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REFINEMENTS IN ASYMPTOTIC EXPANSIONS FOR SUMS
OF WEAKLY DEPENDENT RANDOM VECTORS

By SOoUMENDRA NATH LAHIRI

Iowa State University

Let S, denote the nth normalized partial sum of a sequence of mean
zero, weakly dependent random vectors. This paper gives asymptotic expan-
sions for Ef(S,) under weaker moment conditions than those of Gotze and
Hipp (1983). It is also shown that an expansion for Ef(S,) with an error
term o(n~¢~%/2) is valid without any Cramér-type condition, if f has
partial derivatives of order (s — 1) only. This settles a conjecture of Gétze
and Hipp in their 1983 paper.

1. Introduction. Let X;, X,,... be a sequence of R*-valued random
vectors with EX; =0 for all j > 1. Write S, =n~'2L?_,X;. Edgeworth
expansions for S, have been derived by several authors under various sets of
conditions on the sequence {X,}. When X, X,,... are independent and
identically distributed (iid), a more or less complete theory on the Edgeworth
expansions for S, is known; see Bhattacharya and Ranga Rao (1986) (hereafter
referred to as BR). For an iid sequence {X,,} satisfying (i) E||X,[|° < 0, s > 3,
and (ii) the Cramér condition [cf, Condition 1 of Section 2], Theorem 20.1 of
BR entails

=o(n"¢"2/2) asn > o,

(11) |7, - [rav,.

for all fe 7, where % is a large class of Borel measurable functions from
R* > R and V¥, , is a signed measure. In this case, £ 1 X,° < e is a necessary
condition for (1.1) to hold. In general, a similar expansion is not valid in the
weak dependence setup. Depending on the dependence structure, one needs to
impose additional conditions for the asymptotic normality of S,, let alone
Edgeworth expansion.

Under stronger conditions, expansions of the form (1.1) are proved by
Statulevicius (1969, 1970) for finite order Markov chains and by Hipp (1985),
Malinovskii (1987) and Jensen (1989) for strongly mixing Harris recurrent
Markov chains. For general strongly mixing random vectors the best available
result [Gotze and Hipp (1983), hereafter referred to as GH2] assumes
ElI X, < w to prove (1.1).

One of the major objectives of this paper is to obtain expansions for Ef(S,)
under reduced moment conditions. Assuming that a conditional Cramér condi-
tion holds and {X,,}’s are approximately strongly mixed at an exponential rate,
Theorem 2.1 gives an expansion for Ef(S,) under the weaker moment condi-
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tion sup{E|| X;lI’(log(1 + | X; D)B: j = 1} < o for some constant B = B(s) > 0.
Compared to the earlier results, this reduces the moment condition to the
optimal one except for the logarithmic term. Indeed, if the {X,}’s are station-
ary m-dependent, then the logarithmic factor can be removed. In this case,
Theorem 2.2 yields an expansion under the minimal condition E||X;||® < c.

Next consider expansions for Ef(S,) when f is smooth. It is well known
that in such situations, expansions for Ef(S,) remain valid without the
Cramér condition on {X,}. Indeed, Theorem 3.6 of Gotze and Hipp (1978)
(hereafter referred to as GH1) shows that in the iid case, an expansion of the
form (1.1) holds if E||X;|I° < ©» and f has (s — 2) continuous partial deriva-
tives. In the weak dependence situation, GH2 proves a similar result under the
stronger conditions: (i) sup{ElX; II”1 j=1} <o, and (i) f is infinitely
differentiable. In fact, from their proof it follows that an expansion holds if f
has partial derivatives of order [(s — 2)/2¢] + 1 for some & > 0 small (cf. first
line, page 218, GH2). Here, for any real number x, [x] denotes its integer part.
In view of the preceding results, GH2 conjectured (first paragraph, page 218,
GH2) that in the weak dependence case, (1.1) holds if f has only (s — 1)
continuous partial derivatives. Theorem 2.3 settles this conjecture. Further-
more, it proves an analogous result for m-dependent { X, }’s under the minimal
conditions: (i) E||X,|I° < , and (i) f is (s — 2) times continuously differen-
tiable.

The layout of the paper is as follows: Section 2 contains the main results of
the paper and the proofs of all the results are given in Section 3.

2. Main results. Let X;, X,,... be a sequence of mean zero random &,
vectors defined on a common probability space (2, o7, P). Unless otherwise
stated, the X,’s are not assumed to be stationary. Set S, = (X, +

- +X,)/Vn.Let Dy, 9 ,,,... be asequence of sub-o-fields of 7. Write ¢
for the o-field generated by 2;: p <j < q. The following conditions will be
used in the sequel for proving the results.

ConprTioN 1. (i) EX; =0 for all j>1 and % =lim, ., Disp(S,,) exists
and is nonsingular.

(i) There exists d > 0 such that inf{# Disp(X,,; + -+ +X;,,)t
it =1} > dm forall j >d~', m >d™ '

ConprITioN 2. For some integer s > 3 and some real number B(s) > s?,

8= sup{EIIXjIIS(log(l +1X,0))7: = 1} < oo,

ConDITION 3. There exists a positive constant d such that for n,m =
1,2,... with m > d~!, there exists a 2" -measurable random £k-vector
Y, ,, for which

ElX, — ?n’mll <d 'exp(—dm).
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CoNDITION 4. There exists d > 0 such that for all m,n=1,2,..., A&
9., BE D7,

|P(ANB)—P(A)P(B)| <d le-?m.

ConpITION 5. There exists d > 0 such that forall m,n =1,2,..., d" ! <
m < n and all ¢t € R* with ||¢]| > d, :

E|E(exp(it' (X,_p + ** +X,u))l D j # n)l < e

ConpITION 6. There exists d > 0 such that for all m,n,p =1,2,... and
Ae grtp

n—p>

E|P(AlZ;: j#n)-P(AlZ:0<In—jl<m+p) <d e ™,

All the conditions except Conditions 1(ii) and 2 have been used by GH2.
Here, Condition 1(ii) is used for obtaining bounds on the derivatives of
E exp(it'S,) for moderately large values of . In view of Condition 1(i), this is
satisfied if the {X,}’s are second order stationary. Condition 2 relaxes the
moment condition sup{EIIXjIISH: J = 1} < o used by GH2.

Next define the Edgeworth polynomials P, ,(2) by the identity (in 7 € R)

s =3
exp| X (r!) 'm0y ()] =1+ ¥ 7P, (1),
r=3 r=1
where x, ,(t) is the rth cumulant of #'S,, 2 < r < s and for any matrix A, A’
denotes its transpose. Let ¥, . denote the signed measure with Fourier
transform ¥, [(¢) = exp(—x,, ,(£)/2X1 + L:23n"7/?P, (i), t € R*.

Let s, = 2[s/2]. For a Borel measurable function f: R* > R and ¢ > 0,
write o(f;¢) = [sup{l f(x + y) — f(x)l: llyll < e}®5(dx), where @y is the nor-
mal distribution on R* with mean zero and dispersion matrix 3. Let 1(B)
denote the indicator of a set B. Set Z*={0,1,...}. For a = (a,...,a,) €
(Z*)*, define the differential operator D* by D* = 9!®l /g¢s1 - - - atge,

THEOREM 2.1. Assume that Conditions 1-6 hold. Let f: R* — R be a Borel
measurable function satisfying sup{(|lx[I*° + 17 f(x)|: x € R*} < M for some
constant M > 0. Then, for any real number a > 0,

< Co(f;n™%) +o(n=¢-2/2),

@1 |Es,) - [rav,,

Theorem 2.1 improves Theorem 2.8 of GH2 requiring the weaker moment
condition, Condition 2. The next theorem further reduces the requirement for
m-dependent random vectors.

THEOREM 2.2. Assume that Conditions 1 and 5 hold with ;= o(X)),
J=1 and 92’s are m-dependent. Let &, = max{EIIlelsl({XjII4 > nﬁ):
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1<j<n}—0 asn— » Then for any bounded, measurable function f and
any a > 0,

(2.2) ’Ef(sn) - ffd‘lfn’s <C-w(f;n®) +o(n=C-2/2),

Next consider expansions of Ef(S,) where f is smooth but the {X,}’s do
not necessarily satisfy the Cramér condition. In this case, GH2 conjectured the
validity of expansion (1.1) for f’s having only (s — 1) continuous partial
derivatives on R*. The following theorem establishes the conjecture with a
further reduction in the moment condition.

THEOREM 2.3. (a) Assume that Conditions 1-4 and 6 hold. Let f: R* — R
be a function satisfying (1) f € C* YR*) and (i) for a € (Z*)* with 0 <
lal <'s — 1, sup{(1 + [|x[I”)"Y Def(x): x € R*} < M, for some M, > 0, p(a)
€ Z* with p(0) = s,. Then

(2.3) =o(n~C~2/2)

Ef(S,) - [fd¥,,

where the RHS depends on f only through the M,’s.

(®) Let {9, = 0(X,): j > 1} be m-dependent, Condition 1 hold and &, of
Theorem 2.2 tend to zero as n — . Then, (2.8) holds for every bounded
f € C* %R*) satisfying (ii) of part (a).

A consequence of this theorem is the following moderate deviation bound.

THEOREM 2.4. Let A, denote the largest eigenvalue of 3, and let A > A,.
(a) Assume that Conditions 1-4 and 6 hold. Then

E(1+18,1)1(I8,l > ((s — 2)Alog n)'"*) = o(n=¢~2/2).
(b) Under the conditions of Theorem 2.3(b),

P(IS,II> ((s = 2)Alog n)"?) = o(n~=2/2),

3. Proofs. In the following, we will mostly use the notation of GH2. Let
¥:[0,) — [0, =) be an infinitely differentiable function satisfying ¢(x) = x for
0<x <1, ¢ is increasing and ¢(x) =2 for x > 2. Define the truncation
function T: R* —» R* by T(x) = llx|l”‘c,x¢(c, Uxl), x € R*, where c, =
Vn /(og n)®. For j=1,...,n, let Y;=T(X;), Z;=Y; - EY,. Write S} =
n"VAZ, + -+ +2,) and H,(t) = Eexp(it'S}). For any a = (a,,...,a,) €
(Z*), set lal=a; + -+ +a, and a!=a,! - -+ a,!. Let C(-),C denote generic
constants depending only on their arguments, if any. For any integrable U,
write E,U = H, '(t)EU exp(it'S;). For a set B C R, let |B|, A(B) and A(B),
respectively, denote the cardinality, the supremum and the infimum of B.
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Write S(I) = X, ,it'Z;, I c{1,...,n}. Fix s2 < a(s) < B(s) and let

(3.1 §,= sup{EIIlels log(1 + IIXjII)a(S)I(IIXjII >c,):1<j< n}, n>1.

Next define the semiinvariants (of order p) in the variables V;,...,V, by
K,(Vy,...,V,)

(3.2) 99

_831 ’ E

Write K,(VP, Vi) = K(V,,...,V,V,,...,V,) where, in the RHS, V, appears
p times and V, appears g times. Then, by Taylor’s expansion, one has

log E exp(it'S;f + &V, + -+ +g,V,).

g1= " =g,=0

(3-3) log H,(t) = f‘, Ko(#'S:") + R(t),
r=2
where
R = [ [0 - n) K, (#5107 ) an 5.
0

For I c{l,...,n} and a,; € R* with lla,l <1, define Z(I) =
I1;e,117_4@,;Z;. To prove Lemmas 3.1-3.5, we will assume that Conditions
1-4 and 6 hold.

Lemma 3.1. Let I, c{l,...,n}, i =1,2, with MIy) — A(I}) = 1. Then,
given any integer m, 1 <m <l and a real number {, 0 < { < 1, there exists a
constant C, = C(d, ¢, B) such that for all ||t|l < C, - (n/m)"/? and 1 <K <

[{/m],

|H,(t)*|E,Z(1,)Z(1,) - E,Z(1,) - E,Z(1,)I
< C- n'[K2K exp(—dm/3) + {¥],
where 2y = |I,| + |I,| + 2.

Proor. Let {W,, 1 <i < n} denote an independent copy of {Z;, 1 <i < n}
andlet T, = n~ /AW, + -+ +W,). Then

|H,(¢)*|E,Z(1,)Z(1,) - E,Z(1,) E,Z(I3)| = |EU,U, U3,

where

U, =2(1,) - W(I,),

U, =2(1,) - T1 exp(it(z, + W;)/Vn)
and

U= T1 exp(it'(Z,+W)/Vn).

J<ally)
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Define
S(ry=" X (Z;+W)/Vn,
Jj<AIy)—mr
R, =exp(it'S(r))
and

A, = -1+exp(it'(S(r—-1)—-8(r))), 0=<r<K
(setting A, = 0). Using the iterative method of Tikhomirov (1980), one can
show that
EU,U,U,s = EU,U,R, + EU,U,A R,

K r—1 K
J= J=

r=1

Hence, by Conditions 3 and 4, one has

r—1

r—1
EUIUZ( I Aj)Rr - (EUlR,)(EUz( I Aj)) < C-n"2¥exp(—dm/3).
Jj=1 Jj=1

Since A; and A;,, are weak dependent and by Lemma 3.3, 1Al <
min{2, C(d, B)It|I*m /n)'/?}, it follows that

K 1,21 K/2
'EUlel_[lAjRK <c-w([ed, Bl (m/n)"’]
=

+K2Kexp(—dm/3)).
Since EU,R, = 0 for all 1 < r < K, the lemma is proved. O

LEMMA 3.2. Given a real number {, 0 < { < 1, and an integer I > 0, there
exists a sequence of real numbers {a,,} (depending only on {, d and s + 1) with
ay,l = o(1), such that
3l
ETR(J + ag)

< C(s,l,ﬁ,d,{)(l + on(t)”)(l + lEl1P) - o(n=C=2/2)
0

e=

for any a € R*, [lall < 1and for t € {u € R*: [lull < C(¢, BInt=9/2 9 (u) < =},
where |H,(¢)|6,(¢) = sup{|E exp(S: 1 <i<n®* |Il<pt+n~n p=s+
1+ L and SV is as defined on page 227 of GH2. -

_ Proor. By (3.2) and (8.3), it is enough to estimate

n—1(g)
(3.4) ZO YKV V)]
o J
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for s+1<r<pand <y <1, where V,=it'Z,/ Vn and the summation
L'® extends overall 1 < j, < -+ <j, < n with maximal gap g. Using Lemma
3.16 of GH2 with m = [n“"?], K = [Vm], it can be shown that for all |||l <

C,d,Bnt 92 and alt {;; --- jyc{l--- n}l, r<p,
(85) |K(V,....,V; )| < C(1,B,¢,d)B,n(1 + IEIP)(1 +16,(2)1),
where

Brn=n""2e; 71 NEIX I (1K < e,): ) = 1)

To estimate (3.4), divide the range of g into three disjoint sets o, Jy, Js,
where J; ={i:0<i<a,},Jy,={ita, <i<n‘%and J; ={i: nt/2<i <n}
with [a(s) of (8.1)] a,, = (log n)?*(«()=25)/2P] Denote the summation over the
set J; by X,;, 1 < i < 3. Hence, by Condition 2 it follows that for all 0 < n < 1,
s+1l<r<pand|tl<C(B,1) nd=972

(g

; Z ‘K'ﬂt(‘{il’ o ”V}r)

< C(¢, B, d, p) - n= 2% (log n) " 72T (1 + 9,(2)") (1 + [1£17).

Next applying Lemma 3.1 with m = [{g], K = [d\/g /(8 + d)] to the terms
under ©,Y® and with m = [n¢/2], K = [Vm ] to those under ¥;Y®, and using
(3.14) of GH2, one can complete the proof of Lemma 3.2. O

Lemma 3.3. For any ay,...,a,€R* llall= -+ =lla,l=1 and 2 <
r<s,

D 1Ky} S),...,a, S — Ky(d,S,,...,a,S,) < C(s,B,d) - o(n~¢~2/2),
Gi) Ky SF,...,d, 8| < C(s,B,d)n""~2/2,
Proor. Note that for proving part (i), it is enough to consider the sum

(g)

(2 )N, e ) - Kol W, e W)

where V, =a,Z;, W, =a;X;, ¥, stands for the summation over g €J,,
i=12 J,={i: 0<i<a, and Jy={i: a, <i<n} with a, =
log n/(8,)"/*®), and ® is as in (3.4).

Considering the cases 2 < r < s and r = s separately and using a further

truncation argument [see Lahiri (1990)], one can show that
|Ko(dyS5, ..., d,S%) — Ko(diS,, ..., d.S,)|
< C(B,s,d) - n~C=D/2. §&=H/6a) ifg < <,
< C(s,B,d)n"¢"22(log n)* " **, forr=s.
Hence, the first part of the lemma follows. Part (ii) can be proved similarly. O
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LEmMA 3.4. Let f: R* - R be a Borel measurable function with supf{| f(x)| -
1 + llxlI*)~1: x € R*} = M < . Then, for any a > 0,

<w(g;n™*) +o(n"¢"2/2) + C(B,d,a)

|Br(s,) - [rav, ,

XM sup [|De[(H,(2) - ¥, (2))R(n"°t)]|dt,

lal<k+1+s,
where g(x) = f(x) - (1 + |lx]*°)~Y, x € R*, and K is a characteristic function
which vanishes outside a compact set.

Proor. Let S;, = n"Y2%L" Y, n > 1. Define the sets A; = {||S, |l < log n}
and B; = {lS,,|l < log n}. Then, using Lemmas 3.2 and 3.3 and the argu-
ments in the proof of Lemma 3.3 of GH2 (with A and B of GH2 respectively
replaced by A; and B,;), one can prove Lemma 3.4. See Lahiri (1990) for
details. O

LEmMA 3.5. Let 0 < { <1 be given. Then,/ for any nonnegative integral
vector a,

|D*H,(t)| < C(a,d,{) - n'*3(exp(—dm/3) + exp(—dlt|*/8))

for all ||t < C(B, d)n=5/2 where m = [n¢/?].

Proor. Let |a| =r. Fix jl,...,jr (S {1,’n} and a; Rk, ”al” _ 1,
1 < i < r. Then, as in the proof of Lemma 3.43 of GH2, one can show that for
It < C - nt=972 and m = [n£/2]’

|Ea’1Zj1, .ora,Z; exp(it'Sy) [
(3.6)

)

l
<C(d,r) -n/*|nexp(—dm/3) + [1 E|E(A,12;:j+i,)
p=1

where A, = exp(S(I,)/ Vn) for some I,c{1,...,n}, 1<p<! and I =
O(n/m). .
Next note that for any o-field € c <7,

[E(exp(su)/\/;)%)|2 <1-n"'E(S(I)%¢) + 2n*2E(1S(I)P’|¥)
a.s. (P).

Hence, by Condition 1, it follows that forall j, p >d"., I={J + 1,...,j + p}
and |i£]l < dn'/2/(4Q1 + BII?),

(EIE(exp(S(I) /v )1€)) < exp(~IIIdIItI?/2n).

Now using (3.6) and the definition of A,, one can complete the proof of
Lemma 3.5. See Lahiri (1990) for details.” O
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Proor orF THEOREM 2.1. Following the proof of Lemma 3.33 of GH2
with n* replaced by al/*(log n)'/? (where a,, is as in Lemma 3.2) and
using Lemmas 3.2, 3.3 and 3.5, it can be shown that for any a € (Z*)F,
lal <k + s+ 1,

.[ |D“(Hn(t) - l[JAn(t))! dt = o(n~¢"2/2),

it <ag,

where a,, = C(a,d,{) - n®~%/2 Now, the proof of Theorem 1 can be com-
pleted using Lemma 3.4 above and Lemma 3.43 of GH2. O

Proor oF THEOREM 2.2. This is similar to the proof of Theorem 2.1. O

ProOF oF THEOREM 2.3. Part (a) follows from Lemmas 3.2, 3.4, 3.5 and the
arguments on page 80 of GH1. See Lahiri (1990) for further details.

Part (b) can be proved along the lines of the proof of Theorem 3.6 of GH1
since, in this case, Lemma 3.5 remains valid over |||l < C(d, mWn, even
under the reduced moment condition. O

Proor oF THEOREM 2.4. This follows from Lemmas 3.2, 3.4 and 3.5, as in
the proof of Theorem 2.11 of GH2. O
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