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DISTRIBUTIONS OF SUBADDITIVE FUNCTIONALS OF
SAMPLE PATHS OF INFINITELY DIVISIBLE PROCESSES

By JAN RoOSINSKI! AND GENNADY SAMORODNITSKY ?

University of Tennessee and Cornell University

Subadditive functionals on the space of sample paths include suprema,
integrals of paths, oscillation on sets and many others. In this paper we
find an optimal condition which ensures that the distribution of a subaddi-
tive functional of sample paths of an infinitely divisible process belongs to
the subexponential class of distributions. Further, we give exact tail behav-
ior for the distributions of such functionals, thus improving many recent
results obtained for particular forms of subadditive functionals and for
particular infinitely divisible processes.

1. Introduction. In this paper we investigate the tail behavior of subad-
ditive functionals of paths of infinitely divisible (i.d.) processes. We recall that
a stochastic process X = {X(¢): ¢t € T'}, where T is an arbitrary index set, is
said to be i.d. if all its finite dimensional distributions are i.d. The class of i.d.
processes includes such processes as Gaussian, stable, Lévy and additive
random fields. Important examples of i.d. processes are harmonizable, moving
average, shot noise, fractional processes and others. Since the influence of the
Gaussian component on the tail behavior of subadditive functionals of i.d.
processes is asymptotically negligible in all the cases we consider, we restrict
our study to i.d. processes with no Gaussian component. The characteristic
function of such a process X can be written in Lévy’s form

E exp{i{B, X)}

(1) = exp{i(B,b) +/ [eiBre> — 1 — i(B,T(a))]v(da)}, B € RD),
RT

where b € R and v is the projective limit of the Lévy measures corresponding
to the finite dimensional distributions of X [see Maruyama (1970)]. Here R
denotes the space of real functions B defined on T such that B(¢) = 0 for all
but finitely many ¢,{B, @) = X, c78(t)a(t), and 7(aXt) = a(t)/(a*(¢) + 1).
Our goal is to show that for a large class of i.d. processes X and subadditive
measurable real functions ¢ defined on paths of X, the distribution of
¢ T(X(+)) = max{¢(X(-)), 0} belongs to the class . of subexponential distribu-

Received April 1991.
partially supported by the University of Tennessee Professional Leave Award, Center for
Applied Mathematics at Cornell University and AFOSR Grants 90-0168 and 91-0030.
" 2Partially supported by the ONR Grant N00014-90-J-1287.
AMS 1991 subject classifications. Primary 60G07, 60E07; secondary 60G57, 60HO05.
Key words and phrases. Subexponential distributions, infiniely divisible processes, tail behavior
of the distributions of functionals of sample paths, stable processes.

996

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Probability. STOR

. ®
www.stor.org



SUBADDITIVE FUNCTIONALS OF SAMPLE PATHS 997

tions, and also, to give an asymptotic evaluation for the tail of ¢(X(-)).
Natural examples of ¢ include supremum of the path, supremum of the
absolute value of the path, L? norm (F norm if p < 1) of the path and so on;
therefore our results characterize the distributions of such nonlinear function-
als of i.d. stochastic processes.

In Section 2 we prove that

(1.2) P{(X(")) > 2} ~vod (1)), a5z -,

provided v o ¢ ~}((x, )) is asymptotically equivalent to the tail of a distribution
in the class .. We recall that a distribution F on [0, «) is said to belong to the
subexponential class . if F(x) < 1 for every x and
1 ! 1-F=*F(x) 9

(1.3) 1= F(x) -2, asx — .
The class . contains the distributions with regularly and slowly varying tails
and log-normal distributions [see Embrechts, Goldie and Veraverbeke (1979)].
Other examples of F € . can be obtained from a theorem of Pitman (1980);
for example, F(x) ~ 1 — exp{x(log x)™™}, m > 0, x — o, belongs to .. Our
result (1.2) can also be viewed as a generalization to the multidimensional (in
fact, infinite-dimensional) case of a result of Embrechts, Goldie and Veraver-
beke (1979) given for a positive random variable and ¢ the identity mapping.
In this context we should mention the work of Pinelis (1989) who studied
subexponential distributions on infinite-dimensional spaces.

Most of the examples of i.d. processes can be obtained by the means of a
stochastic integral

(1.4) X(t) =fsft(s)M(ds), teT,

where M is an independently scattered i.d. random measure on a certain set S
and for each ¢, f, is a deterministic function of S. In this case the measure v
and the shift b in (1.1) can be given explicitly in terms of {f,},c, and the
parameters of M. This fact enables us to apply result (1.2) to processes
represented by (1.4) to get some more explicit results in the cases of stable
processes, ¢é-radial processes and others (see Section 3).

In Section 4 we address the question of when our assumption on the
asymptotic behavior of v o ¢~ ((x,%)) can be easily verified. We show that in
certain interesting cases of processes given by (1.4), this question reduces to
another one: When does the product of two independent random variables
have a distribution in the class .»? We conclude this paper quoting a result
from a forthcoming paper by Cline and Samorodnitsky that provides a partial
answer to the latter question.

. Finally, we should mention something about the methods in the paper.
They combine certain techniques developed in the study of probabilities in
Banach spaces with some standard methods in the study of subexponential
distributions. ;
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2. The main result. Let X = {X(¢): ¢t € T} be an i.d. process determined
by (1.1). In this section we shall assume that T is a countable set; therefore »
in (1.1) is a o-finite Borel measure on R7. Let ¢: R? — (—, »] be a measur-
able subadditive function, that is,

(2.1) d(a, + ay) < d(a;) + ¢(ay) forevery a,, a, € R,

Further we shall assume that there exists a lower-semicontinuous pseudonorm
q: RT - [0, »] such that

(2.2) lp(a@)l < q(a) forevery a € RT

[recall that a function q: F — [0, ], where F is a linear space, is said to be a
pseudonorm if g(x + y) < qg(x) + g(y), q(0) =0, and g(cx) < g(x) for all
x,y €F, |e| < 1]. Define H: (0,®) — [0, ] by

H(x) = v({a € RT: ¢(a) > x}).

TueoreM 2.1. Let X and ¢ satisfy (1.1), (2.1) and (2.2). Assume
P{q(X(-)) < ©} =1 and suppose that the distribution function F(x) =1 —
min{H(x), 1} belongs to the subexponential class * [recall (1.3)]. Then the
distribution of ¢ *(X(-)) = max{¢(X(-)), 0} belongs to . and

P{¢(X(")) > x}

I =1
ioe  H(x)

ReEMARK. Under the conditions of Theorem 2.1, F is a nondefective distri-
bution; see Lemma 2.1.

The proof of Theorem 2.1 is preceded by a proposition and two lemmas. In
the proposition we state several properties of the distributions from ./ for the
sake of convenient reference in the sequel; we refer the reader to Embrechts,
Goldie and Veraverbeke (1979) for the proofs of these properties.

ProposITION 2.1. Let F € 7 and put F(x) = 1 — F(x). Then:

() lim, _,, F(x + y)/F(x) = 1 uniformly in y over compact sets;
(i) lim, _ . e®*F(x) = =, for each & > 0;
>iii) if limx_m@(x)/l_?'-(x) =c¢ € (0,x), where G is a distribution function
on [0, »), then G € ./
(iv) if G(x) = o(F(x)) as x — », where G is a distribution function on
[0,®), then F+G € . and lim, _ F * G(x)/F(x) = 1;
W) if G(x) = e *L2_ (X" /n)F*™(x), then lim, _,, G(x)/F(x) = A.

+The next two lemmas are well known in the case when g is a norm on a
Banach space. Since, in our case, ¢ is only semicontinuous and not necessarily
a homogeneous pseudonorm on R?, we provide complete proofs of these
lemmas. Notice that the conclusion of the first lemma is true only for some
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7o > 0; an example showing that this is not true for all r, > 0 can easily be
constructed.

LemMmaA 2.1. Let X be given by (1.1) and suppose that P{g(X(-)) < «} = 1.
Then there exists ry > 0 such that v({a € RT: g(a) > ry}) < .

Proor. Since {X(¢)},  is a countable sequence of random variables, there
exists a: T — (0,) such that ¥, la(®)X(¢)]® < as. Therefore aX =
(a(®)X(t)),cp is an I%(T)-valued i.d. random variable. The [%T)-valued ran-
dom variable a(X — X'), where X' is an independent copy of X, is i.d. symmetric
with the Lévy measure given by

(2.3) w(A) =rv({a € RT:aa € A}) + v({a € R": aa € —A}),

for every Borel set A in [%(T). Let now {Z(x): u > 0} be an [%(T)-valued
stationary independent increment process with Z(1) =; a(X — X'). Let p(h) =
q(a™'h), h € [%(T); p is a lower-semicontinuous pseudonorm on [%(T') and

P{p(Z(1)) < »} = 1. Choose now a sequence m; > m, > --- decreasing to
zero such that
(2.4) pih: |hlzry=m;} =0 foreveryi=1,2,....

By the lower-semicontinuity of p, the set
A;={hel*(T): m,<|hlzr <m;_, p(h) >r}

is open, for every i, m, = «, and contained in {h: |hl;27y > m,}. Thus, for
each i > 1,

liminfrP{Z(n"') € A;} > n(A)).
By (2.4) and Fatou’s lemma we now get

w({h € (T): p() > 7)) = T p(4)

(2.5) lim infn f) P{Z(n™") € A}

— 00 .
n i=1

= lirr:iorolfnP{p(Z(n_l)) >r}.

IA

On the other hand, using the Lévy inequality adapted for pseudonorms, we
obtain

1- [1 - P{p(Z(n~Y)) > r}]n = P{ sup p(Z(J.n_ll) ~Z((j - Hn7h)) > r}

1<j<n

) sP{ sup p(Z(jn™")) > r/2}

l1<j<n
< 2P(p(2(1)/2) > r/4) )
< 2P{p(Z(1)) > r/4}.
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This implies that if r, > 0 is such that P{p(Z(1)) > r,/4} < 1/8, then we have
nP{p(Z(n~")) > ry} <log(8/7), foralln=1,2,....

Combining the above bound with (2.5) yields w(th € I*(T): p(h) > ry}) <
log(8/7). In view of the definitions of u and p, the proof is complete. O

In the proof of the next lemma we adapt a technique of deAcosta (1980),
who has proven a stronger result for Banach space valued random variables
(with g being a norm). Due to the nonhomogeneity of g, which invalidates a
standard use of Jensen’s inequality [cf. the proof of Lemma 2.2 in deAcosta
(1980)], and because g is only semicontinuous, this adaptation is not immedi-
ate.

LeEMMa 2.2. Let X be given by (1.1), and suppose that P{g(X(-)) < o} =1
and v({a € RT: q(a) > ry) =0 for some 7, > 0. Then E exp(eq(X(+)) <
for some ¢ > 0.

ProoF. We transform the problem to (T )-valued random variables in the
same way as in the proof of Lemma 2.1. Having u, p and the process {Z(u):
u > 0} already defined, let u; denote the restriction of u to the set {h € I*(T):
Ihll;2ry > 8}, B> 0, and let {Zy,(x): u > 0} be an 1%(T)-valued stationary
independent increment process such that Z,(1) has a symmetric id. dis-
tribution with Lévy measure p; and with no Gaussian component. Since
Z(Z5(1) = £(Z(1)), as 6 10, and p is lower semicontinuous, we have

(2.6) Eexp(ep(Z(1))) < li;ni(l)le exp(ep(Z5(1))),
for each ¢ > 0. Now fix § > 0, and define

Zy(jnt) = Zs((J — Hn~t), ifp(Zﬁ(jn_l) —Zy((j - Hn7Y))

0, otherwise.
PutS,, =X7"Y,;,m=1,...,n Weclam that
(2.7 S, = Z4(1) in probability, as n — .

Indeed, for every 6 > 0,

P(IS,, — Z5(1)| > 8} < P(S,,, # Z,(1))

(2.8) <1=P{p(Zs(n7")) < 2r0}n
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and, setting A, = n~ ' (I%(T)), we get
P{p(Zs(n™") = 2ry}

Y
=e_)‘n Z kf %

ws*{p(h) = 21}

=g *n Z En k,u,3 X,U,S{p(hl-i- +hk)22r0}
k times

<e "Z'k—!n—k/.LSX"'X/.LS
k times

1 k
el Z kn Tk [“S(ZQ(T)}] ’
because ws{p(h) > r,} = 0. We infer from the above bound that
nP{p(Zy(n~1)) = 2ro} < ne *n[e* — 1 — A, ]
=n[l-e*—2a,e*] -0,

as n — . This implies that the last term in (2.8) converges to 0, proving (2.7).
By the lower semicontinuity of p we get, for each £ > 0,

(2.9) E exp(ep(Z5(1))) < liminfE exp(ep(S,,)).
Now fix n > 1 (8 is fixed as well) and define
A, ={p(S,) <r,i=1,...,i—1,p(8,;)>r},j=1,...,n,

=UA4, m=1,...,n,

M= sup Eexp(ep(snm))’

l<m<n

where r, e > 0 will be speciﬁed later. We have

E[exp(ep(8,,))1s,] = | E[exp(ep(S,.m))lA]

< _ilE[exp(sp(Snj))lAj]Eexp(sp(Snm -8,)))

by the subadditivity of p and independence, and since the terms in S, ,, are
iid., the last expression is

<

~.
13

E[exp(ep(S,”) 1, ]M
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Since on A; we have p(S,,) <p(S,; ) +p(Y,;)) <r+2r, we obtain
the bound Elexp(ep(S,,,)1p | < exp(e(r + 2ry))P(B, )M, and because
p(S,,,,) <r on B¢, we conclude that

Eexp(ep(S,,)) <exp(e(r + 2ry))P(B, )M + exp(er), m=1,...,n.
Using the definition of M, we deduce from the above inequality that -
(2.10) M < exp(e(r + 2ry))P(B,)M + exp(er).

Define now V, ;, j = 1,..., n, such that
Y, + V., = Z,(jnY) - Zs((j - Dn7Y).
Using the symmetry of the set {h: p(h) < 2r,} we infer that
Y, -V, =2 Y,; + V,;.

Hence we get

1<k<n \j=1

P(B,) =P{ sup p( f:Ynj) > r)

l<k<n

k
< 2P{ sup p| 2 (Y, + an)) > r/2}
j=1

< 4P{p(Zs(1)) > r/4}
by Lévy’s inequality. Using Lévy’s inequality again we have
P{p(Z5(1)) > r/4) < 2P(p(Z(1)) > r/8)
for all § > 0. Choose now r > 0 such that P{p(Z(1)) > r/8} < 1/32. Then
P(B,) <} foralneN,
which, combined with (2.10), yields
(2.11) M < 47 exp(e(r + 2ry))M + exp(er).
Choose now ¢ > 0 such that exp(e(r + 2r,)) < 2. We get by (2.11)
M <27 'M + exp(er) < 27'M + 2,
therefore
Eexp(ap(\Snn)) <M <4 foreveryn €N.
In view of (2.9), ‘
E exp(ep(Zs(1))) <4 forevery s >0
and by (2.6) and the definitions of p and Z(1),
Eexp(eq(X(*) - X))} = Eexp(ep(2(1))) < 4.

Now a standard use of Fubini’s theorem completes the proof of the lemma. O



SUBADDITIVE FUNCTIONALS OF SAMPLE PATHS 1003
ProoF oF THEOREM 2.1. By Lemma 2.1 there exists ry > 0 such that v({a:
q(a) > ry}) < . Hence by (2.2),
H(x) <v({a:q(a) >x}) <x, foreveryx >r,.

Consider now the following decomposition of v:
v=v;+vy,+ vy,

where

vi(A) =v(A N {a: ¢(a) > ro}),

vy(A) = v(A N {a: q(a) > ry, d(a) <1o}),

vy(A) = v(A N {a: g(a) <ry}).
Notice that v; and v, are finite measures. Let X; = {X;(¢+): t € T}, j = 1,2,3,
be independent stochastic processes such that, for j = 1,2,
(2.12) Eexp{i(B,X;)} = exp{fRT[eim,w - 1],,j(da)}
and

E exp(i(B,X;)} = exp{i<ﬁ,b1> + fR e —1- i<B,T(a)>]Vs(da)},
where b, is éhosen such that
X=X, +X, +X,

[compare (1.1)]. We shall first show that
(2.13) P{¢(X;) >x} ~H(x) asx — .

Set A = v(RT) <  and let {Y,} be an i.i.d. sequence in R” with the common
distribution A ~'v,. By (2.12), X, can be represented as

N
(2.14) X, = LY,
j=1

where N is independent of {Y;} Poisson random variables with parameter A.
We have, by the subadditivity of ¢ and Proposition 2.1(v),

N
P{¢(X,) >x} =P ¢( XY, >xl

as.x — . Indeed,
(215)  P(¢*(Y,) > x} = A" lwy({a: 67(a) > a}) = A~ H(x)
for x > ry; thus the distribution of ¢ *(Y;) belongs to . by Proposition 2.1(iii)
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and the assumption of the theorem. We have shown that

(2.16) lim sup ﬂg‘(ﬁ;_x}

To obtain a lower bound we proceed as follows. Fix n > 1, M € (O ) and
consider

Aj(x) ={6%(Y,)>x+ (n — 1) M, ¢(Y,) <M forall i #j,i=1,...,n},

where x > M. The sets A(x),..., A, (x) are pairwise disjoint and, on each
A;(x), we have

¢+( f‘. Yi) = ¢+(Yj) - Z¢+(_Yi)
i=1 i#j
>x+(n—-1)M- Y q(Y,) = x.
i%j
Thus we get
fim fP{¢+(E§‘=1Yi) > x}
Py H(x)
.. P(Al(x))
> nhﬂlilfT(gT
P{op* (Y, n—1)M n-1
=nli£rii£1f (o7 )>Hx(;-)( ) }[P(q(Yl) sM)]

= nA~[P{g(Yy) < M})]"7},
by (2.15) and Proposition 2.1(i). Letting M — o we obtain
P{¢*(Z{..Y,) > x)

ligrcriio?f Hx) >nA"l,
Hence, using Fatou’s lemma, we have
TUY) >« * A" (XY >«
lim inf Pl (H(;)) }> ge — lim inf Pl (H(;)) }_

This completes the proof of (2.13).
Now we shall prove that

(2:17) P{¢*(X,) >x} =0(H(x)), asx — o,

In view of (2.12), X, can be represented in the form (2.14), where the Y;’s now
have the common distribution A "'y, and A = v,(R”) < «. By the definition of
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< P{ry,N > x} < exp(—r;'x)y(1),

vy ¢(Y;) < ry as. Hence

N
P{$(X,) > x} = P{qs( LY,

where ¢ is the moment generating function. of N. Then (2.17) follows by
Proposition 2.1(ii).
Now we shall show that

(2.18) P{¢*(X;3) > x} = o(H(x)), asx — o.
First we notice that P{q(X;) < »} = 1. Indeed, assume to the contrary that
P{q(X;) = } > 0. Since P{X, = X, = 0} > 0, by the independence we get

0 <P{X,=0,X,=0,g(X;) = o} <P{q(X) =},

which contradicts the assumption of our theorem. Therefore X; satisfies all
the assumptions of Lemma 2.2 (with v = v;) and by that lemma we have that
E exp(eq(X,)) < « for some ¢ > 0. Since

P{¢p*(X3) > x} < P{g(X;) > x}
<e *“*Eexp(eq(X3y)),

Proposition 2.1(ii) yields (2.18).

Now we can complete the proof of the theorem. In view of (2.13) and
Proposition 2.1(iii), the distribution of ¢ *(X,) is subexponential. Therefore by
Proposition 2.1(iv) we get

P{¢(X) > x} < Pl (X)) + ¢7(X,) + 61 (X;5) > x}
~ P{¢*(X,) > =},
as x — . This establishes

lim sup —~——P{¢(X) > %) <
x—e H(x)
Now, using again subadditivity of ¢, Fatou’s lemma and Proposition 2.1() we
get

lim fP{¢(X) > x} > Tim inf P{$(X,) — ¢(—X; — X;) > )
e = 10 Wt H(x)
.. Ple(Xy) > x + ¢(a))
> RThgl;rilol;lf H(z) w(da) =1,

where u is the distribution of —X, — X;. This completes the proof of Theorem
2.1. O .
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3. Infinitely divisible processes given by a stochastic integral. In
this section we apply the results of Section 2 to i.d. stochastic processes; it is
the possibility of this application that motivated the present research. Specifi-
cally, we consider i.d. processing given in the form

(3.1) X(t) = fsf(t,s)M(ds), teT,

where (S, &) is a measurable space and M is an i.d. random measure on
(S, &) with Lévy measure F and shift measure v,. That is, F is a o-finite
measure on (S X R, &/X &) and v, is a o-finite signed measure on (S, &).
The random measure M is a stochastic process of the type {M(A), A € &/},
where

Ay = {A € o M(A) = |y l(A) + ‘[Aﬁemin(l,ﬁ)F(ds,dx) < oo},

such that M is independently scattered [i.e., for any disjoint &7, sets
A, ...,A,, M(A),...,M(A,) are independent], o-additive [i.e., for any dis-
joint &7, sets A, A,,... such that U7_,A; € &, we have M(U7_,A;) =

7_1M(A),) as.] and for every A € &7, M(A) is a real i.d. random variable
with

E exp(i0M(A))
_ exp{i@vO(A) + /A[R(e“’x -1- ier(x))F(ds,dx)},

where 7(x) = x/(1 + x2).

We refer the reader to Rajput and Rosinski (1987) for more details on i.d.
random measures and on conditions on the kernel f(¢ s) in (3.1) ensuring
that the stochastic integral is well defined. We record at this time that the
Lévy measure v of the i.d. process {X(¢), ¢t € T} is given by v = Fo V™! where
V: 8§ X R - R” is defined by T(s, x) = {xf(t,s), t € T}.

The following theorem follows immediately from Theorem 2.1.

(3.2)

THEOREM 3.1. Let {X(¢),t € T} be a i.d. process given by (3.1), where T is
a countable set. Let ¢ and q satisfy (2.1), (2.2) and let P{q(X(:)) < o} =1,
Define H(y) = F({(s,x) € S X R: ¢(xf(-,8)) > y}), y > 0. If the distribution
function 1 — min{H(y), 1}, y > 0, belongs to the subexponential class *, then
the distribution of ¢ *(X(+)) is in . and P(¢(X(-)) > y) ~ H(y), asy — .

ExampLE (Lévy motion). Let X = {X(#): 0 < ¢ < 1} be a stationary inde-
pendent increment process without Gaussian component and let p be the Lévy
measure of X(1). Clearly

X(t) = foll(o;,](s)M(ds), 0<t<l,

where M is a random measure induced by X and F = Leb ® p. Berman (1986)
has proved that if X is also symmetric and if the right tail of the Lévy measure
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p, p((y, »)), is regularly varying of index —a, 0 < a < 2, then, as y — o,

P( sup X(£) >y) ~ P(X(1) >) ~ p((3,%)).

0<t<1

Using Theorem 3.1 with

¢(a) = sup a(?), q(a)= sup la(?)l

te[0,1] te[0,1]

t rational t rational
and computing easily H(y) = p((y,»)), we extend immediately the above
asymptotic equivalences to all (not necessarily symmetric) Lévy processes for
which the right tail of the Lévy measures p, p((y,»), are subexponential. (It
has been shown in Willekens (1987) that the first part of the equivalence above
extends actually to all Lévy processes with Lévy measure with a “long’ right
tail [i.e., lim, ., p((y + L, ))/p((y,)) = 1 for every L > 0].) O

Since the shift measure v, does not enter either the condition or the
conclusion of Theorem 3.1 [other than its role in the assumption that
the integrals in (3.1) are well defined], we will assume in the remainder of the
paper that, unless specified otherwise, v, = 0.

The structure of the i.d. random measure M and of the i.d. stochastic
process {X(¢), t € T'} becomes, usually, more transparent when we represent
the measure F' in the form

(3.3) F(A X B) =[Ap(s,B)A(ds), Ac o/, Be @,

where A is a probability measure on (S, &) and p(x,- ), s € S is a family of
Lévy measures on R. We regard A and p(s,* ), s € S as a parametric represen-
tation of the random measure M. This representation is, obviously, not
unique, and we refer (adding, therefore, another usage to the name) to the
probability measure A in (3.3) as a control measure of the random measure M.

An important class of functionals ¢ consists of homogeneous functionals,
satisfying, in addition to (2.1),

¢(ca) = co(a), c>0,a R,

Examples of such functionals ¢ include seminorms on R (e.g, | ll,, 1 <p <
®), sup, ¢ 7, limsup,, _,, a(¢,), and so on.

For homogeneous functionals ¢ we now proceed to develop conditions
sufficient for the conclusion of Theorem 3.1 in terms of a particular
parametrization of the random measure M. It will be seen subsequently that
these conditions are more explicit in the sense that they exhibit explicitly the
role of the kernel f(¢, s)in (3.1) and the parameters A and p(s,* ), s € S. We
will also be able to express the property of subexponentiality in a natural
language of random variables.
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For s € S and u # 0 define

inf{x > 0: p(s,(x,%)) <u}, if u >0,

R -
(u,5) inf{x > 0: p(s,(—»,—x)) < —u}, ifu<O0.

Let now ¢, U and V be three independent random variables: Let ¢ be a
Rademacher random variable, U be uniformly distributed on (0, 1) and A be
S-valued with distribution A. For an a > 0 let

(3.4) Z,= ¢ (ef(-,V))R(acU,V).

A straightforward calculation shows that for y > 0,

P(Z,>y) = %fs[p(s,(m,oo)) Aa
-y
T S’(“”w—(—m)) ha

Comparing (3.5) with an alternative (when ¢ is homogeneous) expression for
H(y),

(3.5)
AMds).

500 = f ol (50707

we notice that it is natural to state sufficient conditions for the conclusion of
Theorem 3.1 in terms of the random variable Z,,.
The following statement, of course, does not require a proof.

(3.6)

ProposiTION 3.1. Suppose that ¢ is homogeneous. If Z, belongs to the
subexponential class . and P(Z,>y) ~(1/2a)H(y) as y — «, then
P(¢p(X(-) >y)~H(y)asy - =,

In many cases, dealing with subexponentiality of Z, in (3.4) rather than
with subexponentiality of H(y) directly can greatly facilitate verifying the
latter. We will return to this point in the sequel.

ExaMmPLE (Stable processes). A typical representation of a stable process is
that of (3.1) with the random measure M being an a-stable random measure
with control measure m and skewness intensity B. That is, for any A € &7, =
{Be «: m(B) < x}, M(A) is an a-stable random variable with scaling pa-
rameter m(A)*/* and skewness parameter (1/m(A))[,B(s)m(ds).
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It is straightforward to verify that, in the language of the canonical repre-
sentation (3.3), this amounts to taking A ~ m and

1+ B(s)

d
p(s,dx) = %(s)aca—~2—x‘(“+l) dx forx >0

1-B(s)

2 ———(—x)"“"Vdx forx <0,

- ( s)ac,
where ¢, = (f(°,° x~%sin xdx)~ L.
Now, for any homogeneous subadditive functional ¢, we obtain immediately
from (3.6) and Theorem 2.1 that

(3.7) P($(X(*)) >y) ~EKy™*,
provided P(q(X(-)) < ») = 1, where

K=c¢,fs[ PO et e EE e oy mas.

We now consider an application in which (8.6) is only partly of help. Let
{X(?), t € T} be a measurable a-stable process on a separable metric space T';
we assume, as before, that the process is given by (8.1) (with T no longer
countable). Moreover, we assume that the kernel f(¢, s) is jointly measurable
in ¢ and s [this introduces no loss of generality; see Proposition 6.1 of Rosinski
and Woyczynski (1986) and Proposition 3.1 of Samorodnitsky (1990)]. Let » be
a o-finite Borel measure on T. Let p > 0. Assume that

1ALl/p
) < ®© a.s.

(3.8) L - [x@Po

We will show using Theorem 3.1 that
(3.9) P(Ip(X) > y) ~ Ky 2AAl/P) a5y — oo

where K = ¢, [s([7If(¢, $)Pv(d)*/Pm(ds).

In the case p > 1 this can be obtained also from Corollary 6.20 of Araujo
and Giné (1980). In the case 0 < p < 1, (3.9) improves upon Theorem 5.1 of
Samorodnitsky (1988).

We start with recalling that (3.8) implies that

a/p
(3.10) fS(/TV(t, s)I”v(dt)) m(ds) < c.

In particular, for m-almost every s, [7lf(¢, s)Pv(dt) < <. Let u be a Borel
probability measure on T, equivalent to v, and let A(¢) = v(dt)/u(dt). Let {r,:
n > 1} be a sequence of i.i.d. T-valued random variables with common distribu-
tion w, living on another probability space (Q,, &, P;). It follows by the
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strong law of large numbers that, for almost every o € Q,

n

1 1A1/p
(3.11) 1,(X) = 31_13:0(; Y lX(rl.)|Ph(ri)) .

i=1

By Fubini’s theorem, for almost every w; € Q,, (3.11) holds P-a.s. Another
application of Fubini’s theorem shows that there is an event Q¢ c Q, with
P,(Q9) = 0, such that for every w, ¢ Q9, (3.11) holds P-a.s. and for m-almost
every s € S,

1IA1l/p

' 1 n , 1A1/p )
(3.12) HJEEWmMMM) - ([ syputan)

To simplify notation, we consider the case 0 < p < 1 in the sequel. The case
p = 1 can be treated in an identical way.

Fix once and for all an w; & Q9, and consider an a-stable process {X(r,),
i > 1}. Define q: RU"» =1 — [0, ] and ¢: R =1 — [0, ] by

1 n
a(a) = sup— T la(r)Ph(7,),

i=1
1 n
o(a) = limsup; Y la(r)Ph(r;).
n—o i=1

Obviously, ¢ and ¢ satisfy (2.1) and (2.2). The function H(y) is easily
computable; it is equal to

a/p
H(y) =y'“/pcafs(lef(t,s)Ipv(dt)) m(ds).

Applying Theorem 3.1 in this setting, we get (3.9) for the case 0 <p < 1.
The case p > 1 can be treated similarly; ¢ is homogeneous in this case, so that
(8.6) can be used to find H.

EXAMPLE (¢-radial processes). The notion was introduced by Marcus (1987)
and it refers to the i.d. processes (3.1) such that:

1. sup, 7lf(¢, $)| = 1 for every s € S.
2. p(s,- ) = p(+) (independent of s) in (3.3).

This class of i.d. processes includes, in particular, symmetric a-stable
processes with bounded sample paths, 0 < a < 2.
Let ¢(a) = sup,c rla(®)l. It follows from (3.6) that

H(y) =p((y,%)) +p((—,—¥)), y>0.
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We obtain immediately the following conclusions. Let {X(¢#), t € T} be a
&-radial i.d. process with bounded sample paths. If the tail of p((y,®)) +
p((—,— y)) belongs to the subexponential class .7, then

im P(SupteTlX(t)l >y) _
y== p((y,%)) +p((=%,—¥))

Marcus (1987) has obtained this conclusion in the symmetric case under
more restrictive conditions (including regularly varying tail of the Lévy mea-
sure).

ExampLE (Oscillation of i.d. processes). Let {X(¢), ¢t € T} be a stochastic
process on a separable metric space (T, d), and let T, be a countable dense
subset of T. Given a nonempty set C C T, the oscillation of the process { X(¢),
t € T} on C is defined by

Wx(C) = limsuplX(t,) — X(5)l,

where the limit is taken over ¢,,¢, € T, d(¢;,C) — 0 and d(¢;,t,) » 0. We
may regard Wx(C) as the highest jump of X on the set C.

Obviously if {X(¢), t € T} is an i.d. process with bounded sample paths, our
results apply with g(a) = 2sup, ¢y la(®)| and $(a) = W,(C), « € R,

As an example, let us consider oscillation of i.d. moving averages, that is, of
i.d. processes given by (3.1) with T C R, S = (—»,+ «), f(¢,s) = f(s — t) for
some measurable f: R —» R, and the measure F of the form F(A X B) =
[ap(s, B)ds, A and B Borel sets. Let {X(¢), 0 <t < 1} be an i.d. moving
average with bounded sample paths. If the function f is continuous, then
Wx(C) is a degenerate (constant) random variable [Cambanis, Nolan and
Rosinski (1990)]. Let us examine the case when f has one discontinuity, and it
- is of the first kind. That is, for some u, € R,

lim f(u) - lim+f(u)‘>0.

u—-uy—

Define for y > 0 and C < (0, 1),

A:

Go(y) = [ (s + w0, (3,%)) + p(s + o, (== 3))] ds,

where C is the closure of C. We will show that, if the tail of G(y) belongs to
the subexponential class ., then

(3.13) P(Wx(C) >y) ~ Go(y/4), asy — <.

In particular, if p(s, B) = p(B) for some fixed Lévy measure p (which
implies, in particular, that X is stationary), then (3.13) reduces to

PW(C) >3) ~ (@] o((5.5)) + o[- 1)) v

and, similarly, for X being Lévy motion, where we have f(u)=1_,, o(x) and
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p(s, B) =p(B)if s > 0 and = 0if s < 0, we obtain
P(Wx(C) >y) ~ Leb(C)[p((y,%)) +p((=%,=¥))], 5,

provided, of course, the assumption of subexponentiality holds.
To prove (3.13), note that in our case,

- y -
)= oo [ 2 =) ol [

[use (3.6) with A(ds) = (1/2)e”"ds (say) and p redefined accordingly]. Obvi-
ously, Wy,_(C)=Aif seC+uyand =0if s & C + u,. Thus,

00~ o oo ) o 3 =)

Therefore, if the tail of G.(y) belongs to the subexponential class ./, the tail
of H does also, and thus Theorem 3.1 applies. O

4. Tail of $(X) and subexponentiality of the product of indepen-
dent random variables. In the previous section we have exhibited numer-
ous examples of applications of our general result to particular i.d. processes.
Of course, there are situations in which it is not easy to verify whether or not
the tail of H belongs to the subexponential class .. Even in the case of a
homogeneous ¢ with H(y) given by (8.6), this verification might be technically
involved. In this section we describe an important situation in which we are
able to ‘“‘separate terms,” and to obtain sufficient conditions for subexponen-
tiality of H which are easier to verify.

Assume, therefore, that ¢ is a homogeneous functional. Assume, moreover,
that the F(A X B) = A(A)p(B) in (8.3) for some fixed Lévy measure p (thus,
we are including all £-radial processes in this discussion). We will also assume,
for simplicity, that the Lévy measure p is symmetric.

In the notation of (3.4) we have then R(asU,V) = R(aU) (independent of
e and V), and so we obtain

(4.1) Z, =" (ef(",V))R(al),

a product of two independent random variables.

THEOREM 4.1. Under conditions of Theorem 3.1 assume additionally that
¢ is homogeneous and that F(A X B) = A(A)p(B) in (3.3), where A is a
probability measure. Let n = ¢ (e f(-, V). If Z,, belongs to the subexponential
class # and the following condition holds: .

(4.2) f;wp(” > u™ly)p(du) ~ jomp(n > u"Y)p(du), asy - =,

then H(X(+)) belongs to the subexponential class ., and
P(¢(X(")) >y) ~2aP(Z,>y) ~H(y) asy— .
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Proor. We have only to check that conditions of Proposition 3.1 hold.
Since by (3.5),

1

P(Z,>y) = ;[/Roza)P(n > u"ly)p(du)

+P(n >yR(a) ")(a - p(R(a),»))

1l .»
— P(n>u? du
ol (m ¥)p(du)

[\

and by (3.6),
H(y) = 2f0°°P(n >u~ly)p(du),

it follows that P(Z, > y) ~ (1/2a)H(y), as y — %, and we may now appeal to
Proposition 3.1. O

ExampLE. Suppose that p((y,©)) € RV_,, p >0, as y — . If for some
>0, E(n*)P*®) <o and [§ xP*? p(dx) < o, then for any a > 0, P(Z, > y)
~ (1 /a)p((y,®)E((n*)P) as y —» «. It is trivial to check that (4.2) holds.
Therefore,

P(6(X()) >y) ~2aP(Z,> )

~p(3,%) [[$7(F(, )" + &7 (=1(,))"|a(ds).

In the previous example it was easy to check that Z, = nR(aU) belongs to
the class RV_,, thus also to the subexponential class /. Applicability of
Theorem 4.1 is greatly enhanced by the fact that there are many situations in
which one can relatively easily verify that the product of two independent
random variables belongs to the subexponential class .. It is known, how-
ever, that the product of two independent subexponential random variables
need not be subexponential [Lesli (1989)]. The following result is quoted from
Cline and Samorodnitsky (1991).

THEOREM 4.2. Let X and Y be independent random variables such that X
belongs to the subexponential class *.
If there is a function a(t): (0,%) — (0, %) such that, as t — %,

@ a(t) 1,

(i) t/a(t)1 =, .
(i) P(X >t —a@®)/P(X>1) =1,
(iv) P(Y > a(t)) = o( P(XY > t)),

then the product XY belongs to the subexponential class 7.
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ExampLE. Suppose that p([y,»)) € . and that 7 is a bounded random
variable. Then Theorem 4.2 implies that Z, € ./ for any a > 0. Also (4.2)
holds trivially for any a > 0. Thus, Theorem 4.1 applies.
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