
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H,_,;°6, is continuous almost surely. Therefore, by the same argument

used from (4.14) onwards in Example 1, we have

E*/M(H,) = Ex/"( [[Haosavn, sz;)

foel

lim Y (E"/h(Hn-l,zwi/z”(Liy}z" - L<yi1—1)/2k)))

k—o0 i=1

(4.33) .
lim Y E</MEXa/ " (H,_ | o) (LYyp = LTy 00))

ke oy

- Ex/h( [ B (H ) sz;) = B/M(LY)EN/A(H, ).

Using (4.31) and (4.32), we get (4.29). This completes the demonstration for
this example.

REMARK 4.4. The approach of Example 2 also applies to the choice h(x) =
u(x,y) for fixed y. This case is highlighted in Dynkin (1984) and is used in
Sheppard (1985) and Adler, Marcus and Zinn (1990). [In Adler, Marcus and
Zinn (1990), the basic process is a Markov process killed at an independent
exponential time so that u(x,y), in this case, is u'(x,y) of the original
process.]

Proor orF THEOREM 4.1. We first show that
=i\ 2 i=1 2
for any x,,...,x, € Z*, not necessarily distinct. To do this, we first recall the
following well-known lemma which we prove for the convenience of the reader.

LemMa 4.5. Let {g;}* | be a jointly Gaussian sequence (i.e., a Gaussian
process on R*) with mean zero and let k be even. Then

X k/2
(4.35) E( l_[gi) = )y I'T cov(D,),
i=1 DU - UDy p=(1,..., k) 1= 1

where the sum is over all pairings (Dy, ..., D, ;) of {1,..., k}, that is, over all
partitions of {1,...,k} into disjoint sets each containing two elements and
where we define

cov({i, j}) = cov(g;, g;) = E(g:8;)-

Proor. We use the relationship

k

Eexp( ) /\igi) = exp
i=1

i £
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Clearly,
] ] k k
— - —FEexp ZM&) =E( gi)
aAl aAk (i=1 /\1= =)‘k=0 ll:[].
Also,
P 9 1o ik 2
oA, oA, TR\ | M
= 1 9 9 [k k "
=Y - ——(Z Z)ti)t~cov(gi,g~)) .
noo 2"n! dA; M\ T !

It is easy to see that

(4.36)

Ok n
> ZAiAjCOV(gngj))

2 ST 2\ (i———1j=1

A= o0 =2,=0

is zero when n # k/2 and when n = £ /2 it is not zero only for those terms in
(ZF_,Zk_ A4 cov(g;, g;))*/% in which each A;, i = 1,..., k, appear only once.
The terms with this property form a pairing, say (D, ..., D, ) of {1,..., k}.
For this pairing (4.86) is equal to [1%/2 cov(D,). Finally, it is easy to see that
there are 2*/%(k/2)! terms corresponding to each pairing of {1,..., k}. This
establishes (4.35). O

Using Lemma 4.5 we see that

" (G,G, 1
(4.37) Eg| 1 ( 2 )GaGB = o Y cov(D,) -+ cov(D,,,),
i=1 9=(D,,..., D,.,,)

where the sum is over all pairings 9 = (D,,...,D, ;) of the 2n + 2 in-
dices {u ), {v;J’.;, @ and B. For example, cov({u;v;}) = (G,,G,) and
cov({u;, B) = (G, , Gg). We now rewrite the right-hand side of (4.37). The
reader should keep in mind that, eventually, we will set u, = v, = x; and
obtain the left-hand side of (4.34).

Let D™ be the unique element of & which contains a. If « is paired with
either u, or v;, set 7(1) = i and define {y,, 2,4, to be {u;,v;} if « is paired
with u,, but {v;, u,} if « is paired with v;. Next let D® be the unique element
of 9 which contains z_,,. If z,,, is paired with either u; or v;, set m(2) =
and define {y . s), 2,(2) to be {u;,v;} if z ;) is paired with u , or {v;, u ;} if 2z,
is paired with v;. We proceed in this manner, getting. D, ..., D¥, until we
get to DD, the unique element of & which contains z,, and B. Clearly
[ < n but it is important to note that [ < n is often the case.

Let C=C(2)={7rQ),...,7(1)}) and 2’ =(DV,..., D¢*D). Clearly 2’
is a pairing of the 2/ + 2 elements {u,}; cc(9y {U;};cc(2)y @ and B. Let B =
B(9)=1{1,...,n}/C(D)and D" = 9/9'. Clearly D" is a pairing of the set of
2(n — 1) indices consisting of {u;}; c p() and {v;}; c p 5, We see that we can
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rewrite (4.37) as

o 1[5

i=1

(4.38) = i by ( )y cov(B;) - cov(B ) |
n}

pairings (Bq, ..., Bg) of
{w)icpUlv)icn

(Z< y (1) <G2n(l)’Gyw(2>> (G Zmcy’ B>)

where the last sum is over all permutations (7(1), ..., 7(|C]) of C and over all
ways of assigning {u .y, Uri)) t0 {¥,:y 2y Of course, there are 2/°l ways to
make these assignments. Thus if we set u; = v; = x;, the last sum in (4.38) is

(4.39) 21y <@, G ., (G, ,Gp),

x (1) X1y’ T Xm(2) =(ICI)
w(C)

where now the sum is over all permutations 7 of C. But using (4.35) again we
see that

(4.40) ( ) cov(B;) - - cov(B )

pairings (By, ..., Bg) of
{wdicpUlvden

Therefore setting u; = v; = x; in (4.38) and using (4.39) and (4.40), we have

i=1
(4.41)

- Eq( 116.6.,).

G
= Z EG(H ) Z (G, ﬂ(n s (G Em(Cp)’ 3>
n}

BuC={1,..., icB 2 (C)
However, the left-hand side of (4.34) is

2

(4.42a) EGQ(fI (lx, + G?f)) = X n)EG( I i)Q(

BuC={1,..., icB 2

I1.,)

ieC

and by (4.1) we see that (4.41) and (4.42a) are equivalent, thus establishing
(4.34).
Let z,,..., z, be fixed and let u; and u, be the measures on R’} defined by

G? G?
F(lzl + 7""’12,._’_ 7))
and

Co (e a2
(4.42¢) JF( )d/.Lz—EG(F( 2 2n)GaGB)

for all nonnegative measurable functions F on €. It is convenient to use the

(4420)  [F()du, - EoQ
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language of probability so let us at first assume that @ is a probability
measure. The measure u, is determined by its characteristic function
Ay, ..., A,) = EgQ exp(iL?_ A, (L, + GZ/2)). For Ay, ..., A, fixed,
o1(Aq, .. A ) is determined by the d1str1but10n function of the real-valued
random varlable =727 ,M(, + G2/2). Let py, denote the 2kth moment of
E I pg,th /(Zk)' converges for ¢ € [0, 8] for some & > 0 then the distribu-
tion functlon of ¢ is uniquely determined by its moments. [See, e.g., Feller
(1966), page 224.] Considering (4.34), we see that this sum converges if
Eg(exp(X?_,5,G2)IG,| |G4l) <  for sufficiently small s, >0,i=1,...,n. Itis
easy to see, by repeated use of the Schwarz 1nequahty, that this is the case.
Hence the measure w, is uniquely determined by the moments of ¢, or
equivalently, by the terms in the left-hand side of (4.34). Now if we set
@s(Ay, ..., A,) = Eglexp(iL}-11,G2)G,Gy), we see by (4. 34) and the above
argument that ¢,(A;,...,A,) = <p2(A1, ces Ay Hence/.t1 . Note that, al-
though it is not clear to begin with that Mg is a pOS1t1ve measure, this
argument shows that it is. Now let v; be the measure on R* determined by
QE;(-) and v, the measure on R® determined by E;(-G,Gg). The above
argument shows that v, = v, on the cylinder sets of R”. Since the cylinder
sets of R” generate ¢, we see that v; = v, on €. Thus we obtain Theorem 4.1
when @ is a probability measure. If @ is a subprobability measure, we need
only divide both sides of (4.42b) and (4.42c) by the full measure of @ and
repeat the above argument. This completes the proof of Theorem 4.1. O

The next lemma gives a useful equality that is similar to one developed in
Example 1 above. We will use it in the proof of Theorem 3.7.

LeEMMA 4.6. Let X be a strongly symmetric standard Markov process with
finite 1-potential density u'(x,y). Let {L?, (¢,y) € R*X S} be the local time of
X and let A be an exponential random variable with mean one independent of
X. Then for {z;}*_, contained in S,

n
E,\Ex( ]-_[ Lit) B Z ul(x, xﬂ-l) ul( 2 z‘"’z) ul(Z,n.z, 273)

(443) i=1 T

CuNZg, )
where E, denotes expectation with respect to A and m runs over the permuta-
tions of {1,2,...,n}.

ProoF. The left-hand side of (4.43) is equal to (4.7) with 1,(X,) replaced
by 1. Since, with this substitution, the last integral in (4.7) is equal to 1, we see
that

! E,\Ex( I'l Lf\i) ZEx(f n dLZ‘fr(l)f e 27 dL%e -
' i=1

©
f e_(rn_rn—l) szi,,,(,') .
n

Th-1
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As in Example 1 we continue to show by induction that

el o o
E"(f e 1 dL‘jif e (=m0 dL% f e Un=Tn-0 dL2n
r r,—1

(4.44) 0

= ul(x’zl)ul(zl’ZZ) e ul(zn—lyzn)’

which is enough to prove this lemma. O

We can now prove Theorem 3.7. The ideas for the next proof were given to
us by P. Fitzsimmons.

Proor oF THEOREM 3.7. We first show that for K compact,

(4.45) sup u'(y,y) < .
yeK

Suppose that (4.45) does not hold; then we can find a sequence {y,)_;,
¥y, € K, and a y € K such that lim, ,,y, =y and
(4.46) lim u'(y,,y,) = ®.

It follows from (3.13) that for any real number T' > 0, P*(L% > 0) = 1. Let G,
be a decreasing sequence of open sets such that y, € G, and N, _,G, = y. The
continuity of L% implies that

(Ly>0) = U {Ly>0,VzeG,).

n=1
Hence there exists an n, such that for all n > n,
PY(L%>0,Vz€G,) > 3.
Let T, denote the first hitting time of y, by (X, P?). It follows that
PY(T,<T,¥Y n=n,) >4,
which implies that '
(4.47) EY(e™T) > e T.
However, by (3.22) and (3.20), we have

U (¥,¥,) - u'(y,)
UV, ¥n) ~ U (YnYn)’

which implies by (4.46) that the left-hand side of (4.47) goes to zero as n
.approaches infinity. This contradiction establishes (4.45).

Now let A be an exponential random variable with mean one which is
independent of X. It follows from Lemma 4.6 and (3.20) and (4.45) that {L7,
y € K} are uniformly bounded in L?(P* X u) for all 0 < p < «, where u is the
probability measure of A. Therefore, both {L}, y € K} and {L]L%, y,z € K}
are uniformly integrable. It follows from our assumption about the continuity

Ey(e"T") =
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of L} that both

(4.48) y = E*(L}) = u'(x,y)
and
(4.49) (y,2) = E*(L3L3) = (u'(x,y) + u'(x,2))u'(y,2)

are continuous.

To see that {u'(x,y), (x,y) € K X K} is continuous let (y,, 2,) = (¥, 2,)
and take x = y,, where all y,, z,, y, and z, are contained in K. We see from
(4.48) and (4.49) that

(4.50) ul(yO’yn) - ul(yo,yo), ul(yo,zn) - ul(yo,zo)

and

(4.51) (u'(¥0,7,) + u'(¥0,2,) )4 (¥n, 2,

= (u'(¥9,¥0) + u'(¥0,20))u' (Y0, 20)-

Recall that by (3.21), u'(yy,y,) > 0. Therefore, it follows from (4.50) and
(4.51) that u'(y,, z,) = u'(y,, 2y). Thus we see that {u'(x, y), (x,y) € K X K}
is continuous. Since this holds for all compact sets K ¢ S, we obtain Theorem
3.7. 0

5. Discontinuity of local times. We treat two cases in this section,
"bounded discontinuities and infinite discontinuities. Bounded discontinuities
of Gaussian processes are not uncommon. Consider

G = B(x) e [0,1
(x) = (2xloglog x) /2" © [0. 11,

with G(0) = 0, where B(x) is Brownian motion. As is well known, G(x) has a
bounded discontinuity at x = 0. In fact it has oscillation function B(0) = 2 as
defined in Theorem 2.5. In Section 9 we will use Theorem 5.1 to give examples
of Markov processes with local times which have bounded discontinuities.

In this section we will use Theorem 4.1, the isomorphism theorem, for the
processes described in Example 1 of Section 4. The notation that we use is
the notation of Theorem 4.1 and Example 1. We first obtain conditions for the
bounded discontinuity of local times. This result is much simpler than the one
for infinite discontinuities. It actually follows almost immediately from the
isomorphism theorem and Lemma 4.3.

THEOREM 5.1. Let {L}, (t,x) € R*X S} be the local time of a strongly
symmetric standard Markov process with 1-potential density u'(x,y). Assume
that u'(x, y) is continuous in some neighborhood of (x,, x,). Let {G,, x € S} be
a real-valued Gaussian process with mean zero and covariance u'(x,y). As-
sume that G, has oscillation function 0 < B(x,) < © at x, (see Theorem 2.5).
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Then for any countable dense set C C S,

xo)y Lo 2(x xo)y Lo

BOVER L BG0 | BeVE
\/5 t

920 yeCnB(xy, 8) 8 V2

(5.1)

for all t < { almost surely and

Y(x B(x4)y/Li0
(52) lim sup |L;c _ Lfol < B ( 0) + ( 0) t
-0 yeCnB(x,,8) 4 V2

for all t < { almost surely.

Since 0 < Lo < o, P*o almost surely, for all ¢ € (0, {), we see from (5.1)
and (5.2) that the local time of a Markov process associated with a Gaussian
process that has a bounded discontinuity at x, (a probability 0 or 1 event by
Theorem 2.7), itself has a bounded discontinuity at x, almost surely with
respect to P*. We suspect that the term containing %(x,) can be eliminated
from (5.1) and (5.2) but do not know how to do it.

Proor. Let C be a countable separating set for {G,, x € S}. It follows from
Theorem 2.5 that

B(xo)

2
(5.3) lim sup G?= (IGxol + ) a.s. Pg.

-0 yeCnB(xy,d)

Therefore, the set

_ ﬁ2(x0) + B(xo)lGx0|}
8 2

1
(5.4) B={lim sup - (GI-G2)
-0 yeCnB(xy, 8)

has P; measure 1. It then follows from Lemma 4.3 that for almost all
o' € O, with respect to P,

Gi(w) — G2(o'
lim sup L} — L+ () )

-0 x€CNB(xy, d) 2

G0 e s [ @)
= 80 + ‘/50 L¥o + x°2 forallt e @ N {t <{}as,

where @ is a countable dense subset of R™*. Therefore, for almost all o’ € Q,
with respect to Pg,

G(o') = Gi(o)

lim sup LY — L{o + lim sup

80 xeCnB(xg, 8 8-0 yeCnB(xg,5) 2
B*(xo)  B(xo) [ . Gi(o)
== + 7z Lo + "2 forallt e @ N {¢t < {} as.
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Since the event in (5.4) holds on a set of P; measure one, for almost all
o' € Qgq, with respect to P, it follows that

lim sup L} — Lje
-0 yeCnB(x,,5)
(5.6) LB [ ) B[ Gufw)
V2 2 2

forallt € @ N {t < {} as.

For all £ > 0 we can find an «' such that (5.6) holds and G?(«')/2 < &. For
this ' we have

lim sup L7 — Lo
-0 reCnB(x,,6)

(5.7) o B(xo)
T2
and since this holds for all £ > 0, we get

x
(5.8) lim sup Ly — Lio > Blxo) yLio forallte @ N {t <{}as.
820 yeCnB(xy, 8 V2

(\/ﬁ—\/;) forte@n{t<{}as.,

Let Q, P*(Q)') = 1, be the set on which (5.8) holds. For any ¢ € (0, {), choose-
a sequence ¢; € @ such that ¢, 1¢. For o € ' we have, by the monotonicity of

the local time, that
B(x0)y/Li*(w)
V2 ’

(5.9) lim sup Li(w) > L}(w) +
60 x€CNB(xy, ) !

Since L¥° is continuous in ¢, we see that

(5.10) lim sup L¥(w) = L¥*(w) +
-0 yeCnB(x,,6)

B(xo)yLi(w)
ﬁ ’

and since this is valid for all ¢ € (0,¢) and all w € (', we get the lower bound
in (5.1).
To obtain the upper bound in (5.1), we use (5.5) to immediately obtain

Bz(xo)

lim sup Ly — L{o <
-0 xeCnNB(xy,8) 8

(5.11) ‘

' B(x,) CGlw)  GHw)

for almost all o' € Qg, with respect to Pg. Thus, as above, G?(w') can be made
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as small as we like and we get

2 X X L*o
lim sup L¥ - Lo < B*(x) + B(x¢)yL;
(5.12) -0 reCnB(xg,d) 8 V2
forteQn {t<{}as.

For all ¢ € (0, {) choose ¢, € @ such that ¢, | ¢. Following the argument given
in (5.9) and (5.10), we get the upper bound in (5.1).

To obtain (5.2) we repeat the above argument with a minor variation.
Analogously to (5.4) we define the set

1 IGxZ _ Gzol < B2(8x0) + B(xO;IGxOI

(5.13) B'= {lim sup =
80 4 cCNB(xy,8) 2

Since

|G? - Gfol <G, - Gx0|(2IGxOI +1G, - Gx0|)>
we see by Theorem 2.5 that this set has P; measure 1. As in (5.5), it follows by
Lemma 4.3 that

lim sup |LF — Lyo|
820 yeCnB(xy,8)

|GE() - GE(w)] L B(x0)

<l
(5:14) 320 e CrBlen 2 8
x GZ(w
+B( o) Lo + L) forall te@n{t < {} as.,

V2

for almost all o € Q, with respect to P,. Proceeding as above, we assume
that o' € B’ and that G?(«') can be made as small as we like and get

lim sup |L} — L{o|
-0 yeCnB(xy,8)
5.15 ) x
G Bx) | B)VIF
< — T

We can extend this result to all ¢ € (0, {) as above. This completes the proof of
Theorem 5.1. O

forallt e @ N {t <{} as.

The result for infinite discontinuities of local times is more complicated
than the one for bounded discontinuities because we cannot work with sets of
measure one in this case and hence cannot use Lemma 4.3. We will show that
under certain conditions the local times have an infinite discontinuity at a
" point z, € S. In an attempt to avoid confusion we will distinguish, initially,
between this point and x, the initial point of the Markov process. Eventually,
we will take x to be equal to z,. Note that we use a slightly different notation
for Gaussian processes than the notation used previously.
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Let {G(2), z € T} be a real-valued Gaussian process with mean zero defined
on the probability space (4, P;), with expectation operator E, where (T, p) is
a separable metric space. Define

(5.16) d(u,v) = (EIG(x) - GW)I*)*  u,veT.
Let z, € T be such that EG*(z,) > 0 and consider
(5.17) n(z) = G(2) — a(2,20)G(20), 2 €T,
where

EG(2)G(2)
(518) a(z,zo) = —E‘G-w

It is well known and easy to see that {n(z), z € T} is a mean zero Gaussian
process which is independent of G(z,). Let a be the median of sup, . 1(2)
and assume that a satisfies

(5.19) P(Sgg n(z) = a) = P(jlequ)‘ n(z) < a) =1/2.

In what follows T' will be a finite set. In this case it is clear that the median of
sup, . r n(2) satisfies (5.19). Let

(5.20) o = sup (En*(z))"".
zeT
It follows from Theorem 2.1 that
(5.21) P({sup n(z) >a— at} n {sup —n(2)>a- at}) > 1 - 20(t)
zeT zeT
and
(5.22) P(supn(z) <a+ ot) = 1-®(1),

zeT

where ®(¢) is given in (2.4). For future use we define
(5.23) 0 ='\/2/(7TEG2(z0))e‘t2/(2E62(20)).

The next lemma contains the key idea that is used in the proof of unbounded-
ness of local times.

LEmMMA 5.2. Let {G(z), z € S} be a real-valued Gaussian process with
mean zero, where S = (S, p) is a separable metric space on which there exists a
o-finite measure m. Let T be a finite subset of S and let {n(2), 2z T} be as
defined in (5.17) and (5.18). Define

G,.= [AG(z)m(dz)
and
g(z,y) = EG(2)G(y), &(z,A) =EG(2)Gy, &(A,A)=EG}
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We assume that

(5.24) 0<g(z,2) <o VzelS§,

and that

(5.25) 0<a;=inf a(z,2,) and supa(z,zy) =ay < .
2eT zeT

Let a be the median of sup, o n(2). Since T is finite, (5.19) holds. Let o be as
defined in (5.20). Then for all real numbers y and 0 <t < a/o, we have

2
P(sup 1 22) + a(z,29)n(2)y
zeT
(5.26)

(a - crt)2
> 5 taa-ot)lyl] =1 -20(2)
and
P(su}; ! ;Z) +a(z,20)n(2)y
(5.27) a .
(a +ot)
— + ay(a + crt)Iy!) >1-2d(2).

Furthermore, for the event

B - {sup T (e zm(2)6(z0)

(5.28) = )
(a — ot)

<7 (e on)lG(a)|

we have
(5.29) E(13G(x)G,) < (6®(t)g(x,x)g(A, A))"* = H(x, A,t).

ProorF. We first obtain the inequality (5.26). One sees from (5.21) that on a
set of measure greater than or equal to (1 — 2®(¢)), sup, . n(2) > (a — ot)
and also sup,.r;— m(2) > (a — ot). Therefore, whatever the sign of y,
sup, .7 1(2)y > (@ — ot)lyl on a set of measure greater than or equal to
(1 — 2d(2)). [It is this symmetry of the large values of 1(z) that enables us to
carry through our arguments. As we just saw, this is the case for Gaussian
processes with bounded discontinuities.]

The inequality in (5.27) follows from (5.22). This inequality is less subtle
than (5.26) because we can replace n(z)y by |n(2)y! in taking an upper bound.
To obtain (5.29), we note that

(5.30) E(13G(x)G,) < (E(1p))*(EG*(x)G3)"*

and by a well-known result, which we give in Lemma 4.5,

(5.31) EG?*(x)GZ =2g%x,A) +g(x,x)g(A,A) <3g(x,x)g(A,A).
Now, consider E(1g). The expectation is with respect to the probability
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measure of the Gaussian process P;. If we denote by P, the probability
measure of the process {n(z), z € T} and P, , the probability measure of
G(z,), then P, is equivalent to the product probability measure Pgpy X P,
Let Eg,, and E, denote the expectation operators corresponding to Pgao
and P, respectively. Thus E(15) = Eg, ,E,(15). We see from (5.26) that

E (1p) > 1 — 20(¢),

since, in the product space, the fixed value of G(z,) is just some real number y
as in (5.26). Thus E,(1p) < 2®(¢) and hence Eg, ,E, (15) < 2®(¢). Using this
and (5.30) and (5.31), we get (5.29). O

The next lemma shows that, for our purposes, we can take o as small as we
like.

Lemma 5.3. Let {G(2), z € S} be a real-valued Gaussian process with
mean zero and covariance g(z,y) which is continuous in some neighborhood of
(29, 29). Let C be a countable dense subset of S and suppose that

(5.32) lim sup G(z) =» a.s,
920 yeCnB(z, 8)

where B(z,, 8) = {z € S: p(z, z,) < 8}. Let {n(2), z € C} be as defined in (5.17)
and (5.18). Then for any o > 0 and M > 0, there exists a 8 > 0 such that for
all §' < §, there exists a finite set Dy, , 5 € C N B(z,,8') such that

(5.33) P( sup  n(z) = M) > 1
2€Dy o5

and

(5.34) sup En?*(z) <o’
2€Dy ;5

ProoF. Since g(z,y) is assumed to be continuous in some neighborhood of
(29, 29) in (S, p) it follows that for some & > 0 sufficiently small,
SUp, ¢ gz, 5 EM*(2) < 0? V¥ & < 5. On the other hand, (5.32) clearly holds
with G(2) replaced by n(2). The fact that we can take D, , , finite in (5.33)
follows from the basic continuity property of probability measures. O

We can now show that the local time of a Markov process associated with a
Gaussian process that is unbounded at a point is itself almost surely un-
bounded at that point.

THEOREM 5.4. Let {L3, (¢t,2) € R*X S} be the local time process of a
strongly symmetric standard Markov process with 1-potential density u'(z,y).
Assume that u'(z, y) is continuous in some neighborhood of (z,, z,). Let {G(2),
z € S} be a real-valued Gaussian process with mean zero and covariance
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g(z,y) = u'(z,y). Suppose that there exists a countable dense subset C C S for
which

(5.35) lim sup G(z) =x a.s. Pg.
-0 eCNnB(zy, d)

Then

(5.36) lim sup Li=w V¢>0 a.s. P,
820 zeCnB(zy, 8)

Proor. Let {n(z), z € C} be as defined in (5.17) and (5.18). For any large
number M and small number o > 0, let D), , » € C be a finite set for which
(5.33) and (5.34) are satisfied, where 8’ < § for some & > 0. Let «; and a, be
as defined in (5.25). Since g(z,, z,) > 0, by (5.24) we can always take & small
enough so that ap = >1/2 and a, < 2. For convenience set T =Ty , 5 =
Dy o 5- Since T is finite, sup, . 1(2) has a unique median a > M ‘which
satisfies (5.19). Let {, = L% be as given in Example 1 of Section 4. It follows
from the isomorphism theorem applied to

F(7) = Indicator function of sug 7(2) — @®(2,24)7(20)
zE

(5.37)
(a _ Ut) + a(a — ot)y/27(2) }
that
2 2

P,Q*4|sup I, — a®(z,2,)l, + ¢(z) - az(Z,Zo)G (20)

2eT ° 2 2
(5.38) g 2

< % +V2a,(a — ot) ¢ (220) = E;(13G(x)G,).

This is just a particular case of (4.2) for F as given in (5.37) and for the
processes of Example 1. We take A to be a compact set in S and

{ G*(2) G*(20)

B=

sup —a?(z,zy)
zeT 2
(5.39)

(a - ot)’
S —_—

2 +a1(a—crt)|G(zo)|}.

This set B is exactly the same as the set B in (5.28). Therefore, the left-hand
side of (5.38) is bounded by

(5.40a) " H(x,A,t),

where H(x, A,t) is given in (5.29). (Let us assume here that ot < 1 and
a > 2. This will be the case when we choose M and o below.)
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By the discussion following (5.31) and employlng the relations given in
(5.17) and (5.18), we can write the inequality given by (5.38) and (5.40a) as

Q% “Pgiy Py sup I, — a*(2, 20)1,,
zeT

G + a(z,20)n(2)G(z,)
(5.40b) 2 » 20/ 0
—ot)? G%(z
s———(a ot) +\/§al(a—0't) + (o) )
2 2
<H(x,A,t).
We now apply (5.27), with y = G(z,), to see that

(a - ot)?
Q% *Pg.)| sup I, — a®(2,20)l, < ————
zeT 2

(5.40c) +V2a,(a - at)‘/l% + @

B (a + o't)2

3 —az(a+crt)|G(z0)|) <H(x,A,t) +20(2),

where a, is given in (5.25). It follows from this that
Qx,APG(ZO)( sup [, — a®(z,2)1,, < V2a,(a - at)\/zg
zeT

(5.41a) ~ay(a +0)|G(z) | - 201a)

<H(x,A,T) +2d(¢),
and, since a; > 1/2 and a, < 2, that
1 .
xAp pl, — a®(z,24)l, < —(a—at)./l
Q G(zo)(zsgg :—a’(2,20)l,, \/§(a o )\/ 2o

(5.41b) —2(a + at)|G(z,)| — 2ata)

< H(x,A,t) +20(2).
Take x = z,. We will now be more explicit about our choices of M and o.
Let 0 < 172 < on A(Q) satisfy

(5.42) £, < (96)7*
J For ¢, < &,, define b(e,) such that

(5.43) [ X0y () dt =1/
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where ¢(¢) is given in (5.23). Note that

(5.44) b(e,) < 3e}/? forall ¢; such that 0 < ¢, <Z,.
We choose ¢ = #(¢,) such that
(5.45) H(zy, A,t) + 20(t) = ¢
and pick o so that
e/t
(5.46) e
For some real number N, set
4N
(5.47) M = ;{/—4.

Recall that a > M and since M > 2, we have for our choices of o and ¢ that
(5.48) (a —ot) 2a/2 and (a +ot) < 2a.

As we stated above, there exists a 6 > 0 so that (5.41b) holds for T' = T, , »
for all & < 8. Using (5.45) and (5.48) in (5.41b), we have

PG(ZO)QZO*A( supl, — a*(z,20)L,, < ay/I.,/8
(5.49) et
—4alG(zy)l — 20ta) <eg.

Note that PG(ZO)QZO{{1 is a product measure on (R*X Q). Let us denote the
elements of this space by (y, w). We see from (5.49) that the set

| D(y,0) = (supl() - a¥(2, 20)L.(®)
(5.50) zeT
> a\/T,,/8 — 4alyl - 2ota)

has Py, ,@*>“ measure greater than or equal to @°>*(Q) — &,. Let b = b(e,)
be as defined in (5.43). We claim that there exists a y < b such that

(5.51) [ In(y, 0)@4(dw) = @ 4(Q) - &}/,
Q
since, if not, by (5.43) and the remark following (5.50), we have
[ [ Io(3, )@= A(dw)d(3) dy
= [ [ In(y,0)Q0A(dw)b(x) dy + [ [ In(y,0)@*(dw)d(y) dy
‘ 0°“Q b “Q

<e/!(@4(Q) — €”?) + (1 - £1)Q*4(Q) < Q™ 4(Q) — &y,

which contradicts the fact that the set D has PG(ZO)QZO’A measure greater
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than or equal to @*>4(Q) — &,. Therefore, for some 0 <y < b(e}),
5.52 QZO’A(suplz —a?(z,zy)l, <ay/l, /8 — 4ay — 20ta) <el2

(5.52) sup (2,20)1., <ay/l,/ 1

It follows from (5.52) and (5.44) that

(5.53) QZO’A(suplz <a(|L,,/8 - 121 - 20t)) < el

zeT

Let
(5.54) Q= 4(1,, < 261/%) = ¢s.

We note that ¢, — 0 as &; — 0 because L, > 0 for all > 0 almost surely
with respect to P, It follows from (5.53) and (5.54) that

(5.55)  @A(supl, <a(lel/ — 12612 - 20t)) < el/2 4 ey
zeT
Finally, by (5.42) and (5.46),
on,A(

and by (5.47) and the fact that ¢ > M, we get

sup/, < as%/4/4) <el? +g,,

zeT

(5.56) Q=4 (supl, < N) <&l + e,

zeT
Since (5.56) is valid for T = T}, ,, 5 for all &' < &, we have
QZO’A( lim sup [,< N) <el’? + gy
-0 2eCnNB(zy, 8)
and since this holds for all &, > 0 sufficiently small and &, > 0 as &; = 0, we
get

(5.57) QZO’A( lim  sup I, < N) 0.
-0 ;eCnB(z, 8)

Finally, since this holds for all N, we have
(5.58) QZO’A( lim sup [,< 00) =0.
-0 ,eCNB(zg,
Let {A,);_, be an increasing sequence of compact sets such that 4,1 S.
Then, by (5.58) with A = A, and Proposition 4.2, we have
(5.59) QZO( lim sup [, <on {(w,?) < {(w)}) =0,
60 z2€CNB(zy,d)
which is equivalent to ’

(5.60) [°°P20( lim sup Li<wn{t< g})e-tdt =0.
0 -0 ,eCnB(zy,8)
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It now follows from Fubini’s theorem that

(5.61) PZO( lim sup Li<on{t< {}) =0 foralmostallzt e R™.
820 ;eCnB(z,, )

Let @ c R* be a countable dense set for which (5.61) holds. Then

(5.62) lim sup Li=w VteQn][0,{)as. P>,
-0 ;eCnB(z,, 8)

Therefore, by the monotonicity of the local time, we get (5.36). O

REMARK 5.5. It may be useful to point out that in some ways the proof of
Theorem 5.4 is similar to the proof of Theorem 5.1. In Theorem 5.1, a key role
is played by the fact that the set B in (5.4) has measure one. This is used twice
in obtaining (5.8). We cannot obtain an analogue of this when the Gaussian
process is unbounded because in this case the oscillation function 8 is infinite.
Nevertheless we can use different versions of Borell’s inequality to bound
sup, < 7 3(G%(2) — a*(2, 2,)G*(z,)) above and below, when T is a finite index
set. [Note that this term is essentially the same as sup, . 7 3(G%(2) — G*(z,)),
since a*(z, zy) > 1 as z — z, and is easier to work with.] This is what we do in
Lemma 5.2 since

n%(z 1
)| ol m)n(2)G(z0) = 3(G%(2) - 0%z, 20)G%(20)).

[In Lemma 5.2, stressing the independence of n and G(z,), we consider G(z,)
fixed and equal to a real number y.] The key point is that we can put |y| in
(5.26). This inequality is used to estimate the set B in (5.28) which is used
with the isomorphism theorem to give (5.40b). The inequality in (5.27) gives
(5.40c). Then as in the proof of Theorem 5.1, we consider /, and G(z,) on a
product probability space and take |G(z,)| as small as we wish. Theorem 5.4 is
complicated by the fact that we must consider the relationship between «, o, ¢
and 7.

6. Continuity and boundedness of local times. Let X be a strongly
symmetric standard Markov process with lifetime ¢ and local time L =
{L?, (¢t,y) € R*x S}. In Example 1 of Section 4, we considered the stochastic
process {L3, y € S} obtained by replacing ¢ in L} by an independent exponen-
tially distributed random variable A, because this process and the Gaussian
process associated with X are what appear in the isomorphism theorem. It
follows easily from the isomorphism theorem that if the associated Gaussian
process has a version with continuous sample paths-almost surely, then so
does {L}, y € S}. Therefore, the problem that confronts us is to show that if
{L3, ¥ € S} has a version with continuous paths almost surely, then so does
"{L?; (t,y) € R*x S}. This, unfortunately, turns out to be rather complicated
for us. In Theorem 6.2 we show the continuity almost surely of {L?, (¢,y) €
[0,¢) X S} and in Theorem 6.3, using the fact that X is a Hunt process, we
extend the joint continuity of LY to R*X S. In Theorem 6.1, we consider the
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continuity of the local times of a restricted class of strongly symmetric
standard Markov processes. However, Theorem 6.1 is actually the main result
of this section. We apply it, in theorem 6.2, to the more general processes that
we are concerned with by considering versions of these processes that are
killed when they exit a compact set. .
When we say that a stochastic process L = {L?, (¢,y) € R*x S} is a version
of the local time of a Markov process X, we mean more than the traditional
statement that one stochastic process is a version of the other. Besides this, we
also reqlAlire that the version is itself a local time for X, that is, that for each
y €S, L? is a local time for X at y, as defined in Section 3. To be more
specific, suppose that L = {L?, (t,y) € R*X S} is a local time for X. When we
say that we can find a version of the local time which is jointly continuous on
T X S, where T c R*, we mean that we can find a stochastic process L = {L?,
(¢,y) € R*x S} which is continuous on T X S almost surely with respect to
P~ for all x € S and which satisfies, for each x, y € S,
(6.1) LY=Ly} VteR*as. P~
Following convention, we often say that a Markov process has a continuous
local time, when we mean that we can find a continuous version for the local
time.

THEOREM 6.1. Let X be a strongly symmetric standard Markov process
as defined in Section 3 but with the following additional condition: That
u(x,y) = ux,y), given by (3.9), is bounded and uniformly continuous on
(S X 8). Then, if u(x, y) is the covariance of a mean zero continuous Gaussian
process {G(y), y € S}, we can find a version of the local time of X which is
Jjointly continuous on [0,{) X S.

Proor. Let f < bp.” be strictly positive and in L(dm). Define

h(x) = Uf(x) = [u(x,5) f(y) dm(3).

By our assumptions on u and f, A(x) is bounded and uniformly continuous on
S. Furthermore, & is an excessive function with respect to X [because u(x, - )
is] and A(x) > 0 for all x € S. [To see this last point, let 1(-) be the indicator
function of S and note that Uf(x) = 0 implies U1(x) = 0, which implies that
U“l(x) = 0 for all « > 0. But, for a standard Markov process,
lim, ., aU%l(x) = 1]

For A € .7 define the finite measure

my(A) = /A f(y) dm(y),

¥

so that, obviously,

h(x) = [u(z,y) dmy().
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For this function 2 we consider the A-transform of X discussed in Example 2
of Section 4 but with the measure m replaced by m, so that (4.25), (4.26) and
(4.27) are satisfied. This is a Markov process on the probability space (2, P*/*)
with expectation operator E*/%. It follows, by Theorem 3.2, that X has a local
time L ={L}, (¢,y) € R*X S}. In Example 2 of Section 4 we show that
{L2)"_,, y; € S, considered as a sequence of random variables on (2, P*/*),
satisfies (4.1) of Theorem 4.1. Therefore, by Theorem 4.1, (4.2) holds for this
sequence and the mean zero Gaussian process with covariance u(x,y). In
particular, it follows from (4.30) and (4.31) that

u(x,y)h(y)
h(x)
This shows that LY € L}(Q, P*/*) for all y € S.

We show first that L is jointly continuous on R*X S almost surely with
respect to P*/". Consider the martingale

(6.3) Ay = E/M12F,)
and note that

(6.2) E*/"(L2) =

Ly=LY+ L6, =LY+ 1, ,L26,.
Therefore,
Ay =LY + E’C/h(lﬂq}Lf’o0 0,| F, )
=Ly + 1(t<g)Ex/h(Lo{°0t"% ) = Lty + 1(t<{)EXt/h(L£),

where we use the Markov property for the A-transform process. It follows
from (6.4) and (6.2), along with the convention that 1/A(A) = 0, that
u( X, y)h(y)

h(X,)
At this point, let us note that if f(x) is an excessive function for the semigroup
P,, then f(x)/h(x) is an excessive function for the semigroup P{*’ defined in
(4.22). Also, by Sharpe [(1988), 62.19], X, is a right process for P*/*. Conse-
quently, f(X,)/h(X,) is right continuous almost surely with respect to P*/*,
* [See Sharpe (1988), 7.1.] Therefore, if we take f(x) = u(x,y), we see that AY
is right continuous. Let D be a countable dense subset of S and F a finite
subset of D. Since

(6.4)

(6.5) AY =L} +

sup A} - Aj= sup |A} - Ajl
o(y,2)<é ply,2)<é
y,zeF y,2€F

is a right continuous, nonnegative submartingale, we have, for any ¢ > 0,

1 .
P*/"|sup sup A} — AZ> e) < —E"/"( sup L2 — Li)
t=0 p(y,2)<é € p(y,2)<é
y,ZEF : y,zEF

(6.6)

IA

1 h
—E*/ sup L2 — Lz|.
€ . p(y,2)<é

y,2€D
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Let E; be the expectation operator of the Gaussian process. It follows from
Example 2 of the isomorphism theorem that

E"/"( sup LO{—LfO)

p(y,2)<é
y,2€D
. Gy _ G)
< sup -
(6.7) o S 2
y,2z€D
1/2
G? G(z)[°
o(y,2)<8 2 2
y,2€D

where G, is given in (4.26). [Also, on the right-hand side of (4.2) we use the
Cauchy-Schwarz inequality twice and the fact that for a mean zero normal
random variable, say n, En* = 3(En2)2.] It now follows from Lemma 2.4 that
for any £ > 0, we can choose a 8 > 0 such that the first term in (6.6) is less
than £. Combining (6.5) and (6.6) we now see that

h
p*/ (sup sup LY —L?> 2.9)
t>0 p(y,z)<o
y,zeF

(6.8) <&+ P*/*|sup sup (u(X,y)h(y) — u(X,,2)h(2)) = ¢
t>0 h(Xt) o(y,2)<é

y,2€D

v(8) = sup sup (u(»x,y)h(y) —u(x,2)h(2)).
xeS p(y,z);&
y,2€

By the remark immediately following (6.5), with f(x) = 1, and by the remarks
immediately following Sharpe [(1988), 7.1], we see that 1/A(X,) is a right
continuous nonnegative supermartingale with respect to P*/*. Therefore,

€ v(8) . 1) v(9)
)S . E/h(h(XO))_sh(x)'

6.9) P*/*|su >
(6:9) PR~ ()
Sihce both # and u are bounded and uniformly continuous on S, by choosing
8 > 0 sufficiently small we can make the right-hand side of (6.9) less than &.
By this observation, (6.8) and (6.9), and taking the limit over a sequence of
finite sets increasing to D, we see that for any ¢ and € > O we can finda 6 > 0
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such that
6.10 P*/*lsup sup LY — L?> 2¢| < 2z.
t t
t>20 p(y,z)<é
y,z€D

It follows by the Borel-Cantelli lemma that we can find a sequence {8,}"_;,
8, > 0, such that lim; 8, = 0 and

1

(6.11) sup sup LY -Li< 3
t>0 p(y,z)<9,
y,2€D

for all i > I(w), almost surely with respect to P*/*.

Fix T < « and a compact set K € S. We will now show that L? is uniformly
continuous on [0, T'] X (K N D) almost surely with respect to P*/*. That is,
for each w in a set of full measure with respect to P*/* we can find an I(w)
such that for i > I(w),

1
(6.12) sup sup |LY - L% < 50
ls—tl <& ply,2)<8;
s,t€[0,T] y,zeDNK

where {8/}"_, is a sequence of real numbers such that §; > 0 and lim, _,, &} = 0.
To prove (6.12), fix w and assume that i > I(w), so that (6.11) holds. Let
Y ={y,,...,¥,} be a finite subset of K N D such that

Kc U B(yj’6i+2)’
j=1

where B(y, 6) is a ball of radius 6 and center y. Since each L)(w), j = 1,...,n,
is uniformly continuous on [0,T'], we can find a finite increasing sequence
t, =0,ty,...,t,_.<T, t, =T, such that ¢, —t,_,=208/,, for all m =
1,..., k, where 87, , is chosen so that

1
L7 (@) = L (o) < 5ive

Vj=1,...,n, Vm=1,...,k—1.

Let s;,s, €[0,T] and assume that s; < s, and that s, — s; < 87,,. There
exists an 1 < m < k — 1 such that

(6.13)

b1 <81 < Sy <tpiq
Assume also that y,z € K N D satisfy p(y,2) <8;,,. We can find a y, €Y
such that y € B(y;, §;,). If L}(w) > L;(w), we have :
IL}(w) = Li(o)l < IL? (@) = L7 (o)
£ (6.14) <L, (@) = LY (o) + LY (@) = LY (o)

+ Ly (o) = L7, (o)l +1L7 (@) = L] (o),

m

where we use the fact that L} is nondecreasing in ¢. The second term to the
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right of the last inequality in (6.14) is less than or equal to 2¢*2 by (6.13).
The other three terms are also less than or equal to 27¢*? by (6.11), since
p(y, ¥;) < 8,5 and p(y,2) < 8;,,. Taking & = 87,5 A 8,5, we get (6.12) on
the larger set [0, T"] X (K N D) for some T’ > T. Obviously, this implies (6.12)
as stated in the case when Ly(w) > Li(w). A similar argument gwes (6.12)
when LJ(w) < L;(w). Thus (6 12)is establlshed

In What follows we say that a function is locally unlformly continuous on a
measurable set in a locally compact metric space if it is uniformly continuous
on all compact subsets of the set. Let K, be a sequence of compact subsets of
S such that S = U5 _;K,. Let

(6.15) Q = {w|L}(o) is locally uniformly continuous on [0, ¢) X (S N D)}.
Let & denote the rational numbers. Then

A

0°= |J {wlL?(w) is not uniformly continuous
seR

l<n<w
on[0,s] X (K, ND);s <{}.

It follows from (6.12) and (4.23), using the fact that A > 0, that P09 =0

for all x € S, or equivalently, that

(6.16) P*())=1 VxeSs.

We now construct a stochastic process L = {Lt, (¢,y) € R*X S} which is
continuous on [0, ) X S and which is a version of L. For w € Q, let {L (w),
(t,y) €[0,¢) x S} be the continuous extension of {LY(w), (¢,y) € [0 ) X (S N
D)} to [0,{) X S. Set

| LY () = LY(w), if £ < {(w),
(6.17) LY (w) = hmln)fLy(w) if ¢ > {(w),
(0
%
and for o € Q°, set
(6.18) Ly=0 VtyeR*xS.

(L7, (¢,y) € R*X S} is a well-defined stochastic process which, clearly, is
jointly continuous on [0, ) X S. We now show that L satisfies (6.1). Recall
that for each z € D, {Lf, t € R*} is increasing almost surely with respect to
P*. Hence, the same is true for {L}, t € R*} and so the limit inferior in (6.17)
is actually a limit, almost surely with respect to P*. Thus {Lt, teR*}is
continuous and constant for ¢ > ¢, almost surely with respect to P*. Similarly,
Lt the local time for X at y is, by definition, continuous in ¢ and constant for
¢ > ¢, almost surely with respect to P*. Now let us note that we could just as
well have obtained (6.12) with D replaced by D U {y} and hence obtained
(6.16) with D replaced by D U {y} in the definition of Q. Therefore if we take
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a sequence {y,)7_, withy; € D such that lim; ,, y; = y we have that
lim L} = L? locally uniformly on [0,{) a.s. P*.

1>

By the definition of L, we also have
lim Ly = £ locally uniformly on [0,{) a.s. P*.
1—> 0

This shows that

(6.19) LY=Ly VYt<({as. P~

Now, since IA,{ and L} are continuous in ¢ and constant for ¢ > ¢, we get (6.1).
This completes the proof of Theorem 6.1. O

THEOREM 6.2. Let X be a strongly symmetric standard Markov process
with finite 1-potential density u(x,y) and let {G(y), y € S} be the associated
Gaussian process. If {G(y), y € S} has continuous sample paths, we can find a
version of the local time of X which is jointly continuous on [0,{) X S.

Proor. Let K be a compact subset of S such that K is the closure of its
interior (i.e., K = K. Let Z = {Z,, P*} be the Markov process obtained by
killing X at T., where T. is defined in (3.27), so that {,, the lifetime of Z, is
equal to T.. The transition probability and potential operators of Z are given
by Q, and V¢, defined in (3.29) and (3.47), restricted to K°. We have

(6.20) P*(F1,.,)=P*(Fl,.,.) VFe %,

Let a = 1. Under the assumptions of this theorem we showed in (3.32) and
Lemma 3.10 that V! has a 1-potential density #'(x,y) which is the covariance
of a continuous Gaussian process and which, in particular, is continuous on
S X S and is equal to zero if either x or y is contained in K°. Let v'(x,y)
denote the restriction of 5%(x, y) to K° X K°. By the above, v'(x, y) is bounded
and uniformly continuous. Note that v'(x, y) is a finely continuous density for
V(x, dy) and hence is the canonical density for Z defined by (3.9).

Define

(6.21) [y =Lip. y<K°

This is clearly a CAF for Z. We now show that L7 is a local time for Z. By
(6.16) we have, for x,y € K°,

A x w—t 3 . > A x i/2" —t J7
E (foe dL;‘“) '}%EIE ((f(,-_n/zne dL{)l(i/znqz,)

T i 72 ~
lim ) E ((j; e”? dL{)l(i/2"<T,‘-c))

n—o /2y i—1)/2"
h - Ex(jOT’“e—tdLg) - Ex(f:e-tdLg) - Ex(f; e"dL;‘“)
.

= ul(x’y) - Pflécul(x’y) = vl(x’y)'
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It follows from Blumenthal and Getoor [(1968), IV 2.13] that I:g’ is a local time
for Z.

Let Y be the Markov process obtained by killing Z at an independent
exponential time, that is, Z is killed at time A, where P(A > u) = exp(—u).
The 0-potential density for Y is the 1-potential density for Z. Thus we have a
Markov process Y with state space K° and bounded, uniformly continuous
0-potential density v'(x,y) on K® x K°. This process satisfies the hypotheses
of Theorem 6.1 and it is easy to see that L7, , is a local time for Y. It now
follows from (6.21) and the proof of Theorem 6.1, in particular from (6.15) and
(6.16), that L? is locally uniformly continuous on [0, Tgc A A) X D N K° al-
most surely with respect to P* X u, where, as in Section 4, u is the probability
measure of A and D is a countable dense subset of S. Next, we see by Fubini’s
theorem that L? is locally uniformly continuous on [0, Tgc A ¢;) X D N K°
for all ¢; € @ almost surely with respect to P*, where @ is a countable dense
subset of R™. Therefore, we have that L} is locally uniformly continuous on
[0, Txe) X D N K° almost surely with respect to P*.

Let K, = K?c K?,, be an increasing sequence of compact sets such that
U®_,K, =S. By Blumenthal and Getoor [(1968), I 9.3], lim, , Ty: = {.
Therefore, by the above argument with K = K, for each n, we see that L} is
locally uniformly continuous on [0, {) X D almost surely with respect to P~*.
We now complete the proof exactly as in Theorem 6.1, beginning with the
paragraph immediately following (6.16). O

In Theorem 6.2, we obtained conditions for the joint continuity of the local
time on [0, {) X S. Clearly, the local time is constant for ¢ > {. Theorem 6.3,
which is a consequence of the fact that the Markov processes that we are
considering are Hunt processes, enables us to show that the local time remains
continuous as ¢ — {. The ideas for the next proof were given to us by P.
Fitzsimmons.

THEOREM 6.3. Let X be a strongly symmetric standard Markov process
with finite 1-potential density u'(x,y) and let G = {G(y), y € S} be the associ-
ated Gaussian process. If {G(y), y € S} has continuous sample paths, we can
find a version of {L?, (t,y) € R*x 8}, the local time of X, which is jointly
continuous on R*x S.

Proor. Since G is continuous, its covariance u*(x, y) is continuous. There-
fore, by Theorem 3.8, X is a Hunt process. [Note that the assumption that
u(x,y) exists implies that the measure m on ‘the state space of X is a
reference measure.] We first assume that u(x,y) = u%(x, y) is uniformly con-
tinuous and bounded on S:..Let {; be the totally inaccessable part of ¢, the

lifetime of X, and let

P
(6.22) C, = (1[“0)) (t), teR",
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be the dual predictable projection of 1, (). By Sharpe [(1988), Section 35
and page 392], C, is a CAF.

Let v, denote the Revuz measure of {C,, t €« R*}. Thus v, is a o-finite
measure on S with the property that

(6.23) B([e(X) dC,| = fu(x,3)8() dn()

for all g € b [Revuz (1970)]. Let f € b.” be strictly positive and in L'(m +
v,) and set

(6.24) h(x) = [u(x,y) f(y) d(m + v.)(9)-
We will show below that
(6.25) P*(-, ¢ < w) < P¥/h(), VxesS,

where P*/" is the probability measure of the A-transform of X as defined
between (4.22) and (4.23) for h as given in (6.24).

We now show that this theorem follows from (6.25). Note that A is
bounded, strictly positive and the potential of the finite measure fd(m + v,).
Therefore, following the proof of Theorem 6.1, we can obtain (6.12) for the
local time of X almost surely with respect to P*/%. By (6.25) and the fact that
(6.12) holds for all T > 0, we see that

(6.26) {L?(w),(t,y) € R*X D} islocally uniformly continuous

whenever w € {{; < ©}, except possibly on a set of P* measure zero. To
remove the restriction that w € {{; < ©}, we note that by Sharpe [(1988),

(44.5) and (47.10)(ii)],
{(w), ifX, €8,
0, otherwise,

(6.27) {i(w) = {

so that if {,(w) = o, then either {(w) = © or X,_= A. In either case, the fact
that the proof of Theorem 6.1 shows that almost surely with respect to P¥,
(L7, (t,5) €[0,¢) x D}

is locally uniformly continuous, implies that (6.26) holds even when ¢; = =.
(Here we use the fact that L} only increases for those ¢ such that X, =y.)
Having established that (6.26) holds almost surely with respect to P*, we use
this and follow the proof of Theorem 6.2 to show that (6.26) also holds under
the hypotheses on u! given in this theorem and we can obtain a jointly
continuous extension of (6.26) to R*X S. Finally, we. proceed as in Theorem

6.1 to show that the extension is a local time for X.
It remains to establish (6.25). We first define the CAF,

t+C, t<{,
A, = [+ C,, t=¢.

By the absolute continuity theorem [Blumenthal and Getoor (1968), V 2.6],
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there is a function a(:) € b.” such that

t
(6.28) C, = [a(X,)dA,.

0

Let k,, s € R*, denote the usual killing operators [Sharpe (1988), 11.3]. Let F
be a random variable on (Q, P*). We have

E*(Ff(X,_),{; <®) = E*(Fok, f(X,_),{; <)
(6.29) = Ex(waF°ksf(Xs—) dl[:i,w>(3))

=Ex(j0°°F°ksf(Xs_)dCs)»

since Fok f(X,_) is predictable [Sharpe (1988), Section 11] and C, is the
dual predictable projection of 1, .(s). By (6.28) the last line in (6.29) equals

B*([F ok f(X,)a(X,) A,
(6.30) - Ex(j:Foksa(xs_)f(xs) dAs)

- E(wa ka(X, )ok, f(X,) dAs),
0
since A, is continuous and {s|X, # X, _} is countable. Note that by (6.23),
Bo([7(x) da,) - B*{ [Ty ds + [TF(x,) ac]
0 0 0

(6.31)
= [u(x,9) F()d(m(y) + 1)) = h()

so that, in the notation of Sharpe [(1988), page 299], h = u 5, where
t
B, = [f(X,)dA,.
0
It now follows from Sharpe [(1988), 62.24] that the last term in (6.30) equals

(6.32) E*/"(Fa(X,_))h(x).

[Note that there is an obvious typographical error in Sharpe (1988), 62.24.]
Since f(X,_) > 0 on {; < o, we see by the equality of the first line of (6.29)
with (6.32) that (6.25) holds. This completes the proof of Theorem 6.3. O

., The following variation of Theorem 6.1 will be used in the proof of
Theorem 2.

THEOREM 6.4. Let X be a strongly symmetric standard Markov process as
defined in Section 3 but with the following additional condition: that
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u(x,y) = u’(x,y), given by (3.9), is bounded and uniformly continuous on
(S X 8). Let K be a compact subset of S. Then if u(x, y) is the covariance of a
mean zero continuous Gaussian process {G(y), y € K}, we can find a version of
the local time of X which is jointly continuous on [0,{) X K.

PrOOF. The proof follows the proof of Theorem 6.1 except that following
(6.5) we take D to be a countable dense subset of K. In going from (6.6) to
(6.8), the key step, we only need the hypothesis that the Gaussian process is
continuous on K. O

The next theorem is a modification of Theorem 6.1 which allows us to treat
boundedness of the local time.

THEOREM 6.5. Let X be a strongly symmetric standard Markov process as
defined in Section 3 but with the following additional condition: that
u(x,y) = u’x,y), given by (8.9), is bounded and uniformly continuous on
(S X S). Let K be a compact subset of S and D a countable dense subset of K.
Then, if u(x,y) is the covariance of a mean zero bounded Gaussian process
{G(y), y € D n K}, the local time of X is locally bounded on [0,{) X D N K
almost surely.

Proor. This proof is a rather obvious modification of the proof of Theorem
6.1. (Unless otherwise noted the following notation is the same as in Theorem
6.1.) Following (6.5) we take D to be a countable dense subset of K. In place of
(6.6), we use

1
P"/h( sup sup A > M) < ——E"/"( supLO{)
t>0 yeF M y€eF

(6.33)

o

A
S5|
£
<
>
=
®
=1
el
t~
<
N —

M yeDNK

where M > 0. Using the isomorphism theorem as in (6.7), but applied to the
supremum of G2%(y)/2 over D N K, we see that analogously to (6.8) and (6.9)
we have

p=/h supsupL';Vz2M)s£+Px/h(sup ! Zg)
(6 34) t=0 yeF M t>0 h(Xt) Y
C Y
<— 4+,
M Mi(x)

.where C is finite by (2.4) since {G(y), y € D N K} is assumed to be bounded.
Furthermore,

(6.35) y=sup sup u(x,y)h(y) <.
xeS yeDNK
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It follows by (6.34) and (6.35) that

sup sup L} <o as. P*/",
t>0 yeDNK

An argument analogous to the one employed in (6.15) and (6.16) shows that

sup sup LY <o forall T <{a.s. P*.
0<t<TyeDNK

This completes the proof of Theorem 6.5. O

The next theorem is a modification of Theorem 6.1 which allows us to treat
continuity of the local time at a point in the state space of the Markov process.

THEOREM 6.6. Let X be a strongly symmetric standard Markov process as
defined in Section 3 but with the following additional condition: that
u(x,y) = u’x,y), given by (38.9), is bounded and uniformly continuous on
(S X S). Let {L?, (t,y) € R*X S} be the local time of X. If u(x,y) is the
covariance of a mean zero Gaussian process {G(y), y € S}, which is continu-
ous at a point y, € S, then for any countable subset D of S with y, € D,
{L}, (t,y) € R*X D} is continuous at y, for all t € [0, ) almost surely.

Proor. The proof follows the proof of Theorem 6.1 except that following
(6.5) we take the supremum over {y, z € Flp(y, y,) < 8, p(2,,) < 8}. In (6.7),
the key relationship, we use

@0 | _,
2 2 o

lim E; sup
80
p(y,50)<8,p(2,y0) <8
y,2€D

which follows from (2.26). Following the proof of Theorem 6.1 and making the
obvious changes we get the proof of this theorem. O

7. Proofs of Theorems 1-8. All the ingredients for the proofs of these
theorems have been assembled in Sections 5 and 6. Nevertheless, it seems
useful to go over the proof of each of these theorems and make clear which of
the above results are used in each case.

Proor or THEOREM 1. If {G(y), y € S} is continuous almost surely, then it
follows from Theorem 6.3 that {L}, (¢,y) € R*X S} is continuous almost
surely. Conversely, suppose that L = {L}, (¢t,y) € R*X S} is continuous al-
most surely. It follows by Theorem 3.7 that u'(x, y) is continuous on S X S.
Let K be a compact subset of S. Then B(y) = 0 for all y € K, where B is the
oscillation function of G defined in Theorem 2.5, since if B(y,) > 0 for some
'yo € K, then either Theorem 5.1 or Theorem 5.4 shows that L has either a
bounded discontinuity at y, or is unbounded at y, almost surely with respect
to P”o. By (2.38) of Lemma 2.8, we see that G is continuous almost surely on
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K. Since this is true for all compact subsets of S, we see that the continuity of
L implies the continuity of G. O

Proor oF THEOREM 2. Assume that {G(y), y € K} is continuous. To show
that L? is jointly continuous on R*X K, we repeat the proofs of Theorems
6.1-6.3, noting several rather obvious changes. The modification of Theorem
6.1 that we will use is given as Theorem 6.4. Consider the proof of Theorem
6.2. In the first four paragraphs of this proof the compact set K is used in two
contexts. To determine the set K¢ on which X is killed and to determine the
domain of L;, let K; C S be a compact set such that K ¢ K, where K is the
set in the hypothesis of this theorem (Theorem 2), and reconsider the first four
paragraphs of the proof of Theorem 6.2 with X killed when it hits K{ but
with K still the domain of L,. Also, in these paragraphs, replace Theorem 6.1
by Theorem 6.4 and understand the statement ‘proof of Theorem 6.4” to
mean the minor alteration of the proof of Theorem 6.1 which proves Theorem
6.4. Making these changes we obtain, in place of the final sentence in the
fourth paragraph of Theorem 6.2, the statement, “Therefore, we have that L}
is locally uniformly continuous on [0, Tk,) X D N K.” We conclude our analogy

with the proof of Theorem 6.2 as in the final paragraph of that proof but
whereas we take K, 1 S in defining Tx., we continue to restrict the domain of
L; to K. Thus we get that under the hypotheSIS of this theorem, L} is jointly
contlnuous on [0, {) X K almost surely.

As in the extension of Theorem 6.1 to Theorem 6.3, the continuity of
u'(x, y) along with Theorem 3.8 shows that X is a Hunt process. An obvious
analogue of Theorem 6.3 now shows that L7} is jointly continuous on R*X K
almost surely.

For the converse, suppose that L = {L}, (¢,y) € R*X K} is continuous
almost surely. The argument given in the second half of the proof of Theorem
1 shows that G is continuous on K. O

Proor oF THEOREM 3. Assume that {G(y), y € K} is bounded. Thus Theo-
rem 6.5 holds. We adapt the. argument of Theorem 6.2 to Theorem 6.5
similarly to the way we adapted it to Theorem 6.4 in the proof of Theorem 2.
Aga.ln we distinguish between the sets K, which define TKc, the time at which
X is killed, and the fixed set K such that D N K is the domain of L,.
Following the argument of Theorem 6.2, first considering the Markov process
Z and then Y and using it in Theorem 6.5 with some fixed K, (in the notation
of Theorem 6.2), we get that L? is locally bounded on [0, Ty A A) X (D N K©)
almost surely with respect to P* X u, where A and u are as in Theorem 6.2.
[We note that the bound in (6.34) does depend on the set K, since we have
xe€ K] Passmg to the limit as K, 1S and noting that llmn e TKc ={, we
obtaln that L? is locally bounded on [0, A A) X (D N K°) almost surely with
" respect to Px X u, from which we get, by Fubini’s theorem, that L} is
bounded on [0, 7] X D N K for all T < { almost surely with respect to P". By
the continuity of ©(x,y) and Theorem 3.8,.we have that X is a Hunt process
and the argument of Theorem 6.3 enables us to remove the condition T < {.
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This completes the assertion that the boundedness of G' implies the bounded-
ness of the local time.

Suppose that {G(y), y € D N K} is unbounded on a set of positive probabil-
ity. It then follows from (2.39) and Theorem 5.4 that {L?, (¢,y) € [0,T] X D N
K} is unbounded for all T > 0. This contradiction establishes the converse.

) O

Proor oF THEOREM 4. Consider B(y,), the oscillation function of G at y,.
Since B(y,) is either zero, greater than zero but finite, or infinite, it follows
from Theorem 2.5 that one and only one of the following three possibilities
holds:

(7.1) G is continuous at y, almost surely.
(7.2) G has a bounded discontinuity at y, almost surely.
(7.3) G is unbounded at y, almost surely.

Therefore, to prove this theorem it is sufficient to show that each of the
possibilities (7.1)—(7.3) implies the corresponding behavior of the local time
stated in this theorem. The case governed by (7.3) immediately follows from
Theorem 5.4. Suppose that (7.1) holds. Then we have Theorem 6.6. We extend
this result by following the proof of Theorem 6.2 as we did in the proof of
Theorem 2, taking K, 1 S in defining Tk. while considering the continuity of
L? at y,. An analogue of Theorem 6.3 shows that L} is continuous at y,
almost surely for each ¢ > 0.

Before considering the case governed by (7.2), let us note that if B(y,) < o,
then since it is upper semicontinuous, it is bounded in some compact neighbor-
hood K of y,. Therefore, by Lemma 2.8, G is bounded on K almost surely and
by Theorem 3, L? is bounded at y,. Now suppose that (7.2) holds. Since
B(y,) < = in this case, we see from the above remarks that L} is bounded at
¥o- On the other hand, since B(y,) > 0, it follows from the left-hand side of
(5.1) that L? has a bounded discontinuity at y, for ¢ € [0, {), almost surely
with respect to P¥o. However, it is easy to see by taking the limit as ¢ 1 ¢ that
the left-hand side of (5.1) remains valid for ¢ = {. Since L} is constant for
t > {, we see that under (7.2), L? has a bounded discontinuity at y, for all
t > 0 almost surely with respect to PY°. O

Proor oF THEOREM 5. By Theorem 2, if G = {G(y), y € K} is continuous
almost surely we can find a version of the local time which is continuous
almost surely. If {G(y), y € K} is not continuous, then by Lemma 2.8 we have
that the oscillation function of G at x,, B(x,), > 0 for some x, € K. This
'implies, by Theorems 5.1 and 5.4 along with the fact that G is separable on
any countable dense subset of K, that the event ‘“{(L}, (¢,y) € R*X D} is
continuous” has P*° measure zero. 0
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Proor oF THEOREM 6. This theorem follows from Theorem 4, Lemma 2.8
and Theorem 5.4 by essentially the same argument used in the proof of
Theorem 5. O

Proor oF THEOREM 7. If L is not continuous on R*X K almost surely,
then by Theorem 2 the associated Gaussian process {G(y), y € S} is not
continuous on K. Thus by Lemma 2.8, B(y) > 0 for some y € K. Theorem 7,
part (7.1), now follows readily from Theorems 5.1 and 5.4. Theorem 7, part
(7.2), follows similarly, beginning with Theorem 3. O

Proor oF THEOREM 8. This proof is identical to the proof of Theorem 7,
part 7.1. O

8. Necessary and sufficient conditions for continuity and bounded-
ness of Gaussian processes. In this paper we show how sample path
properties of the local time of strongly symmetric standard Markov processes
can be obtained from corresponding properties of Gaussian processes. The
main point of all this is that, in most cases, necessary and sufficient conditions
are known from these properties of the Gaussian processes and therefore we
now have them for the local times. In full generality these conditions are
complex. However, after a general discussion, we will introduce some simplify-
ing assumptions and obtain results that are tractable and often easy to apply.

The question of necessary and sufficient conditions for continuity and
boundedness of Gaussian processes has recently been completely settled by
Talagrand [see, e.g., Talagrand (1987) and Ledoux and Talagrand (1991)]. For
a real-valued Gaussian process G = {G(y), y € S}, where S is some index set,
there is a natural pseudometric

81 d =d(x,y) = (E(G(x) - G(»))°)

on S. [In all that follows we will assume that EG(y) = 0 for all y € S.] The
fundamental result on the continuity of sample paths of G is obtained when
(S, d) is a compact metric (or pseudometric) space. However, for Gaussian
processes which are associated with local times, we see from Lemma 3.6 that
d(x,y) > 0 whenever x # y so (S, d) is a compact metric space. The following
theorem restates some of the results in Ledoux and Talagrand [(1991), Theo-
rem 11.18] and Talagrand [(1987, Theorem 1].

THEOREM 8.1. Let G = {G(y), y € S} be a mean zero Gaussian process. If
there exists a probability measure m on (S, d) such that

1/2
n(B(3,2)) ) de <

[where diam S denotes the diameter of S cind B(y, ¢) is defined analogously to

; diam S
(8.2) sup f o (log
yeS "0
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(2.28)], then sup,, . g G(y) < » almost surely. If, in addition,

1/2
(8.3) lim sup fs(log ! ) d 0
. _— =0,
-0 yes 0 m(B(y,¢))
then G has a version with continuous sample paths. Furthermore, both (8.2)
and (8.3) are also necessary conditions in the sense that if there does not exist
a probability measure m on (S,d) for which (8.2) [resp., (8.3)] holds, then
sup, c s G(y) = o almost surely (resp., there is no continuous version of G).

Note that if there is no continuous version of G, then the oscillation
function of G cannot be identically zero on S. Therefore G has an almost
surely bounded or unbounded discontinuity at some point y, € S.

As is pointed out in Ledoux and Talagrand (1991), following the proof of
Theorem 11.18, a Gaussian process is continuous on a compact metric space
(S, p) if and only if it is continuous on (S, d) for d as given in (8.1) and d is
continuous on (S, p). This is important for us because we do not, in general,
specify the metric on the locally compact metric space which is the state space
of X.[By Theorem 3.7 we need only consider the case when d is continuous on
(S, p). Under this condition if (S, p) is compact, so is (S, d).]

If (S, p) is only locally compact, then, of course, a Gaussian process is
continuous on (S, p) if and only if it is continuous on all compact subsets of S.

We next consider conditions for continuity and boundedness of a Gaussian
process at a point y, € S. These conditions are not explicitly stated in Tala-
grand (1987) or Ledoux and Talagrand (1991), although they follow directly
from material presented in Talagrand (1991). We include a proof for complete-
ness. We are grateful to M. Talagrand for a helpful discussion relating to the
next proof.

THEOREM 8.2. Let G = {G(y), y € S}, (S, d) a compact metric space, be a
mean zero Gaussian process. A necessary and sufficient condition for G to be
continuous at y, € S is that there exists a probability measure m on (S, d) and
a sequence of closed balls D, ¢ S with N, _,D, = {yo} such that

) 1/2
(8.4) lim sup [*""" ) de =0,

log—————
n—w yep J0 ( gm(Bn(y,e))
where

B,(y,¢) = {x € D,: d(x,5) <e}.

A necessary and sufficient condition for G to be bounded at y, € S is that G is
bounded on D, for some n, that is, that (8.2) holds on (D,,d) for some n.

. Proor. Assume that G is continuous at y,. Then there exists a closed ball
Dl"around ¥, such that

(8.5) P( sup G(y) < po) > 0.
y€D,
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This implies by Theorem 2.7 and (2.24) that

(8.6) E sup G(y) < o.
y€D,

Let {D,};_, be a sequence of closed balls satisfying the conditions of the
hypothesis. It follows from Talagrand [(1987), Theorem 1] that there exist
probability measures m, on (D,, d) such that

1/2

diam D,
8.7 sup "log ———— de < KE sup G(y),
( ) yEDn'/;) ( mn(Bn(y’ 8)) yeD, ( )

where K is a universal constant. We note that since

sup G(y) < G(yo) + sup |G(y) — G(o)],

yeD, y€D,
it follows from the continuity of G(y) at y, and (2.24) that
(8.8) lim E sup G(y) = 0.

n—o®  yeD,
Without loss of generality we can choose m, and D, such that diam D, < 27"

and

diam D, 1 vz
8.9 sup - "(log—————— de <27
( ) ye€D, 'l(.) mn(Bn(y,s)) .
Let m, be the probability measure on S given by
m,(A) =m,(AND,) VAe /.
We define the probability measure m on S by

= ()
m()= ¥ —&

n=1

and note that by (8.9),

/diam D, (l 1 ) 12 d
sup og—————— £
yeD, “0 m(Bn(y’S))

(8 10) < sup [diam Dn(log n )1/2 .,
. < _— €
yeD, “0 mn(Bn(y>€))

diam D, 1 12
1 de.

%8 n(B.(y,¢))

Hence by (8.8) and (8.7), we get (8.4) when G is continuous at y,. On the other
hand, assume that (8.4) is satisfied for some measure m. We note that by

< (diam D,)(n log2)"*+ sup [
yeD, “0

-
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Ledoux and Talagrand [(1991), Theorem 11.18],

1 1/2
_ de,
® m(B.(,¢) )
since m is a subprobability measure on D,. Therefore, if (8.4) holds, we have

(8.12) lim E sup G(y) = 0.

n—o yeDn

Writing G(y) = G(y,) + G(y) — G(y,) and noting that EG(y,) = 0, we see
that

(8.13) E sup G(y) =E sup G(y) — G(y) =3 E sup IG(y) — G(¥0),

yE€D, y€D, yeD,

(8.11) E sup G(y) <K sup f amD(
y€E€D, y€D,

where, at the last step, we use the symmetry of G(y) — G(yo). We see from
(8.12) and (8.13) that if (8.4) holds, then G is continuous at y, almost surely.

Suppose that G(y) is bounded at y,. Then by the same argument used at
the beginning of the proof, we see that (8.5) holds for some closed ball which in
this instance we can call D,. The rest of the proof in this case now follows
from (2.24). O

The integrals in Theorems 8.1 and 8.2 are difficult to evaluate in general
but there are many weaker or more restrictive conditions for continuity or
boundedness of Gaussian processes that are easier to verify. Of course, these
results are implied by Theorems 8.1 and 8.2, although most were obtained
earlier [see, e.g., Dudley (1973), Fernique (1975) and Jain and Marcus (1978)].

Necessary and sufficient conditions for continuity of stationary Gaussian
processes were obtained by Dudley (1973) and Fernique (1975). These results
are often given in terms of metric entropy but we will present them in an
alternate form [see Jain and Marcus (1974) and Marcus and Pisier (1981),
Chapter 2, Lemma 3.6], involving the nondecreasing rearrangement of d(x, y).

THEOREM 8.3. Let S be a locally compact Abelian group and G =
{G(y), y € S} a mean zero stationary Gaussian process on S, that is, EG%(y)
= Const. forally € S and d(x,y) = o(x —y) for some function o on S. Let
K be a compact subset of S and define

wo(e) =Mx e Ko Klo(x) <e}
and

(8.14) o(u) = sup {ylu,(y) > u}, -
where A is Haar measure on S Then G has continuous sample paths if and

. only if

(8.15a) 1(7) = fol/zﬂ,g%)w du < .
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Note also that it follows from Jain and Kallianpur [(1972), Theorem 1, (1.7)]
that under the hypotheses of Theorem 8.3, G is bounded on K if and only if it
is continuous on K.

Condition (8.15a) is the one given by Barlow and Hawkes [Barlow (1975),
Barlow and Hawkes (1985)] for the joint continuity of the local time of a Lévy
process on the real line. Let {X(#), ¢+ € R*} be a symmetric Lévy process, that
is,

(8.15b) Eexp(irX(t)) = exp(—ty(A)),
where
(8.16) ¥(1) = 2j0°°(1 — cos Au)v(du)

for v a Lévy measure. We see from Theoremr 3.2 that X has a local time if and
only if (1 + ¢(A))~! € LY(R™). [See also Bretagnolle (1971) and Kesten (1969).]
It is easy to see, by considering the characteristic function of X, that when
1+ (A"t e LRM),

ul(x,y) +u'(y,y) — 2u'(x,y)
(8.17) 2 o1l —cosA(x —y)
_fo 1+ (1)

Thus by (1.2) and Theorem 8.3 the stationary Gaussian process with d(x, y) =
o(lx — y|) has continuous sample paths if and only if (8.15a) holds. This is the
condition in Barlow (1988), although, as we remarked in Section 1, in Barlow
(1988) it is not required that X be symmetric. For the readers’ interest we
note that the necessary and sufficient condition for the joint continuity of the
local time of a Lévy process on R* which is given in Barlow (1988) is still
(8.15a) but with

dAr = a%(lx — y).

o

2 o 1
0'2(|x —yI) = ;]; (1 —cos A(x _y))Re(1+—(ﬁ(/\)) da,

where (1) now is the exponent of the characteristic function of a real-valued,
not necessarily symmetric, infinitely divisible random variable.

The next theorem gives a simple sufficient condition for continuity of
Gaussian processes on a compact subset of R”".

THEOREM 8.4. Let G = {G(y), y € S}, S a compact subset of R", be a mean
zero Gaussian process. If there exists a nonnegative, nondecreasing function &
such that
(8.18) d(x,y) <6 (lx —yl)

,and I (6) < =, then G has continuous sample paths.
Necessary conditions for continuity or boundedness can be approached by

using comparison results such as those given in Jain and Marcus [(1978), II,
Lemma 4.4].
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THEOREM 8.5. Let G, = {G{(y), y € S} and G, = {G,(y), y € S} be mean
zero Gaussian processes with corresponding pseudometrics d (x, y) and d,(x, y)
as defined in (8.1). Suppose

di(x,y) <dy(x,y) Vx,yeS.

Then if G, is continuous (resp., bounded), G is continuous (resp., bounded).

In specific problems one can use Theorem 8.5 in conjunction with the
necessary part of Theorem 8.3 to show that a Gaussian process is not
continuous or unbounded.

Lastly we mention some metric entropy conditions which, in some cases, are
not difficult to apply. The upper bound in the next theorem is due to Dudley
(1973) and the lower bound to Sudakov (1969).

THEOREM 8.6. Let G = {G(y), y € S}, S some index set, be a mean zero
Gaussian process. Let N(S, €) be the minimum number of closed balls in the
pseudometric d that covers S. Then there exists a universal constant K such
that

K~ ' sup ¢(log N(S,¢))"? < E sup G(y)
£>0 yeS

(8.19) w
< K[ (log N(8,¢))"* de.
0

Furthermore, G is continuous on (S, d) if the integral in (8.19) is finite.

In (8.19) the criterion for boundedness of G is given as an inequality.
Similar inequalities exist for all the other conditions that we have given—they
can be found in the above references. ‘

9. Examples and comments. In this paper we devote considerable at-
tention to the study of local times with bounded discontinuities which come
from symmetric Markov processes with continuous 1-potential densities. In
part (a) of this section we will consider a class of symmetric Markov chains
with an instantaneous state which will provide examples of processes with
such local times. In part (b) we present the one result which we have found
that uses Markov process theory to give conditions for sample path continuity
of Gaussian processes which we do not think can be obtained from current
results in the theory of Gaussian processes. Lastly, in part (¢c) we explain how
our results imply some earlier ones on the joint continuity of the local times of
more general Markov processes than Lévy processes.

(a) Local times for certain Markov chains. We will first consider a class of
strongly symmetric standard Markov processes, with continuous 1-potential
density and with local times that have a bounded discontinuity. These exam-
ples were suggested to us by an example of M. Barlow. They are variations of
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an example by Kolmogorov (1951) of a Markov chain with a single instanta-
neous state.

We define a Markov chain through its 1-potential. The state space of the
chain is the sequence S ={1/2,1/3, ..., 1/n,..., 0 = 1/} with the topol-
ogy inherited from the real line. Clearly S is a compact metric space with one
limit point. Let {q,,};_, and {r,};_, be strictly positive real numbers such that

| Q

<o and lim q,=

n—o

o) 5o

We define a finite measure m on S by m(1/n) = q,/r, and m(0) = 1 and a
resolvent {U%, a > 0} on C(S) in terms of its density u*(x,y), x,y € S, with
respect to m. That is, for all bounded positive functions f on S,

(9.2) Uf(x) = /S u®(x,y) f(y)m(dy),
where

1
(9.3) u%(0,0) =

a + Z‘;?:z(aqj/(a + rj)) ’

u*(0,1/i) = u*(1/1,0) = u

i

a Ti
Tt (0.0 a+r,atr

u*(1/1,1/j) = W

One can check that u*(x, y) is symmetric and continuous on S and that U“
satisfies

(9.4) U*: C(S) - C(8),
(9.5) laUcl <1, aU*1=1,
(9.6) U — UP + (a — B)U°UF = 0
(9.7) lim aUf(x) =f(x) VzeS.

[For (9.7) we use the dominated convergence theorem.] It follows from Sharpe
[(1988), 9.26] that {U?% « > 0} is the resolvent of a strongly symmetric
standard Markov process X. By Theorem 3.2, X has a local time which we will
denote by L = {L/",(¢,1/n) € R*x S}. We will now examine the behavior of
the local time in the nelghborhood of LY.

, THEOREM 9.1. Let X, S and L be as described above. Let
( 2log n ) /2

Il

(9.8) B =B({q,}) = limsup

n—w
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where {q}}¥,_, is a nondecreasing rearrangement of {q,):_,. Then:
®

0\1/2 : 1/n 0 B 0\1/2

(9.9 (2L,) B < limsup L;/" — LY < ) + (2Lt) B

n—o

for all t > 0 almost surely.
@) If B = 0, {LL/"):_, is continuous at 0 and
(9.10) L L - Li
. imsup ———
n—>oop (log n/qn)l/2
(iii) Assume that {q,):_, is nondecreasing and B = . Then
1/k

= 2(L?)1/2 for almostallt > 0 a.s.

9.11 limsup sup ———— > 2(L0)"?
(9.11) o (log n/q.) 2 (L?)

for all t > 0 almost surely.

In the following lemma we will collect the results on Gaussian processes
that will be used in the proof of Theorem 9.1.

LemMA 9.2. Let {¢,),_, be a sequence of mean zero normal random vari-
ables. Let {a,},_, and {v,);_, be strictly positive real numbers such that

o

v
(9.12) Y 2 <w and lim v, = o,

n=1%n noe

Suppose that

1 1
E¢? = —~ and E¢¢, = , n#*m.

n a’nam

00

Then, with {vy},_, denoting a nondecreasing rearrangement of {v,}>_,, we
have :

. 2log n |2
(9.13) lim sup ¢, = lim sup = a.s.
n—oo n—o Un
Also
, 1€.,]
(9.14) limsup ——————= =1 a.s.

n-w (2log n/vn)l/2
Furthermore, if v, is nondecreasing and

2logn)1/2

(9.15) lim sup = o,
n—o v

n

then for any integer m and 0 < ¢ < 1072, there exists an ny, = ny(m, &) such
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that for all n > n,,

(9.16) median( sup §k) > (1-¢)

m<k<n

(2log,>:n)1/2

n

Proor. Let n* be a rearrangement of n such that {v,:} is nondecreasing.
Clearly, (9.12) remains unchanged if we sum on n* rather than on n. Hence
we will assume from now on that {v,},_; is nondecreasing. Let {n,)"_, be
independent normal random variables with mean zero and variance 1. By
(9.12), we can choose N sufficiently large such that (1/v, — 1/a%) > 0 for all
n > N. For n > N, define

1 1\v? 1
9.17 " = —— — — _+_ .
(9.17) M (vn ai) N _an""

We see by (9.12) that {7,,)°_, and {¢,)7_, are equivalent Gaussian sequences.
Therefore, with b, = (1/v, — 1/a%)'/?, we have

(9.18) lim sup ¢, =, limsup %, = limsup b,7n,,

n—oo n—oo n—oo
where =, means “equal in distribution.” The last equality follows since
(9.12) implies that lim, _,,1/a, = 0. The last expression in (9.18) is easy to
obtain because {7, ),_; are independent. Using

N,
(9.19) P( sup  b,m, > A) —1- T1(1-P(bym, > A))
N<n<N, n=N
and the standard tail estimate for normal random variables, along with the
fact that, by (9.12), lim, _,, b, = 0, we see that

(9.20) ‘ limsup ¢, = A*,
n—oo
where
(9.21) A = inf{)u Y e Ve < 00}.
n=1

Furthermore, we see by (9.12) that A* does not change if we replace 1/b2 in
(9.21) by v, for n > 1. Since we have taken (v,); _; to be nondecreasing we see
that in order to complete the proof we need only show that

2log n |2 i ,
( g ) = inf{)\: Y e Mn/2 < 00}.
n=1

n

(9.22) lim sup

n—ooo
Let
' 2log n

6 = lim sup

n—o n
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Then, given & > 0, there exists an N = N(¢) such that for all n > N,

(9.23) (213—;@5 > (1 - %)

and, if 8 < o, there exists an infinite subsequence n; of n such that

U, €
9.24 L5 < |1+ —=].
( ) 2logn; ( 2 )
It follows from (9.23) that X* < ((1 + £)8)*/2. To obtain a lower bound for A*,
we recall the well-known fact that if {c,,); _; is a nonincreasing sequence of real
numbers such that Y7 _;c, < «, then ¢, = 0o(1/n). Assume § <. If A =
((1 — €))%, it follows from (9.24) that
1
- 2!) .

e Nvn;/2 > —n§_8/2 ,
which implies that A* > ((1 — £)8)'/2. Since ¢ can be made arbitrarily small we
get (9.22) and hence (9.13) when it is finite. If § = o, for all A > 0 there exists
an infinite subsequence 7n; such that

v
n,

| =

< —.
2logn; A

Thus

e—,\%,,j/z > i ,

nj
which implies that A* > A and since this is true for all A, we get A* = . Thus
we have established (9.13) in this case also.

The statement in (9.14) is easy and well known. The upper bound follows
immediately from the Borel-Cantelli lemma and does not depend on E¢, ¢,
for n # m but only on E¢2. The lower bound in (9.14) is proved using
Slepian’s lemma. Let {n,);_; and p be independent normal random variables

with mean zero and variance one. For some 0 <& < 1/2, set

pe = Voréss v =m(1 — )%+ &'/%.
Let N, = Ny(¢) be such that E‘/v_jfjmgk < ¢ for all j, k > N,. Note that for
all j, k = N,, we have

E/.sz = EV,% and EIJ«j,ka =< EVij’ J*k

Therefore, by Slepian’s lemma [see, e.g., Jain and Marcus (1978), II, Lemma
4.3], for all N > N,, '
Vore .

su —_——
Nehew (2log k)72

sup m(1— )" + &%
N<k<o (2log k)?

. P > (1- 25)1/2)

>P

> (1- 28)1/2) =1,




LOCAL TIMES OF MARKOV PROCESSES 1677

which is easy to obtain since the {n,} are independent. Since this is valid for all
e > 0, we get (9.14).

To show that (9.15) implies (9.16), we note that by (9.12) we can choose an
m, > m such that

U £
a2
Then by (9.17) and the remark immediately following it we see that
sup £ > (1- 8)( 2lzgn )1/2)

mi<k<n n

p

(9.25)
> P( sup M, = (1 —¢)(2logn)"? + g'|n0|)

mi<k<n

for some & > 0. Since {n,} are independent normal random variables with
mean zero and variance one, it is easy to check [see (9.19)] that the last term in
(9.25) goes to 1 as n goes to infinity. The statement in (9.16) follows from this
observation and (9.25). O

ProoF oF THEOREM 9.1. By Theorem 5.1 we obtain (9.9) once we show that
2 is the oscillation function of a mean zero Gaussian process {G(x), x € S}
with covariance u!(x,y) given in (9.1) and (9.3). Consider

(9.26) £, =G(1/n) -G(0), n=23,....

Then for n > 2, we have
1 1 1

E¢? = ul(—, —) - 2u1(—,0) + u'(0,0)

n’n n

(9:27) r, 0.0v[1 r, \> l+a(n)

= —_— 4 _ -
i reol- T PR

where lim , _,, a(n) = 0. Also, for n # m, n,m > 2,

r, )(1 T ) u'(0,0)

1+ )\"  1+r,) Q+r)A+r,)

n

(9.28) E&,¢, = u1(0,0)(1 -

Setting, for n > 2,

(9.29) an d Lt
. v, = ——— and a,= —— 75,
1+ a(n) (ul(0,0))l/z

we see that (9.12) is satisfied. Thus by Lemma 9.2, we see that the oscillation
function of G(x) at x = 0 is twice the right-hand side of (9.2), which is equal
to 2B. Thus we have established (9.9). [Note that we also get an analogue of
(5.2).]
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To obtain (9.10), we note that it follows from (9.14) that
G(1/n) — G(0
(9.30) lim sup 6a/m) O iz =1 as.
now  (2(1+a(n))logn/g,)

This is equivalent to

. IG(1/n) — G(0)I
(9.31) limsup  sup 75 =1 as.
8-0 da/n,0<s (2d(1/n,0)logn)
n=2

It now follows from Theorem 9 that

. ILy/™ = L)

lim  sup 172
(9.32) 8=0 g /n,0<s (2d(1/n,0)log n)

nx>=2

= V2 (L))"

for almost all £ > 0 a.s.,
which is equivalent to (9.10).
The proof of (9.11) is actually contained in the proof of Theorem 5.4.
Consider the Gaussian process G = {G(1/m), G(1/(m + 1)),...,G(1/n),
G(0)}, with covariance u' as given in (9.3). As in (5.17)-(5.20), we define

(3]l 2 fo

( 1 ) EG(1/E)G(0)
a — = —
k’ EG?(0 1+r,’
(9.33) ) 0 rkk
o2= sup E 2(—) = sup ———,
m<k<n K k m<k<n qk(l + rk)

a=a,, ,= median( sup n(l))
’ m=<k<n k
Note that (9.16) holds with £, = G(1/k). However, since the right-hand side of
(9.16) goes to infinity as n goes to infinity, we see that it also holds with &
replaced by 7(1/k). Therefore, for any integer m and 0 < & < 10~2, there
exists an n, = ny(m, ) such that for all n > n,

2logn)1/2

(9.34) @,z (1- s)(

Following the proof of Theorem 5.4 for G, with z, = 0, we get (5.14b) where
[ is related to the local time of the associated Markov process as in Example 1
in Section 4, exactly as it is in the proof of Theorem 5.4. We choose z,, ¢, and ¢
as:in (5.42), (5.43) and (5.45). We can choose o to satisfy (5.46) by taking m
sufficiently large. We do not bother with N and M but note that by (9.34) we
can choose a as large as we like by taking n large enough. We continue
through the proof of Theorem 5.4 until (5.53). Using this and the upper bound
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on 20t, we obtain

1 ] gl/t
(9.35) Qw%am——<‘/g-—1%?2——%—)<ﬁ”,

zeT

where T'={1/m,1/(m + 1), ..., 1/n, 0}. It follows immediately from (9.35)
that

l [l
QO,A( sup al/k > go _ ei/“) > Q%4(Q) — &2,
m<k<n “m,n
and using (9.34) we see that
l [
0,4 1/k 1-— ]/_2 —gl/t
Q ( 1m sup mi‘;lln (2log n/q,,)l/z > ( €) ) £1

n—ow

> Q%4(Q) — 72

Since this is true for all ¢ and &, greater than zero and since /, ,, is finite
almost surely for each % > 2, we get
(9.36) limsup sup b > 52

n—oo 2<k<n (2].0gn/qn)1/2 - 8
on a set of full measure with respect to @%“. The constant 1/ V8 is the best
we can get following the proof of Theorem 5.4 as it is written. But the proof
can be strengthened. Instead of taking «; > 1/2 and a — o¢ > a/2 in the
proof of Theorem 5.4, we could have taken a; > (1 — y)and a — ot > (1 — y)a
for any y > 0 and proceeded with the proof with only minor modifications. In
this way we can increase the constant on the right-hand side of (9.36) by a
factor of 4. Using this improvement we see, as in the proof of Theorem 5.4,
that (9.36) implies that

© Ll/k 12
P°|limsup sup d <VZ(LOY?n{t <} |etdt=o.
'/(; n—oo 2<k<n (210g n/qn)1/2 ( t)
It now follows, as in (5.61) and (5.62), that for @ c R™ a countable dense set,

Ly* 1/2
limsup sup ————— > V2 (L? Vte@n[0,{)as. P°
ey sekon (2logn/q,)"” (L?) [0,¢)

Finally, by the monotonicity of the local time we get (9.11). O

Following the proof of Theorem 5.1, it is easy to see that if we square the
denominator on the left-hand side of (9.11), the resulting limit is bounded
"above by a constant. For more on this and related points see Marcus (1990).
The processes considered in Theorem 9.1 are symmetrized versions of an
extension by Reuter (1969) of Kolmogorov’s example. Kolmogorov’s example is
treated extensively in Chung [(1967), pages 278-283], where one can find a
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lucid description of the sample paths of the Markov chains that we are
considering. These processes have @ matrix

0 —®  Qy qs a4
1/2| 2 T2 0 0
1/3| Ts 0 -rg 0
1/4| T 0 0 —ry

Walsh (1978) gives an example of a diffusion with a discontinuous local time
but in his example u! is discontinuous. (Recall our Theorem 3.7.) In fact,
Walsh’s process is not symmetric and if one changes the measure to obtain a
symmetric process, then both u! and the local time become continuous.

(b) Gaussian processes. We next present a result about Gaussian pro-
cesses which follows from Theorem 1 that we cannot obtain by Gaussian
process methods alone.

THEOREM 9.3. Let X be a strongly symmetric standard Markov process
with a-potential density u®. If u® is the covariance of a continuous Gaussian
process, then u® is the covariance of a continuous Gaussian process for each
a >0 and so is u® if it is finite. If u® is the covariance of a continuous
Gaussian process, then u® is the covariance of a continuous Gaussian process
for each a > 0.

Proor. Our initial choice of the 1-potential density to express our results
was completely arbitrary. We could have used the a-potential density for any
a > 0. Thus if u% is the covariance of a continuous Gaussian process, it
follows from Theorem 1, proved with respect to u®°, that X has a jointly
continuous local time. Since u® < » for some a > 0 implies u® < o for all
a > 0, it follows from Theorem 1, proved with respect to u*, that u* is the
covariance of a continuous Gaussian process. If u° < o, it follows from
Theorem 1, proved with. respect to u°, that it, too, is the covariance of a
continuous Gaussian process. If #° is the covariance of a continuous Gaussian
process, then of course, it is finite and hence u® <  for all @ > 0. By the same
reasoning as above, u® is the covariance of a continuous Gaussian process for
each @« > 0. O

We can get part of Theorem 9.3 by standard Gaussian techniques. Denote

(9.37) d(x,5) = (u*(x, %) +u(y,5) — 2u%(x,5))""".

By Theorem 3.3, the probability transition density function p,(x,y) of X is
positive definite. Thus (p,(x, x) + p,(y,y) — 2px,y)) = 0. This implies that

do(x,y) >d,(x,5) ifag<a.

Thus, by Theorem 8.5, if u®° is the covariance of a continuous Gaussian
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process, so is u® for each @ > a,. However, this argument says nothing about
u® for 0 < a < aq.

(¢) Sufficient conditions for the joint continuity of local times. The most
general sufficient condition in the literature, for the joint continuity of local
times, that we know of is due to Getoor and Kesten (1972). Let X be a
strongly symmetric standard Markov process with state space (S, p) as de-
scribed in Section 3. Define

1/2

(9.38) Ul(x,y) = E*(e”™),  h(x,y) = (1 —¢'(x,9)¥'(y,%)) ",

where T}, is the first hitting time of y. The sufficient condition in Getoor and
Kesten (1972) for the existence of a jointly continuous version of the local time
of X is given in terms of the function . We will show that if A(x,y) is
continuous on S, then A is equivalent to the metric d defined in (1.2). This
means that all the results that we obtained for continuity of the local time,
expressed in terms of d, are equally valid with d replaced by 4. In particular,
Theorem 8.1 is valid with B(y,e) = {x € S: h(x,y) < €}. [Actually S is taken
to be a closed interval of the real line in Getoor and Kesten (1972). On the
other hand, symmetry is not required in Getoor and Kesten (1972).] The
following lemma shows that A is equivalent to the metric d.

LEMMA 9.4. Let h and d be given as in (9.38) and (1.2), respectively, and
let K be a compact subset S. Then

1 1/2 1 1/2
9.39) inf|—F—— d <h(x,y) < — d(x,y).
( ) ZIQK(Zul(z,z)) (%,7) < h(x,7) < ng};;(ul(z,z)) (%)

Furthermore, if h(x,y) > 0 as x = y for all x,y € K, then there exist con-
stants 0 < C, < C; < « depending on K such that

(9.40) Cod(x,y) <h(x,y) <C;d(x,y) Vx,y€eK.
PrOOF. One sees from Getoor and Kesten (1972) that

u'(x,y)

1/ N> xayes'
u'(y,y)

Yl(x,y) =

Therefore,
ul(x,x) — ul(x,) = u'(x,2)(1 = ¥'(3, %))
.= ul(x’x)(l - d’l(x’y)d’l(y7x))’

sﬂme both ¥(x, y) and ¢!(y, x) are less than or equal to 1. (See Lemma 3.6.)
Note that (9.41) also holds with x and y replaced throughout. Combining the
two statements, we get the left-hand side of (9.39). By Lemma 3.6 again, we

(9.41)
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note that
1 - ¢z, )0 (y,x)
1- llfl(x,y) +1- d’l(y’x)

(u'(x,x) —ul(x,y)) +

IA

1
- I _ 1
- ul(x’x) ul(y,y) (u (y’y) u (x’y))’
which gives the right-hand side of (9.39). To get (9.40) we need only note that
the conditions on A given before (9.40) imply that ©!(x, x) is continuous on K.
This completes the proof of Lemma 9.4. O

As we just remarked, all our results on continuity and boundedness can be
expressed in terms of A. In particular if K is a closed interval of the real line
and

p(v) = sup h(x,y),

lx—yl<v
x,y€K,

then it follows from Theorem 1 and 8.4 that if

2

f1/2 p(v) dv
o v(log 1/v)1/2

then X has a jointly continuous local time. This condition is a little weaker
than (2.17) in Theorem 2 in Getoor and Kesten (1972) and is the best possible
of its type. Note that by Theorem 8.4, this result is also valid on R”.

Acknowledgments. The work in this paper is a synthesis of two large
but generally independent areas of probability, Gaussian processes and Markov
processes. We have benefitted from the advice of experts in each of these areas.
In particular, we would like to thank M. Barlow, H. Kaspi, E. Dynkin, R.
Getoor, P. A. Meyer, M. Talagrand and J. Zinn. We would also like to thank R.
Adler who pointed out to one of us that the isomorphism theorem of Dynkin
might provide the link between Gaussian processes and local times which was
implicit in Barlow (1988). Above all, we want to thank P. Fitzsimmons who
provided the ideas for the proofs of Theorem 3.7 and 3.8 and Theorem 6.3, all
of which are very important in this work.

REFERENCES

ADLER, R. J. (1991). An Introduction to Continuity, Extrema, and Related Topics for General
Gaussian Processes. IMS, Hayward, Calif.

ADLER, R. J. and EpSTEIN, R. (1986). Central limit theorem for Markov paths and some properties
of Gaussian random fields. Stochastic Process. Appl. 24 157-202.

ADLER, R. J., Marcus, M. B. and Zm, J. (1990). Central limit theorems for the local times of

' certain Markov processes and the squares of Gaussian processes. Ann. Probab. 18

1126-1140.

Barrow, M. T. (1985). Continuity of local times for Lévy processes. Z. Wahrsch. Verw. Gebiete. 69
23-35.



LOCAL TIMES OF MARKOV PROCESSES 1683

BarLow, M. T. (1988). Necessary and sufficient conditions for the continuity of local time of Lévy
processes. Ann. Probab. 16 1389-1427.

Barrow, M. T. and Hawkes, J. (1985). Applications de I’entropie métrique a la continuité des
temps locaux des processus de Lévy. C. R. Acad. Sci. Paris Ser A-B 301 237-239.

BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory. Academic,
New York.

BLUMENTHAL, R. M. and GETOOR, R. K. (1970). Dual processes and potential theory. Proc. Twelfth
Biennial Seminar of Canadian Math. Congress, 137-156.

BoreLL, C. (1975). The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 207-216.

BovraN, E. S. (1964). Local times for a class of Markov processes. Illinois J. Math. 8 19-39.

BRETAGNOLLE, J. (1971). Resultats de Kesten sur les processus a accroisements indépendent. Sem.
de Probabilité V. Lecture Notes in Math. 191 21-36. Springer, New York.

CHuNG, K. L. (1967). Markov chains with Stationary Transition Probabilities, 2nd ed. Springer,
New York.

DubLEY, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1 66-103.

DynkiN, E. B. (1983). Local times and quantum fields. In Seminar on Stochastic Process.
Progress in Probability 7 64-84. Birkh&user, Boston.

DynkiIN, E. B. (1984). Gaussian and non-Gaussian random fields associated with Markov pro-
cesses. J. Funct. Anal. 55 344-376.

FeLLER, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New
York.

FERNIQUE, X. (1975). Regularité des trajectoires des fonctions aléatoire Gaussiennes. Ecole d’Eté
de Probabilités de Saint-Flour IV. Lecture Notes in Math. 480 1-96. Springer, New
York.

Frrzsimmons, P. J. and GETOOR, R. K. (1988). On the potential theory of symmetric Markov
processes. Math. Ann. 281 495-512.

FukusHIMA, M. (1980). Dirichlet Forms and Markov Processes. North-Holland, Amsterdam.

GeMAN, D. and Horowitz, J. (1980). Occupation densities. Ann. Probab. 8 1-67.

GETOOR, R. K. and KesTEN, H. (1972). Continuity of local times of Markov processes. Compositio
Math. 24 277-303.

HawkEs, dJ. (1985). Local times as stationary processes. In From Local Times to Global Geometry,
Control and Physics. Pitman Research Notes in Math. 150. Longman, Chicago.

HOFFMANN-J@RGENSEN, J., SHEPP, L. A. and DUDLEY, R. M., (1979). On the lower tails of Gaussian
seminorms. Ann. Probab. 7 319-342.

IT6, K. and Nisio, M. (1968a). On the oscillation function of a Gaussian process. Math. Scand. 22
209-233.

It6, K. and Nisio, M. (1968b). On the convergence of sums of independent Banach space valued
random variables. Osaka J. Math. 5 35-48.

JaiN, N. C. and KALLIANPUR, G. (1972). Oscillation function of a multiparameter Gaussian process.
Nagoya Math. J. 47 15-28.

JaN, N. C. and Marcus, M. B. (1974). Sufficient conditions for the continuity of stationary
Gaussian processes and applications to random series of functions. Ann. Inst. Fourier
(Grenoble) 24 117-141.

Jan, N. C. and Marcus, M. B. (1978). Continuity of subgaussian processes. In Probability on
Banach Spaces, Advances in Probability 4 81-196. Dekker, New York.

KesTEN, H. (1969). Hitting Probabilities of Single Points for Processes with Stationary Indepen-
dent Increments. Memoir 93, Amer. Math. Soc., Providence, R.I.

KoLMoGOROV, A. N. (1951). On the differentiability of the transition probabilities in homogeneous
Markov processes with a denumerable number of states. Ucen. Zap. MGY 148 53-59.

Lepoux, M. and TALAGRAND, M. (1991).. Probability in Banach Space. Springer, New York.

Marcus, M. B. (1990). Rate of growth of local times of strongly symmetric Markov processes. In

. Seminar on Stochastic Processes. Progress in Probability 5 253-250. Birkhéuser,

Boston.

Marcus, M. B. and PisiEr, G. (1981). Random Fourier Series with Applications to Harmonic
Analysis. Ann. Math. Studies 101. Princeton Univ. Press.



1684 M. B. MARCUS AND J. ROSEN

Marcus, M. B. and RoskN, J. (1991). Moduli of continuity of local times of strongly symmetric
Markov processes via Gaussian processes. J. Theoret. Probab. To appear.

McKEAaN, Jr. H. P. (1962). A Hoélder condition for Brownian local time. J. Math. Kyoto 1-2
195-201.

MEevYER, P. A. (1966). Sur les lois de certaines fonctionelles additives: Applications aux temps
locaux. Publ. Inst. Statist. Univ. Paris, 15 295-310.

MiLLAR, P. W. and TraN, L. T. (1974). Unbounded local times. Z. Wahrsch. Verw. Gebiete 30
87-92.

Ray, D. B. (1963). Sojourn times of a diffusion process. Illinois. J. Math. 7 615-630.

REUTER, G. (1969). Remarks on a Markov chain example of Kolmogorov. Z. Wahrsch. Verw.
Gebiete 13 315-320.

Revuz, D. (1970). Mesures associées aux fonctionnelles additives de Markov 1. Trans. Amer.
Math. Soc. 148 501-531.

SHARPE, M. (1988). General Theory of Markov Processes. Academic, New York.

SHEPPARD, P. (1985). On the Ray—Knight Markov property of local times. JJ. London Math. Soc. 2
377-384.

Supakov, V. N. (1969). Gaussian measures, Cauchy measures and e-entropy. Soviet Math. Dokl.
10 310.

TALAGRAND, M. (1987). Regularity of Gaussian processes. Acta Math. 159 99-149.

TrOTTER, H. F. (1958). A property of Brownian motion paths. Illinois J. Math. 2 425-433.

WaLsH, J. (1978). A diffusion with a discontinuous local time. Temps locaux. Asterisque 52-53
37-46.

WirtmaN, R. (1986). Natural densities for Markov transition probabilities. Probab. Theory Re-
lated Fields 73 1-10.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
Crty CoLLEGE oF CUNY COLLEGE OF STATEN IsLanD, CUNY
NEw Yorg, NEw York 10031 STATEN IsLAND, NEW YORK 10301



