The Annals of Probability
1993, Vol. 21, No. 2, 819-830

AN ASYMPTOTIC INDEPENDENT REPRESENTATION
IN LIMIT THEOREMS FOR MAXIMA OF NONSTATIONARY
RANDOM SEQUENCES

By ApAaM JAKUBOWSKI

Nicholas Copernicus University

Let {X,}, cn be a nonstationary sequence of random variables. Suffi-
cient conditions are found for the existence of an independent sequence
{X,},en such that sup,.ulP(M, <x)~P(M, <x) >0 as n — =,
where M, and M,, are nth partial maxima for {X,} and {X,}, respectively.

Let {X,},cn be a sequence of random variables. Define M, ., =
max,, ..., X, form<n, M, ., = —cofor m>nand M, =M,.,.

Suppose one can find a sequence (X whpen Of mdependent random variables
- such that

(1) sup | P(M, < x) — P(M, |—>O as n — o,

xeR!

where M, is the nth partial maximum of X,’s. In what follows such a
sequence {X,}, .y is said to be an asymptotic independent representation
(a.i.r.) for maxima of {X,}, c -

Existence of an a.i.r. reduces many problems on asymptotic properties of
laws of {M,}, .y to the easily computable independent case. For example,
possible limit laws for suitably centered and normalized M,’s can be identified
with those found by Meizler (1956); see also Galambos (1978), Chapter 3.

In extreme value limit theory, the idea of a replacement of the ‘“original”
sequence by an independent one, equivalent from some point of view, takes its
beginning in papers by Watson (1954) and Loynes (1965). In the latter paper
the notion of the “associated” sequence for a stationary {X,} was introduced
—an i.i.d. sequence {X,} with the same one-dimensional marginals: .#(X,) =
Z(X,). Leadbetter (1974) proved that in a wide class of stationary sequences
the limit behaviour of all order statistics is the same for both {X,} and {X,}.
Even if the correspondence between higher order statistics breaks down, the
maxima of {X,} and {X,} can remain closely related. This holds, for example, if
the so-called extremal index of {X,} exists; see Leadbetter (1983) and also
Leadbetter, Lindgren and Rootzén (1983), Chapter 3.

In the stationary case it is quite natural to require that {X,} in (1) is an
independent identically distributed sequence. If G is the distribution function
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of X,, then (1) can be rewritten as

sup |[P(M, <x) — G"(x)| >0 asn —> .

xeR!
This relation defines a phantom distribution function for {X,}—a notion
introduced by O’Brien (1987). O’Brien gave widely applicable sufficient condi-
tions for existence of such G; an improvement of his results obtained by
Jakubowski (1991) states that a stationary sequence {X,} has a phantom
distribution function G satisfying

1-G(x)

(2) G(G*—)=1 and T(x_)—)l, asx Gy,
where G, = sup{u; G(u) < 1}, if and only if there is a sequence {v,} of
numbers such that P(M, <v,) — a for some a, 0 <« < 1, and

sup |P(Mj+k <v,)—-P(M; <v,)P(M, < vn)' — 0, asn — .
J,keN

In the present paper we aim at proving an analogous result in the general
setting of nonstationary sequences and using asymptotic independent repre-
sentations in place of phantom distribution functions.

Some examples in Hiisler (1986) show that we cannot directly adapt meth-
ods developed in the stationary case. Therefore we suggest studying the whole
path

R*> ¢ - P(My,, <v,)

and its limit behaviour.
Roughly speaking, we assume

(3) P(M,;;<v,) >, asn—> +x,t€D,

for some dense subset D c R* and we recover an a.ir. from the limiting
function a,, provided the latter is of special form.

Note that «, is nonincreasing and can be regularized to the right-continu-
ous function

a,= sup «,
D>u>t
for which
(4) P(M,, <v,) > &, asn— +o,

at every point of continuity of &,.

Let F; be the distribution function of X; and let (F.), = sup;(F;),. It is
easy to see that if @, <1 for some ¢, € D, then v, < (F,), for all but finitely
,many n, and that sup, . p a, = 1 implies liminf, v, > (F,),. In fact, instead of
{v,} we may consider the nondecreasing sequence

v¥ = inf{v,: k > n}.
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LemMma 1. Suppose (3) holds on some subset D c R*. If sup,.pa, = 1 and
a, <1 for some t, € D, then v; =v, for some nondecreasing sequence

k,>n,vi <(F), foralln eN, v} »(F), and
P(M,,<vy)—>a, asn— +o,teD.

Proor. To prove the last statement, observe that %, — o, so we have for
n large enough

at —e< P(M[knt] < vkn) = P(M[knt] < v:‘:)
< P(M,, <vy) <P(My, <v,) <a +¢,

that is, P(M[,,,, < vy) —> a,. O

THEOREM 2. Assume there is a sequence {v,} such that (3) holds for some
dense subset D C R*= (0, + ), where the limiting function «, possesses the
properties

(5) a, >0, teD,
(6) supe, = 1,
teD
7 inf a, = 0.
( ) tlgDat

Then the following statements (1)-(iv) are equivalent.

() {X,} admits an asymptotic independent representation.
(i) {X,} admits an asymptotic independent representation defined by
marginal distribution functions

0, if x < v,
(8) }Z’k ~ Fk(x) = &k/n/&(k—l)/m ifv,f sx< v:+1,
1, if x = supvj,
k

where v} = inflv,: & > n}.
(iii) For each u > 1 the function f,(t) = &,,/&, is nonincreasing on (0, ).
(iv) The function g, = loge & °exp is concave.

COROLLARY 3. Assume, in addition to (3)-(7), that
(9) sup|P(M,;<v,)-P(M,<v,)P(M,.,,<v,)| >0 asn - .
k<l R

Then {X,} admits an asymptotic independent representation for maxima.

COROLLARY 4. Suppose {X,},, <\ are independent and (3)-(7) hold for some
dense D c R*. Then lim, ., P(M,, <v,) = a, exists for each ¢t >0 and
., = exp(g,(log(+))) for some concave g,.
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Corollary 4 describes all possible ‘“nondegenerate’ limiting paths in the
independent case. If we restrict our attention to i.i.d. sequences, then obvi-
ously the limit must be of the form e~ *? for some g > 0. Note that in such a
case formula (8) also gives an i.i.d. sequence:

COROLLARY 5. Suppose that (3) is satisfied with a, = exp(—t - B), where
B > 0. Then {X,} admits a phantom distribution function G given by

0, ifx < vt
(10) G(x) = exp(—B)"", ifvF <x <v¥,,,
1, ifx > supuv,,
k

where, as previously, v} = inflv,: k > n}.
We divide the proof of Theorem 1 into several steps. Let us begin with a
simple analytic observation.

LEMMA 6. Properties (iii) and (iv) are equivalent.

Proor. Take u >1 and ¢ >s > 0. Write 2 =logu (= 0), ' = log(t/s)
(> 0)and x = log s. Let g, = loge~ & cexp. Then property (iii) can be rewritten
as

g(x+h)—g(x)=g(x+h+F)—g(x+F)

for every x € R! and A, ' > 0. This is nothing but concavity of the function
g, O

LemMA 7. Suppose {v,} is nondecreasing and conditions (3)-(7) hold. If
the limit function &, has property (i), then {X,} admits an asymptotic
independent representation for maxima.

Proor. Define distribution functions F), of the independent sequence to be
found by formula (8). For each %, F, is a distribution function. Indeed, if
lim, v, < 4+, then lim, _,, F,(x) = 1 trivially. If lim, v, = +, then
lim, ,, F(x) =lim, v, < +o, then lim,_,, &,/lim,_, &, = 1 in this case
also, and monotonicity of F, follows by property (iii) of function & .,, when
setting u =(n+ 1)/n,s=(k—1)/n and t = k/(n + 1).

Let {X,} be independent with X, distributed according to F, and let
M, = max, _, X,. We have for each ¢ > 0,

[nt]
P(M[nt] <v ) I[——= Qpnty/n

Since (iv) provides continuity of &.,, we get (3) with D =R* and M,
replaced by M[n,] Now monotonicity of paths and pointwise convergence to
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@ ., on a dense set imply convergence in points of continuity of the limit. Since
@, is continuous, we get uniform (lon [0, ©)]) convergence to &., for both
P(M,., <v,) and P(M,.y <v,). In particular, for every sequence m, —
of integers,

(11) P(M,<v, )=P(M, i my < Um,) = Gn/m, T 0(1).
We have to prove (1) or, equivalently,
(12) P(M,<u,)-P(M,<u,)-0

for every sequence {u,)} of reals. It is enough to consider the case u, < (E).
and u, — (F,),. Define integers m, by the formula

1, ifu,<v,,
m, = .
" k, ifv,<u,<v,,;.

Since u, — (F,),, we have m, — «, which allows us to apply (11):
Qpym, = P(M, < Um,,) + 0(1)
<P(M,<u,)+o(1)
<P(M, <v, .1)+o(1)
= &n/(mn+l) +0(1),
that is, P(M,, <u,) =&, ,,, + o(1). Since also P(M, <u,)=d,,,, +o),
our claim follows. O
LEMMA 8. Suppose {v,} is nondecreasing and conditions (3) and (5) hold.
If for every 0 <s <,
(13) P(M,, < v,) — P(M,, < U, ) P(Ms).0ne < v,) =0,
then the limit function &, has property (iii).

ProoF. By (4) we have convergence of P(M,., < v,) to &, at every point
of continuity of the limit. We shall prove that

IS

C‘ius ut
(14) > —

as at

provided &, is continuous at s, us and ¢, and then we shall derive from (14)
continuity of &, in the entire half-line. This will give us property (iii).

Solet > 1andlet £ >s > 0 and us be continuity points of &, By (13),
the fact that &, > 0, ¢ > 0 and right continuity of &,, it is enough to prove

r}i-l-}:oP(M[ns:n(us)] = vn) =y, /s 2 Qyres/

= lim P(M[nt]:[n(ut+8)] <v,),

n—o

where 6 is such that ut + 8 is a point of continuity of &.,. Let us observe that
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for large n,
P(Msy:tncusy < Vn) = P(Mins ) ns s oun) < Vins /1)

> P(Mus ey iins s exut+a) < Vins /1))

The last expression approaches &,,,;/&,, while the first one approaches
a,,/a,, as desired.

We conclude the proof while showing continuity of &, on 0,0).If0 <s <¢
and & is continuous at ¢, let s, ~ s and ¢, ~ ¢ be such that s ,u, =s,t,u, =1
and s,, ¢, are continuity points of @. Then &, , /&, » 1,80 @, , /&, 7 1by
(14). Therefore & is continuous at s. O

REMARK 9. Observe that in the Lemma 8 we may assume that (3) and (13)
hold along a subsequence {n'} € N only.

Now we are ready to complete the proof of Theorem 2. First, by Lemma 1,
we can assume {v,} is nondecreasing. Next, Lemma 7 gives us implications
(iii) = (ii) = (i). Since (iii) « (iv) is proved in Lemma 6, the only remaining
implication is (i) = (iii). Let {X,) be an a.ir. for {X,}. By (1), the M,’s satisfy
(3) and (5), and condition (13) is satisfied trivially for an independent sequence.
Hence we can apply Lemma 8 in order to get property (iii) for &,.,.

The proof of Corollary 3 is similar:

1. Reduction to nondecreasing {v,} by Lemma 1. Observe that condition (9)
remains to be true with v, replaced by v, = v, .

2. Application of Lemma 8. Condition (13) is implied by (9).

3. Construction of an a.i.r. by Lemma 7.

Corollary 4 is an obvious consequence of Theorem 2.

CoMMENT 1. If (6) and (7) are not satisfied, the limit function may contain
no information.

ExampPLE 10. Let
1-—x# forx=>1
F = ) = 4
(%) {O, otherwise.
If {Y,} are iid. with _A(Y,) ~F, define X, =%k '/?Y, and v, = log'/” n.
Then for every t > 0,

P(M,,<v,) e .

COoMMENT 2. Our assumption (3) is much weaker than the convergence in
distribution of suitably centered and normalized M,’s to a nondegenerate H.

ExampLE 11. Let {X,} be an ii.d. sequence with marginal distribution
function G. It is well known [see O’Brien (1974); also Leadbetter, Lindgren
and Rootzén (1983), page 24] that there exists a sequence {v,} such that
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G*(v,) » a for some 0 <a <1 if and only if G satisfies (2) (e.g., G is
continuous). In such a case for each ¢ > 0,

P(M,,,<v,) =G"(v,) - o,

that is, conditions (3)-(7) hold. On the other hand, linearly transformed M,’s
are weakly convergent if and only if G belongs to the domain of attraction of a
max-stable distribution [see Leadbetter, Lindgren and Rootzén (1983), Theo-
rem 1.4.1, page 16].

ComMmENT 3. The way of checking condition (9) in Corollary 3 is standard.
First, by (7) we can restrict our attention to maxima of length at most [nT'],
say. Next, if the X,’s satisfy for each T > 0,

max P(M >v, )—>0, asn - ®
k<nT (M) = v,) ’ ’

we can reduce the problem to proving
(15) P(My, <v,, My 1.0, SV,) = P(My, <0,)P(M, 1r0, <V,) =0,
for every k,,l, > o, k, + 1, <[nT], where r, — « is such that

r, max P(X,>v,) — 0.
k<[nT]
The form of (15) is already ‘‘typical” for mixing conditions and similar to
condition AIM(« ,) in O’Brien (1987).

CoMMENT 4. Under stationarity and in the presence of mixing properties,
our condition (3) is reduced to knowing a single sequence {P(M, < v,)}, cn
- only, as shown in the following result.

ProposITION 12. Suppose a stationary sequence {X,} has a phantom distri-
bution function and for some sequence {v,}, <n»
0 < liminfP(M, <v,) < limsupP(M, <v,) <1.

n—o n—o

Then

sup|P(M[nt] <v,)-P(M, < vn)t| -0, asn — .
t=0

ProorF. Apply Proposition 2.5 from Jakubowski (1991). O

CoMMENT 5. It may happen that directly checking property (iii) is possible
without explicitly invoking arguments of ‘“mixing.” For example, one can use
a martingale approach (or a ‘“successive conditioning approach”).

Recall that {#}, cnuoy is @ filtration if the &’s form a nondecreasing
sequence of o-algebras and that the sequence {X,} is adapted to {F,} if X, is
F,-measurable for each & € N.
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We will follow the idea of the ‘“principle of conditioning” due to Jakubowski
(1991), this being a heuristic rule for derivation of limit theorems for depen-
dent summands from results proved in the independent case only. We are
going to show that this idea works in limit theorems for maxima as well.

The heart of what follows is a lemma that corresponds to Lemma 1.2 in
Jakubowski (1986).

LemMma 13.  Let {X,} be adapted to {#,} and suppose that
kn
(16) [T1P(X,<v,|F_1)>a>0,
k=1 &

where a is a constant. Then also

P(M, <v,) - a.

PrOOF. One can get this lemma immediately from Lemma 2 in Jakubowski
and Slominski [(1986), page 66]. The proof there can be difficult, however, for
readers not familiar with the general theory of stochastic processes. So it
seems to be instructive to give here a direct elementary proof.

Define

T, =k, Asup{m >0; [[ P(X, <v,|%_,) > (1/2)a},
k=1

where [19_,(-) = 1. For each n, 7, is a stopping time and the sequence
m /\'Tn I X S Un
v, =TT (X} <v,) ’
’ k=1 P(stvnlg;e—l)
is a martingale with respect to {#,} bounded by 2a~'. In particular EY, , = 1.
Bearing this in mind, we can estimate
|P(M, <v,) — «f

m=1,2,...,k,,

kﬂ
’EHI(Xk <v,) -a
k=1

k ko AT,

S EHI(XkSvn)_E ]__[ I(stv )
k=1 k=1
k,AT,
+ EYn,k,, n P(Xk < Unlg;e—l) - EYn,k,,a
k=1
kRyAT, .
<P(r,<k,)+2a¢'E| [] P(X,5v,|%_1) —a
k=1
. k,
< (1+2a"YP(1, <k,) + 22" E|[] P(X, < v,|F_,) — a.
k=1

But (16) implies both terms in the last expression tend to zero. O
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Here is an example of how to check assumption (16) of Lemma 13.

COROLLARY 14. Using the property log(l1 — x) ~ —x, as x — 0, we obtain
that

17 P(X,>v|F 0
(17) lg}fgn (Xp > v,|F_1) ; )
kﬂ
(18) Y P(X,>v,|%_1)—>B
k=1 &
imply
kn
(19) P(X, <v,|F_1) e "
k=1 4
and so

P(M, <v,) e’
Now we are ready to state our criterion based on the martingale approach.

THEOREM 15. Suppose that {X,} is adapted to {F#,} and the following two
conditions hold for each t > 0:

20 ax P(X,>v |% _,)—0,

( ) lsrzls[nt] ( k Unl k 1) I
[nt]

(21) Y P(Xe> vl %) 2B,
k=1

" where {B.};~ o are finite constants and
(22) lim B, =0, lim B, = +oo.
t—>0+ t—o +oo

Then {X,} admits an asymptotic independent representation for maxima.

Proor. By Corollary 14 we know that (3)-(7) hold with

o, = e Pt

Moreover, by the same corollary,

[nt]

(23) [1P(X, < vl% 1) e,
k=1 P

for each ¢ > 0. By reasoning as in the proof of Lemma 1 we may assume that
v, <(F,), and is nondecreasing. ’

For every k2 € N choose a version of the regular conditional distribution of
X, with respect to %,_; and denote it by u,(A,w). Fix o € Q and let
X X§ X§{*), ... be independent and distributed according to
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ey @), pwo(e, @), us(-, w), ..., respectively. Then
P(Xk < vn|<7;e_1)(w) = P(X]gw) < Un) a.s.,

[nt]

kI;IIP(Xk < vl F 1) (w) = (M[(,‘;’t] < ) a.s.

By (20) and (23) there exists a subsequence {n'} € N such that
max P(X{”>v,)—0 and P(M[(n,] < ) - a,, t=0,¢rational,
1<k<[n't]
for every w in a set ) of probability 1. Fix « € )’ and observe that along {n'}
condition (13) holds [since P(M{) <v,) = P(M{)) < v, )P(MS). 1, < v,)].
By Remark 9, &, has property (iii) of Theorem 2 and by this theorem {X,}
admits an a.i.r. O

THEOREM 16. Suppose {Z,} is a homogeneous Markov chain with state
space (., HBg), transition probabilities P(x, A) and a unique stationary initial
distribution v. Let f: (., Bg) — (R, ') be a measurable function such that
for some sequence {v,} we have

(24) nP(-, f>v,) > U(") inLYS,%s,v).
IfFE,U # 0, then {X,, = f » Z,,}, < has a phantom distribution function.

Proor. By Corollary 5 it is enough to check the assumptions of Theorem
15 with B, = «(E,U). Set &, = {J, Q} and %, = 0(Z,, Z,,...,Z,). Then for
each ¢ > 0,

E, max (P(X,>v,|%,_ 1)) <(w(f>v,)) + ZE(P(Zk b F>0,))

1<k <([nt]

< nE,(P(Zy, f>v,))" = 0,

since n(P(Z,, f> v,))? - 0 in probability and is dominated by the uniformly
integrable sequence {nP(Z,, > v,)}. Checking (21) is a little bit more compli-
cated. First, we may neglect the term P(X; > v,|%,) = v(f>v,). Then,
by (24),

[nt] [nt]-1
E| Y P(X> 1% - (1) T v
k=2 nj p=1

[nt] -1
< T———E|nP(Z,, f>v,) - U(Z)| = 0.

However the ergodic theorem gives
[nt]-1

(1/n) kgl U(Z,) — tE,(U(Z,))

and our theorem follows. O
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Using assumptions stronger than (24) we are able to work independently of
whether a stationary initial distribution for {Z,} exists or not.

CoROLLARY 17. Let {Z,} be a homogeneous Markov chain on (., #s), with
transition probabilities P(x, A) and initial distribution v.
If f is such that

(25) y, = sup|B — nP(x, f>v,)| - 0,
xe S/

for some B > 0, and

(26) v(f>v,) =0,

then {X, = f o Z,}, cn has a phantom distribution function.

Proor. Following notation from the proof of Theorem 16 we have
max P(X,>v, % ;) <v(f>v,) + max P(Z,_{, f>v,)
2<k=<n

1<k<[nt]
<v(f>v,)+B/n+vy,/n—-0.
Similarly
(ot ([nt] - 1)
Y P(X,>v,|Fy) - TB
k=2

[nt]

v(f>v,) +n?! kz (nP(Z,_4, f>v,) — B)‘
-2

<v(f>v,) +nl'ny, > 0.
“Hence B, = lim, , (nt] - DB/n =tB. O

REMARK 18. Our assumptions deal with transition probabilities only. If we
know more about structure of the Markov chain (e.g., Harris recurrence), then
it is often possible to find a phantom distribution function directly; see O’Brien
(1987) and Rootzén (1988).
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