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PATHWISE NONLINEAR FILTERING ON ABSTRACT
WIENER SPACES

By OgNiaN ENCHEV

Boston University

The nonlinear filtering problem is studied for models where the samples
of the signal and the noise are elements of some general abstract Wiener
space. The signal is allowed to depend on the noise and the optimal filter is
expressed as an explicit functional of the observed sample (trajectory). It is
shown that this functional satisfies the Zakai equation. As a necessary
technical tool, a class of shift transformations on the Wiener space is
studied and an analog of Cameron-Martin-Girsanov’s theorem is obtained.

1. Introduction. We are concerned with communication systems of the
type ‘“‘observation = signal + noise,” that is, systems described as

(1.1) y=h+a,

where £ is a sample (or realization) of the signal, w is a sample of the noise
and y is the observed sample (received information). We assume that ~ runs
through some general separable Hilbert space H and w runs through some
Banach space E. H is assumed to be included densely into E via the
embedding H —, E. An important assumption to be made is that the triplet
(t,H, E) forms an abstract Wiener space (AWS). The latter generates a proba-
bility measure u on the Borel sets in E, and we will assume that the
noise-sample w is distributed in E according to the law w. The sample of the
signal h € H is a function of @ € E and also of some parameter u which is
distributed in some general set U according to a known probability law II.
Usually, u is interpreted as a ‘“message,” which upon transmission produces
the signal A = h(u, w). Thus, we write (1.1) as

ylu, 0] =hlu, 0] + o,
ueU,w€E hlu,0] €H, y[u,w] €E.
If (¢, H, E) is taken to be the classical AWS, in which case E = C,[0,T]is
the space of continuous functions on [0, T'] vanishing at 0, and H = €'[0, T'] is

the space of all functions of the form f(¢) = [{f(s)ds,0 <t < T, fe L0, T],
then (1.2) takes the form

(1.2)

(1.3) y,(u,w>=f0¢s(u,w)ds+w(t>, 0<t<T,

w € Cyl0,t], ¢ (u,w) € L?[0,T].
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In this case the canonical Gaussian measure p on Cy0,T], induced by
£'[0, T], is exactly the standard Wiener measure.

We will investigate the model (1.2), assuming that the signal k[u, w] has the
form of an integral w.r.t. some H-valued measure on the interval [0, T]. Our
main objective is, for a given (in general nonlinear) (II ® u)-integrable func-
tion f: U X E » R, to compute

E{ f12},

where Z is the o-field in U X E generated by the mapping y: U X E — E.
@ is usually referred to as the observation o-field. It is customary to consider
f as a function of some process (x,), called the system process. The latter
describes the evolution of a system, which cannot be observed directly. There-
fore, one is interested in estimating f(x,) via the information provided by the
observation y.

It is natural to assume that the observed sample y € E evolves in time, in
which case the continuously received information is described as a nondecreas-
ing family of o-fields &,, ¢ > 0. Thus, the estimator of f(x,) also evolves in
time, and, for each ¢ > 0, is given by

The last quantity is known as the optimal filter. It can be described by various
means. In the works [11, 12, 17 and 18], models somewhat similar to (1.3) are
studied. The observation process (y,) and the system process (x,) are taken to
be diffusion processes, and, under suitable assumptions, the optimal filter is
expressed as

Taf(x)p(x) d.
WRPEIEEY

Here p,(x) is the so-called unnormalized conditional density and it is described
as a solution of a certain stochastic PDE. In yet another setup, Fujisaki,
Kallianpur and Kunita derived a SDE for the optimal filter (cf. [15]). This
equation involves the so-called innovation process (cf. [7] and Chapter 8 in [6]
for more details). From a different point of view the filtering problem was
studied by Kushner and Zakai (cf. [13] and [19]). They derived a measure-val-
ued SDE for the conditional distribution E{ f(x,) € ‘|&}.

The strategy adopted here is the following. For a given f: E X U — R, we
aim to construct explicitly a functional ®': E —~ R, so that

(1.4) E(f10) = ®/(y[u, o).

Although theoretically such a functional always exists, its explicit form is far
from obvious. This approach is motivated by the fact that, from a practical
point of view, the only available information is the observed sample y € E.
The principal idea is due to Kallianpur and Striebel (cf. [9]) who studied the
case of independent signal and noise. In [10] the same authors derived an
equation for the optimal filter. Such an equation may be viewed as a recursive
expression for the current value of the filter, as a function of the previous
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(already calculated) values. In 1984, Ocone [16] derived a similar equation, but
under weaker assumptions. The problem of nonlinear filtering was treated
“pathwise” also by Clark [3], Davis [4], Kushner [14] and some other authors.
They were concerned mainly with the case where signal and noise are indepen-
dent. The present paper aims to extend these methods by allowing certain
dependence between signal and noise.

In [7] and [8], Kallianpur and Karandikar reformulated the model, investi-
gated by Kallianpur and Striebel, in terms of the so-called finitely-additive
white noise. Their approach is based on the assumption that signal and noise
are uncorrelated and all samples (noise, signal and observation) are vectors in
a fixed separable Hilbert space H. This leads to the following communication
system:

(1.5) ylu,0]=rh[u] + o, ueUweH, hluleH,y[u,w] € H.

A principal assumption made in [7] and [8], is that the distribution of the noise
sample is given by the canonical cylinder Gaussian measure on H. This
assumption, as explained in [7], is motivated mainly by practical problems
arising in electrical engineering and some other areas. Since the canonical
cylinder Gaussian measure on H is finitely additive (f.a.), but not countably
additive (c.a.), this approach involves a special probabilistic technique.

Here we adopt the more conventional countably additive approach, that is,
as explained previously, the noise sample is considered to be distributed in the
Banach space E and is not restricted to H c E. It should be noted, however,
that the countably additive model (1.2) cannot be substituted for the finitely
additive one in (1.5). This is because the canonical f.a. cylinder Gaussian
measure on H is defined for a much larger class of sets than the c.a. Gaussian
measure u on E, generated by the AWS (v, H, E). Another principal difference
between the model (1.2) adopted here and Kallianpur and Karandikar’s model
(1.5) is that in (1.2) signal and noise are allowed to be correlated.

In the last section we derive a stochastic equation for the optimal filter. This
equation generalizes those studied by Kallianpur and Striebel in [10] and
Ocone in [16], which treat the case of classical AWS and uncorrelated signal
and noise. In these works the independence between signal and noise is
essential, so that our derivation will follow a different plan.

2. Preliminaries. We fix once and for all an abstract Wiener space
(v, H, E) and set {(/|w) = /(w), /€ E*, o € E. We have

E* >, H*=H - E,

where the embeddings «* and . are both dense and continuous. With no
ambiguity we will treat H as a proper dense subset of E and E* as a proper
dense subset of H, that is, we will not distinguish between h € H and its
image th € E, nor between /€ E* and its image */€ H* = H. Thus, for
every /€ E* and h € H CE, {/|h) = (£|h)y.
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We also fix a compact interval [0,T] and a vector-valued measure Z(-),
defined on %, = the Borel o-field in [0, T'], which assumes values in H and
obeys the following assumption.

AssumpTiON 2.1. (a) Z(:) is a nonatomic H-valued measure;

(b) Z(A) L Z(B), for A,Be %, ANB =

(¢) For every t €[0,T], Z, = Z([0,t]) € E* Cc H;

(d) the family {Z, = Z([0,¢]D: 0 < ¢t < T} spans E*, in that all linear combi-
nations of functionals from this family are dense in E*, relative to the
uniform norm.

For ¢ €[0,T] define £, € E* to be the vector space of all finite linear
combinations

Zaizsi, a; €ER,0<s; <t

It follows from Assumption 2.1(d), that {Z, = Z([0,¢]): 0 < ¢ < T'} is a separat-
ing family for E, in that w € E and (Z,lw) = 0, for all ¢ € [0,T], implies
» = 0. This yields that {Z,: 0 < ¢ < T'}*+ = {0}. Notice that the uniform norm
on E* is stronger than the Hilbert norm which E* inherits from H. Every
element w € E may be regarded as a function on _#7,

ZLp3 o o(l) ={{lw)

(for the classical AWS this is the usual interpretation of the elements of
Col0,T] as functions of ¢ €[0,T], cf. Example 2.1). Since {Z, = Z([0, t]:
0 <t < T} is a separating family for E, two elements of E that are indistin-
guishable as functions on £}, are automatically identical as elements of E.
The fact that o, o € E coincide on -Z, C .Z, that is, (/|w) = (/|w'), for all
/€ £, we will denote as w | £, = o' | Z.

Denote by . the family of all simple real Borel functions on [0, T'] and for
fes

f(r) = ZaiIAi(T), 0<7<T,a €Ry,

define the integral
T
Z1f1= [ f(1)2(d7) = TaZ(8).
Obviously
T
1201 = [[17(n)P(dn),  fer,

where v is defined on % by v(A) = |Z(A)|%, A € By. Thus Z[-] extends to
a unitary equivalence between L2(v;R) and H. For f€ LA (v;R)and 0 <s < ¢

< T, [{f()Z(d) is simply another notation for Z[ I, ,, X f]. For every h € H,
there exists a unique function (in fact, a class of v-equivalent functions)
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h € L2), such that Z[A] = h, and

(h1|h2)H=LTﬁl(T)ﬁz(T)V(dT), hi,hy €H.

ExampLE 2.1. Take the classical AWS (i, €7[0,T1,C,[0,T]D and for ¢ €
[0, T] set

_f7, if0<7<t,
gt(T)_{t, if 7> ¢.

The canonical embedding .# < ¢'[0,T], where .# is the set of all finite
signed Borel measures on [0, T'], identifies each {, with Dirac’s measure at the
point {t}: {, = *(8,) (cf. n° 6.7 in [1]). It is easy to see that there is exactly one
measure Z(-) on %y with values in €”[0, T'], which satisfies Assumption 2.1,
and is such that () = Z([0, ¢]), for all ¢ €[0,T]. The corresponding scalar
measure v(A) = [|IZ(Al%0,1;, A € By, is the usual Lebesgue measure, and,
for f € L0, T, the integral of f relative to the vector-valued measure Z(-) is
given by

Z[f]= fOTf(T)Z(dr) - fo“’f(r) dr € €'[0,T].

We remark that for w € Cy[0,T] and for 0 <¢ < T (Z,|lw) = w(?), that is,
ol £, =0 |.Z, simply means that w and ', as functions from C\[0, T'],
coincide on the interval [0, ¢].

Denote by & the Borel o-field in the Banach space E and let u be the
canonical Gaussian measure on &, induced by the AWS (¢, H, E). For /< E¥*,
E 5 w —» {/|w) is a zero-mean Gaussian r.v. on (E, &, u), and

fE</|w></'|w>M(dw) = (/1¢), ¢,/ €E*,

Note that all Gaussian r.v.’s considered in this article have vanishing mean,
and in this paper ‘‘Gaussian distribution’ actually means ‘Gaussian distribu-
tion with vanishing mean.” We remark that the Borel o-field in E is generated
by the functionals from its dual E* and we define the following filtration in E:

&=0{ZJ)->:0<s<t}, O0<t<T.

Cramm 2.1. Let, for some 0 <t < T, ¢& E — R be an &,-measurable map-
ping. Then w,w’ € E and w | £, = o' | £, implies that &(w) = &(o).

For t €[0,T], y(w) ={Z,w), o € E is an everywhere defined Gaussian
r.v.on (E, &, u).

Cuamm 2.2. {y;: 0<t<T} and {y2 — +[0,¢]: 0 <t < T} are continuous
martingales on (E, &, u), relative to {&,: 0 < ¢ < T}.
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We also fix an arbitrary probability space (U, &7, I1) with probability law II
independent of w. All r.v.’s under consideration will be defined on the product

(UXE, &Z® &, 118 u).

With no ambiguity, r.v’s defined on (E, &, u), or on (U, &7, I1), will also be
regarded as r.v.’s on the above product-probability space. On U X E define the
filtration %, = &/® &,, 0 <t < T. In what follows we will be dealing with
stochastic integrals relative to the process (y,), regarded as a continuous
Gaussian martingale on U X E, with respect to {%,: 0 <t < T}. For that
purpose, introduce the o-field & of all predictable sets in [0,T] X U X E
relative to (%,), and the o-field & of all predictable sets in [0, T'] X E relative
to (&). It is easy to see that = &/® P. By 2% (&) we denote the family of
all P-measurable functions ¢ (u, ), t €[0,T], u € U, o € E, with

fT| b(u,)|*v(dt) <», foru-ae. oek,forl-ae uecl.
0

For any ¢ € 22 (&), the following stochastic integral is well defined as an

equivalence class on (U X E, &/® &, I1 ® p):

S = /OT@(u,w) dy,(©).

On the other hand, for every fixed u € U, ¢ (u, ) is a SHmeasurable
function on [0, T'] X E, and so, for II-a.e. ( fixed) u € U, the following stochas-
tic integral is well defined, as an equivalence class on (E, &, u):

Sb = fOTcm(u,w) dy ().

Cram 2.3. The two integrals #* and £? coincide a.e. in the following
sense. If #%(u, ») is a representative of the class & ¢ then for Il-ae. u € U,
#Z%u, ), as a function on E, is a representative of the class £2?.

3. Shift transformations on the Wiener space. Our concern in this
section is a class of nonlinear transformations of the Banach space E, which
has the form

Esw—w+h[u,0] €E, hlu,w] € H.

More specifically, we are interested in the case where the i term above has the
form of an integral relative to the H-valued measure Z(-),

hlu, 0] = Z[d. (v, )] = j;)T¢t(u, ©)Z(dt).

Here ¢,(u, ) is a function from 22 (%). This implies that, for (Il ® u)-a.e.
(4, ®) € U X E, the function ¢.(u, ) is from L*(dv), and therefore, by the
construction from Section 2, the integral above is well defined a.e. in U X E.
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DeriNITION 3.1, For every ¢ € 8% (&), the mapping I*: U X E — E,
defined (IT ® w)-a.e. by

THu,0) =0+ de)t(u,w)Z(dt),

will be referred to as the shift transformation with kernel ¢. For 0 < ¢ < T,
we define also the shift

Tt (u,0) = o + ]:d)s(u,w)Z(ds).

Every shift is a measurable mapping from its domain in U X E into E.
Indeed, for every /€ E*, (u, w) » (/|7 *(u, w)) is measurable, for

(T (u,0)) = (Llw) + [OTZ(t)(p,(u,w)u(dt).

The main goal of this section is to investigate conditions for ¢ € 22 (&),
under which the measure 7% o(Il ® u) is absolutely continuous relative to .
For the classical AWS this problem was studied by Cameron and Martin [2]
and by Girsanov [5]. Here we modify their result in the context of the AWS and
the shifts 7. Our proof, however, is based on a different idea and does not
involve martingale methods or It6 calculus.

First, we introduce the family & c 22 (&) of all simple processes of the
form

(3.1) Y (u,w) = 'Z1§j(u’ o)lg_(8), 0<t<T,
where 0 = ¢, <¢;, < -+ <¢, =1, and each £iisa ‘97, -measurable r.v., with
Enonfé7} < . Let us fix a simple process as in (3.1). Then
bj=(2, -2, |lo), j=1,...,n

Jj—1

are all independent Gaussian r.v.’s, each having variance A ; = 1z, -z, 1||H =

v((¢;_1,t;]). Further, the r.v’s b, and the r.v.’s ¢ from (3'1) have the
followmg property.

LemMA 3.1. For 1 <j < n, and for any Borel function a: R**/~! — C, the

following identity holds in the sense that the existence of either side implies the
existence of the other one and the equality:

E(H@n){a(gla by o5& 1,05 10, + Ei8j505415...5b,)
(3.2) xexp[ £, — 5€7,]}

= |E(H®I_L){a(§1,bl;...; j—l’bj—l’bj’ J+1’ .o )}
(the shift term &;A; disappears in the right side).
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Proor. It is enough to consider the case where « is positive. In this case
both sides of (8.2) are well defined and the Fubini theorem can be applied. Let
M(dy,,dx;;...;dy;_,dx;_1;dy;)
be the probability distribution in R%/~! of the random vector
(fp by;...s j—1> bj—1§ fj)
The latter is independent of the vector (b;;...;b,), so that the distribution of
(61,015 5¢,_1,b,_13€;,b55b,415...5b,)
is

M(dy,,dxy;...;dy;_y, dxj_l;dyj) X Nj(dxj) X «++ X N,(dx,),

N;(dx) = e /2idx, 0<j<n.

27A -

J

The left side of (3.2) equals
1
T [ Niea(d0) X o X Ny(dx,)
fozj_lM(dyl,dxl;m;dyj_l,dxj_l;dyj)

X-/Ra(yl,xl;...;yj_l,xj_l;xj YA X 55 X,)
X e Y%~ (L/D0FA; ¢ o=} /24; dx;.
Changing the variable in the last integral to z =x; + y;,A; leads to the

following expression, which is exactly the right side of (3.2) (note that the
integrand below does not depend on y;):

me_,-M(dz)Njﬂ(dxjﬂ) X -o+ X N,(dx,)
Xj{;yj_la(yl, Xisee 3 Yjm1rXj_1525 %5415+ 3 %,)
X M(dy,,dxy;...;dy;_1,dx;_q;dy;). a
For ¢ € £2(P), define
T T
R = exp| - [T8, v, -  [lla, ()|
0 0

Lemma 3.2. Let ¢ € ©. Then E e, {R?} = 1 and for every /€ E*,

(3.3) E(m#){eimywu,w»}gw(u, w)} = e 1/2141%
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Proor. Since £ is dense in E*, and since the Hilbert norm || - ||z is a

continuous function on E* (relative to the uniform norm), it is enough to
show that (3.3) holds for every /<€ E of the form

n
4= Z ai(ZtJ - ZtJ_l)’
Jj=1

for some choice of 0 =¢, <¢, < -+ <¢,=1 and «; € R. With no loss of
generality we may and do assume that ¢ € © is written as

b(u, ) = Z gj(u’ w)I(tJ_l,tJ ](t)’
i=1
where each ¢; is measurable with respect to ., . Then
[E(HW){eiVI?"’(u,w»Rw( u, w)}

= E(H@#){exp[i Z (ajbj + ajngj)
=1

j=

1—[1 exp[—fjbj -1 2A; }
e

Applying Lemma 3.1 consecutively for j = n,n — 1,...,1, we get

Jj=1

= Eqno{exp[ - 3l1<1%] }.
In particular, for /= 0 we get E,,(R?} = 1. O

3

; (]
[E(Hw){e‘“Iy (“"")>R"’(u,w)} = [E(Hm){exp

What follows is our version of the theorem of Cameron-Martin—Girsanov.

TuEOREM 3.1. Let ¢ € {2, (F) and let Enenf{R? = 1. Then, for every
/€ E*,

s ) .
Eqou{e’ <" @ OOR(u, )} = e/,

Proor. Let ¢ € 22 (%) and EmneufR?} = 1. Choose a sequence {y" € &:
n > 1} with the following two properties:

() tim [Ml6(u0) - 97,0 Pudn) =0, (6 p)ass

. . T T
(ii) 311)1}0]; W (u, 0)dy,(u,0) = fo d(u,0)dy(u,»), (I1®p)as.
To see why such a sequence exists, notice first that
) T 2
,}13:0[0 |p(u,0) —n A (d(u,0))v(dt) =0, (Il ®pu)as.

On the other hand, as is well known, & is dense in L%(U X E, &, 11 ® u), so



PATHWISE NONLINEAR FILTERING 1737

that for each n > 1 there exists ¢* € © with

oo [ 107, 0) = n A (8,(0,0)) Po(dt) | <27

It is now clear that some subsequence of {/": n > 1} must satisfy (i) and we
remark that if (i) holds, then the convergence in (ii) takes place in probability
and therefore a.s. for some subsequence.

Next, notice that (i) and (ii) yield

lim R (u,w) = R*(u,w), (Il ®pu)-as.

n—o

and
lim | 7%(u, 0) — T (u,0) [z =0, (& pu)as.
n-—o

From the last relation, for every /€ E*

lim e#¢1" w,@) = QiATH @) (] ® w)-as.
n—ooo
By Lemma 3.2 we have [E(HW){R"’"(u, o)} = 1, n > 1. Thus, the assumption
E(HW){R*"} =1 implies the uniform integrability of the family {(R""(u, w):
n > 1}. But then, for every /€ E* the family {e!¢/|7"" @ YRV (4, w): n > 1}
is also uniformly integrable and since
lim ei/17 " @RV (| ) = T NRE(y w), (I ® w)-as.,

n-—o

we conclude that

i } . ; n n
[E(H@,“){e“/'y “‘""”R‘”(u,w)} lim [E(HM){eM/lY"’ @, o) RY (u,w)}

n—o

= (- 1/2IE O

For ¢ € 82 (%), with Eye,{R? =1, consider the following probability

loc

law on U X E:
dP?¢ = R"’d(H ®pu).

In fact, the last theorem claims that the distribution of 9 %(u,w) in E,
relative to the law P?, coincides with the canonical Gaussian measure u. We
remark that in our considerations II is an arbitrary probability law on (U, &)
and the last result obviously applies for Il =4, (5, is Dirac’s measure
concentrated at u, € U). In the latter case, if [l (u,, ®)*v(dt) < o, for
u-ae. v €E and E “{R*"(uo, )} = 1 we conclude (cf. Claim 2.3) that relative to
the measure R%(u, - ) du, the element I %(u, ») is distributed in E accord-
ing to the law w. Thus, the following result is established.

COROLLARY 3.1. Let ¢ € 22 (£) and let Emen(R? = 1. Then, for every

loc

Borel function f: E — R, the following identity holds, in the sense that the
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existence of either side implies the existence of the other one and the equality:

[E(H®M){f(e7'¢(u,w))Rd’(u,w)} = [Eu{ f(w)}.
If E{R*(u,w)} = 1, for some u € U, then

[E“{f(?"’(u,w))R“’(u,w)} =E{f(w)}.

As is immediate from the proof of Theorem 3.1, e M){Rd’} = 1 is equivalent
to the uniform integrability of {R*"(u, »): n > 1}, for some (i.e., for any)
approximating sequence " € ©, n > 1, as in Theorem 3.1. The following
implication is known from Lemma 7.1.2 in [6]. (In [6] this fact is proved for v,
defined as the Wiener process, but the same reasoning applies in our case also.
An independent proof, using uniform integrability of exponents of simple
processes, is also possible.)

T 2
ueU and lp(u,w)|"v(dt) <C, foru-a.e. wekE,
(3.4) /;) ( )v(dh

= Ef{R%(u,w)}=1.
We will show next that E{R?} =1, u € U, always holds, if the shift
T *(u, - ) is invertible over a set with probability 1, the inverse being also a
shift defined a.e. We will illustrate with examples that such a situation

naturally arises when strong solutions of stochastic equations are considered.
First we introduce the following assumption for the kernel ¢ € 82 (£).

AssumpTION 3.1. For Il-a.e. u € U there exist sets S% S* € & with the
following properties:

(@) u(8™) = u(8*) =1,
(b) for every w € S¥,

foTldh(u, o) [Pv(dt) < o;

(c) the mapping 9 *(u, - ) provides a one-to-one correspondence between
S* and §* and the inverse [Z%(u, - )]~} §* —» S% is measurable;
(d) the following implication holds for every ¢ € [0, T']:

w,0 €S* and Tu,w)t L =T u,w) £, = o M=o L.
TueoREM 3.2. (a) Let ¢ € 87, (). Then EfR*(u,0) <1, for I-a.e.
uelU.
() Let ¢ €% (P) obey Assumption 3.1. Then E{R*(u,w)} =1, for
M-ae uel.

Proor. For every n > 1, define the set

A, = {(u,w) eUXE: j;T|¢s(u,w)|2v(ds) < n}
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and let

inf{t e[0,T]: ft|qbs(u,w)|2v(ds) > n} if (u,0) €A,
0
T, if (u,0) €A,.

Then define ¢;(u,w) = I, , (Ddu,w), n = 1. Clearly, ¢7(u, w) = ¢(u, )
for (u,w) e A, and for ¢ €[0,T]. Thus, ¢ A, =% A, and
I, (u, ®)R*(u,w) = I, (u, ®)R?®"(u, »), (I1 ® w)-a.e. By (3.4), for every u € U,

E{R*(v,w)} =1, n=x=1

T(Uu,w) =

Proor oF (a). For MM-ae. u € U,

E I (1, 0)R?(u,0)} = E,{I, (u,0)R* (4, 0)} < E{R?(u,0)} = 1.
Passing to the limit as n — «, we get E {R*(z, w)} < 1, for [T-ae. u € U.

Proor oF (b). First we will show that for every n > 1 and u € U the
following assertion holds: If w,w’ € 8* and %" (u,w) = I ¢ (u, ), then
w=0w.

Let u € U, and let w, o € S* be such that 7% (u, o) = I¢(u, w). With
no loss of generality we assume that 7,(u, 0) < 7,(u, ') and set t* = 7,(u, w).

If t* =T, then %u,w) = 9%, ) and therefore w | £y = ' | £, that
is, w = &'. So, let +* < T'. Then

THu,w)t L= T (u,0)t Ln=T(u,0) | L= T u,o) L.

Due to (d) in Assumption 3.1, this yields o | £« = o' | -£}«. Since ¢ (u, - ),
0 <s <t* are all &«-measurable functions on E, we have ¢ (u, o) =
¢ (u,w), 0 <s <t* Thus

t* t*
[ 18, @) Fr(de) = [Ty, 0)[Pu(de) = n,
0 0
which shows that

T(u, ) ,
/ |, (u,w) [ v(dt) = 0.

t*

Hence

[, @) 2(dt) = 0
t*

and

[ 6w, 0)2(dt) + o = T (1, )
(3.5) )
= 7"(u,w) =f0 b (u,w)Z(dt) + .

Since w | L = o' | L, (ZJw) = (Z,|0'), t €[0,t*). For ¢t € [t*,T], by (3.5),
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we get
<Zt - Zt*lw,> =<Zt - Z,*Iy‘bn(u,w'» =<Zt - Zt*ly-d)n(u’ “’)> =<Zt - Zt*l“’)'

Hence, (Z,|o) = (Z,|w'), for all t € [0, T'], which implies that w = «'.
Let, for u € U, A% be the u-slice of the set A, c U X E and let

B = T%u,[A4Nn8S*])= T (u,[A2NS*]), ueUn=1l.

For Il-a.e. u € U, we have B € & (because [Z *(u, - )]™! is measurable on
$*), and, by Corollary 3.1,

EfIzg(0)} = E{Ip(T*" (1, 0))R* (v, 0)}, n=1.
Because of the invertibility of 7 ¢"(u, - ) over S* established above, we have
Igu(0) (@) = Isu(0) Ips( T (u,0)), @< E.
Hence, for Il-a.e. u € U,
EfIa(u, 0)R*(u,0)} = E(I, (,0) R (v, )}

(3.6) o
= E{Ips( 7" (v, 0))R*" (v, 0)} = E,{I5.}.

But §* c U, A%, and so,
/.L( UB,’{) = (7 (w,[8*D)) =u(S*) =1, Tlas.
Passing to the limit in (3.6), we get E {R*(x, w)} = 1, for [I-ae. w € U. O
Consider next the following modification of Assumption 3.1.

AssuMPTION 3.2. Same as Assumption 3.1, with (d) replaced by
(d): there exists a kernel ¢ € 22 (%), such that

T A 2 N
f |¢t(u,w)| v(dt) < oo, weS*
0

and [ %(u, 711 8% = THu, )1 8~

When it exists, ¢ will be called the inverse of ¢.

It is easy to see that (d’) implies (d) in Assumption 3.1. Indeed, let © € U
and let y = 9%u,w), y = I*u, o), for some w, o € S* If ¢ satisfies
Assumption 3.2, then

0= ["$(u,y)2(dt) +3,
0

o = ["B(u,y)2(dt) +,
0

from which relation it follows that if y 1 £, =y’ | £, then o | £, = o' | Z,.
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Clearly, the inverse @, if it exists, satisfies the same Assumption 3.2, with
S« playing the role of S* and with ¢ = ¢. Hence, if ¢ satisfies Assumption
3.2, and ¢ is its inverse, then by Theorem 3.2 E {R%(u, w)} = E{R%(u, w)} =
1, for IT-a.e. u € U, and according to Corollary 3.1, for every measurable
mapping f: U X E - R,

Eff(u, 7%(u,0))} =Eff(u, T%(u, T(u,0)))R* (¢, 0))
=E f(u,0)R*(u,w)},

for Tl-a.e. u € U. Since R? > 0, (Il ® p)-a.e., taking f(u,w) = I(w) above,
for A € &, we get

Enewn{Ia(T*(u,»))} =0 o u(A) =0,

that is, u? = (I1 ® w)°(J %)~ ! and u are mutually absolutely continuous.

(3.7)

4. Kallianpur-Striebel formula for signal correlated with noise.
In this section we investigate the model (1.2), under the assumption that the
signal hlu, o] has the form of an integral w.r.t some H-valued measure Z(-),
which satisfies Assumption 2.1. More specifically, we study the following
model:

(41) y=THu,w) = [ ¢ u,0)Z(dt) +o, ueUock.
0

We assume once and for all that the kernel ¢ € 22 () obeys Assumption 3.2
and ¢ € L2 () will denote the inverse of ¢. As was illustrated in Example
2.1, our considerations include the classical model (1.3) as a particular case.
Consider now the observation o-field &= (7 %) {&] c & ® &, related to
the model (4.1). The main goal of this section is to express [ e, /£} as an
explicit function of the observation y = 7 %(u, w). For any (I ® u)-integrable

function f: U X E — R, define the following two functionals on E:
a(fi0) = [ f(u, 7w, 0))R¥(u,0)1I(du), forp-ae. o<k,
U

o(f;w)

q’(f;w)=m,

for p-a.e. w € E.

The key step in our approach is the following simple result.

THEOREM 4.1. Let f: U X E — R be a (Il ® w)-integrable function. Then,
for every bounded Borel function g: E — R,

Erneu{8(7 (4, ) f(u, )}

4.2
(4.2) = [E(HW){g(?d’(u, 0))®(f; T (u,w))}.
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Proor. By Corollary 3.1 we have
Enou{8(T (1, 0)) f(u,w))
= Enen{g (7 (v, 7 (1, 0))) f(u, 7%(u,0))R¥(u, 0))
(48)  =Efg(0)En{f(u, T%(u,0))R¥(u,w)})
= Efg(0)®(f;0)0(1;0)) |
= E{g(0)O(f;0)Eg{R*(x, 0)}}.
On the other hand, (3.7) implies that
Eenf8 (7 (u, 0))®(f; T4(u, w)))
— En{E{2(0)®( f;0) R* (1, 0)})
~ E,{g(0)®( f; 0)Eq{R?(u, 0)}},
which completes the proof. O
As (4.2) shows,
Eowf F(2, )6} = ®(f; T4(u, ))

(4.4) o(fs T )
= o T, )) (IT®pw)ae.

REMARK. Let E{-|&) denote the conditional expectation relative to the law
dP? = R*d(I1 ® w). It is easy to show that

E(rx(r*) o)
E{(r*) o)

(4.5) [E(nw){ flo} = , (IT® pn)-a.e.

Many authors refer to the last relation as the Kallianpur—Striebel formula,
whereas the term seems more appropriate to the expression in (4.4). Indeed,
the original idea of Kallianpur and Striebel [9] was to express Eme /.c){ f1O} as a
functional of the observed sample path, and they constructed explicitly this
functional for the classical model (1.3), with kernel ¢, which does not depend
upon w.

For some fixed ¢ € [0, T'], consider the following observation scheme:

(46) 3= T (u,0) = [b(u,0)Z(ds) +o, ueU, o<k,
0
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and let &, = (7,%)"[&] c &/® & be the corresponding observation o-field.
This, of course, is a particular case of the model (4.1), with ¢ replaced
by I ;. It is easy to see that I, ,¢ also satisfies Assumptions 3.2 with
o t]¢>) I, ,]cj) Thus, for any (Il ® w)-integrable function f: U X E — R,

(H@m){ f(u, w)lﬁ t(f’y (u, w))

(4.7) B G't(f (u w))
= oL -7; (@, o))’ (I ® w)-a.e.,

where

ol fiw) = [ f(u, 7 (u, ) RE(x, 0)11(du),

“u(ds)|.

2 ta t) A
Ré(u,0) = oxp| - [B.(u,0) dn() -
0 0
It is trivial to show that

S, T, 0)) + d,(u,0)| v(ds) = 0, forp-ae. o, for l-ae. u

and so, the exponent R ;;’ can be written in the following equivalent form:

R¥(u,0) = exp| ['6,(u, 7 (1, ) ()
(4.8)

_1ft
2
0

(1, T (u, 0))[ v(ds)|.

Note that by definition @(f;w) = oo( f; @) = Ex{f(u, ®)}.
Cons1der now the following filtration: &, = (%)~ &), 0 <t <T. Clearly,
. C O, 0<t<T. We can now compute IE(HW){fIﬁ} for f: UXE - R,
whlch is (&/® &,)-measurable and satisfies [ 14, (/f]} < ®. By (4.4),

E(H@ﬂ){flﬁt} = (Dt( f; Z¢(u, w))

and since [7;*]7 &) c #® &, f(u, 7, (u, 0)) is (Z® &,)-measurable. But
then

Juf(u, 7 (u, ) R (u, )T(du)

o,(f;°) = i R
A7) o R (e, ) (du) K
is an &-measurable mapping, and therefore ®[f; 7,*(u,w)) is &, measur-
able. Hence
(4.9) |E(1'I®u){ flét} = E(H@,L){flﬁt} = q)t( f3 7:(u, w))

As the above reasoning indicates, the role of the inverse kernel ¢ is
essential for the explicit construction of the filter. The next theorem provides a
method for computing ¢.
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THEOREM 4.2. Let ¢ € 82 (P) satisfy the following assumptions:
(i) For everyu € U and w € E,

A, ,=sup{|¢(u,»)]:0<t<T}<w.
(ii) For every u € U and w € E,

1
Bu,wEsup{ T |o(u, 0 +h) — ¢ (u,0)|:0<t<T,heH, h¢0}<oo

Then there exists another kernel ¢ € Q% (), which also satisfies (i) and (ii)
and is such that

Tu, T*(u,w))
= 7‘2’(u, 9“’(u,w)) =w, foreveryu € Uandeveryw € E.
Proor. Everything here is a suitable modification of the standard argu-
ment involving Picard’s method. For 0 < ¢ < T denote by P, the orthogonal

projector in H with Range(P,) defined as the closure in H of -2, and observe
that 7 %(u, w) = I %(u, o) is equivalent to

W —-w=h= fo [b,(u, @) — ¢o(u, )] Z(ds).
This implies that
IP,RI% < Bg,wf‘up,hn%w(dt), 0<t<T
0

and therefore that o' — w = h = 0. To complete the proof we have to show
that for any glven u€U and w € E there exists (uniquely, according to
the above) o' € E such that I “"(u ') = o. We also have to show that

= 9 %u, ) for some universal é € 82 (P) which satisfies () and (ii).
To accomplish this program, define the transformations ./: U X E — E,
n=>0,as

A(u,0) = T (u,0), n=0,
v (u,0) =0,
o N (u,0) = ¢i(u, A (u,w)), nx>1
and set
pi(u,w) =y (u,w) — ¥ Yu,0), n=1.
Then observe that

o7 M, 0) [ < B, [[]p7(n, @) [*v(ds)
and that
lol(u, w)|<A 0<t<T.
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Iterating, we get
2 n ot 51 Sno1
v i, o) < 4% (BE)" [ v(dsy) [ v(dsg) - [ v(ds,)

— 1 2 2 i

= A2 (B u([0,4)
and so, we can legitimately define

b(u,0) = ¥ pi(u, o).
n=1

It is now easy to check that

. » (B, V»([0,T]))"
sup |$i(u,0)| <A4,, Z( f_, )) < <,
te[0,T] n=0 n!

|(u, 0+ h) = d(u, )| < Ikl exp[2B2 ([0, T])]
and

T u, T¥Hu,0)) = Tu, T*(u,0)) = o. a]

As follows from the last result, conditions (i) and (ii) imply Assumption 3.2.
The next example clarifies the role of the inverse kernel ¢ and the invertibility
discussed above.

ExampLE 4.1. Let ¢,(x), t €[0,T], x € C,[0,T], be a jointly measurable,
causal functional on C,[0, T'], such that, for every x € Cy[0, T'], the following
two conditions hold:

(i) sup{le(x)l: 0 < ¢t < T} < .
1
(ii) sup{”—h”—hot(x +h) —g(x)]:0<t<T,he<€[0,T],h+ 0} < o,
H

According to the last theorem, these assumptions guarantee existence and
uniqueness of a strong solution (y,) to the following stochastic equation:

(410) (o) = - [o(y.(w))ds + W(w), 0stsT.

Here the probability space is taken to be C,[0, T'], provided with the standard
Wiener measure, and W, is the coordinate Brownian motion W,(w) = w(2),
0<t<T, weCy0,T]. Equation (4.10) may be regarded as a functional
relation between the Brownian path W.(w) = w and the solution’s sample path
y.(w). As was explained in Example 2.1, the function ¢ — [l¢,ds, as an
element of €"[0,T], coincides with [[¢,Z(ds), where Z(-) is the €'[0,T]-
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valued measure described there. Therefore (4.10) is equivalent to

w(*)= Ty) =y+ jo")qo(y.) ds, y,0€Cyl0,T].

By Theorem 4.2, 97¢: Cy[0,T] ~ C,l0,T] is one-to-one and invertible with
inverse (%)~ = 9% Cyl0,T]~ C,l0,T], where ¢ x) is another jointly
measurable causal functional, which also satisfies (i) and (ii). So, the solution
(y,) can be expressed in terms of the inverse kernel ¢ as

(@) = [¢(0)ds + (), 0<t<T.
0
Note that this solves (4.10) “w-wise.”

ExampLE 4.2. Consider the following modification of the model (4.1):

o ] |
(4.11) ysy(u,w)=f0¢,(u,y)2(dt>+w, y,0 €E,

where ¢ € 22 (£). We regard this relation as an equation for the observation

y = ¥(u, ), that is, we assume that for II-a.e. ¥ € U and for u-ae w €E
there exists y(u, w) € E, such that:

@ ¢ (u,y(u, w) € 8% () and (4.11) is satisfied (Il ® pu)-a.e.
(i) ply(u,w): @ € E} = 1, for MT-ae. u € U.

Clearly, this is satisfied if, for example, ¢ obeys (i) and (ii) in Theorem 4.2.
Setting ¢,(u, w) = ¢,(u, y(u, w)), (4.11) takes the form

yEy(u’w)=‘7—¢(u’w)’ yaweE~

It is easy to see that ¢ obeys Assumption 3.2, with ¢ = —¢. Thus, for the
model (4.11), the nonlinear filter ®,(f; - ) [cf. (4.9)] has the following form:

Du(f;0)

_ Juf (e, Trequ, 0)exp| ffouu, @) dy(w) — §fflofu, w)Pv(dt)]M(du)
Jor exp| fiou(u, @) dy,(w) — $flou, w)P(dt)| T(du)

’

w€EE.
In particular, if f(u, ) = f(«) the last relation is easily seen to coincide with
the one obtained by Kallianpur and Striebel [9].

5. The finite energy condition and the Zakai equation. Let X,
0 <t < T, be a stochastic process on (U, &, IT), which is a strong solution of
the following SDE:

(5.1) dx, = a,(x)dt +b,(x)dB, O0<t<T.
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Here (B,) is a Brownian motion process on (U, &7, II) [thereby (B,) is indepen-
dent of the white noise w € E], and a, b: [0,T] X C,[0,T] — R are appropri-
ate nonanticipative functionals with

[Nadx)ldt <o and ["|b(x)fdt <= Iae.
0 0

We regard (x,) as a system process, that is, x, is interpreted as the state of
some system at moment ¢. In general, (x,) can be taken to be an R%valued
diffusion process. Here we assume that (x,) is one dimensional only for the
sake of simplicity and all results in this section can be easily modified for
x, € R%.

In what follows, we will employ the results of Sections 3 and 4 in the case
where (C[0, T'], ¢, v, 7), 7 = the law of the system process (x,) is substi-
tuted for (U, o7, IT). All notation will be adjusted to this case in an obvious
way. Therefore, the role of the parameter u will be played by the trajectory x.
of the process (x,). A principal assumption for the system process is that it
cannot be observed directly, and information for (x,) is provided only by
observing y € E, given by

(5.2) y=T%x,0) = fOTqSt(x,w)Z(dt) +w, wck.

Here ¢: [0,T]1x C[0,T] X E ~ R is a kernel from the class 22 (%). Every-
where below we will assume that ¢,(x., ») obeys Assumption 3.2, that is, for

m-a.e. x.€ C[0, T], the mapping
T x,"):E~E

is invertible over a set S* & &, with u(S*) = u(J *(x,[S*] = 1, and the
inverse has the form [7%(x, - )™ = %« - ) = [{x., - )Z(dt) + (-). This
always holds if, for example, ¢ obeys (i) and (ii) in Theorem 4.2. The model
discussed in Example 4.2, with the sample path x. substituted for the parame-
ter u, presents an important particular case of the observation scheme (5.2).In
the latter case the model already provides the inverse kernel ¢ = —o.

Following our considerations in Section 4, for a (7 ® w)-integrable function
f(x,w)and for 0 <t < T, we set

o f; )

¢t(f;w)=m,

o f;w) = [C[O,T]f(x, Th(x.,0))RY(x., 0)m(dx.),

Ri(x,0) = exp [[6,(x, T (x,0)) d7,(0)

- %f:l«bs(x-, Th(x., ) v(ds)|.

The observation y in the model (5.2) generates the filtration &, = (7¢)~&)],
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0 <¢<T, and for every Borel function f: R — R, with E {|f(xt)|} <o, 0<
t <T, we have by (4.9) that E o, {f(x)|&) = f(x,); T *(x, w)). As pro-
cesses on (E, &, u), ®,= (f(x,);w), 0 <t <T, and a,_a,(f(xt) w), 0 <
t < T, are adapted to the filtration &,, 0 < ¢ < T. Our main objective in this
section is the computation of Ito differentials d®, and do,. That would allow
the current values of ®, and o, to be computed recursively. Notice that as
a rv. on (E,&,p), <I> {f(x,); w), does not represent [E(NM){ f(x)I 8} =

@, f(x,); T %(x., ). However, since the measure u® = 7% o(7 ® u), induced
on E by the observation y = 9 %(x,w), and the measure u, are mutually
absolutely continuous, any equation which holds u-a.e. in E, will hold (7 ®
w)-a.e. in C[0,T]1 X E, if w € E is replaced by y = 9 *(x, w). Therefore, we
are free to choose different modifications of the processes (¥,) and (a,), which
are adapted to the augmented filtration &%, 0 <t < T (& is obtained by
augmenting &, with all u-null sets). One can show that (£*) is right continu-
ous and this property is important for what follows. We fix once and for all a
continuous modification of the process Rf(x,w), 0 <t < T, and everywhere
below we will operate only with this modification. It follows trivially from
Fubini’s theorem that E_{R ¢(x w)}, 0 <t < T, is an (&) martingale, relative
to the measure u and therefore it admits a rlght continuous modification. By
Doob’s inequality, for any such modification,

{weE sup |[E R}(x.,w) |<00}=1.

0<t<T

LemMa 5.1. Let ¢ € 83 () be such that JTE roufldx, ) *(dt) < .
Then the following identity holds u-a.e. in E:

[E,,{ [[6:x00) d%(w)} - [[E {85, @)} dri(o).

Proor. If ¢ € &, there is nothing to prove. In the general case, choose a
sequence {¢” € ©: n > 1} so that

tim ["E e |42 0) - 07 (x, @) F)u(de) = 0

and notice that, since
/ "E{|EAu(x. 0)) — E {97 (2. 0))*)w(de)

< [ Eou{ 8z @) = 97 (x, @) PJo(dt) =, .0,

one has

[} Bl (2, @)} d7i(@) = [EfA(200)) dri(0)
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in L?(w). On the other hand,
T . T : 2
[ 9 (x,0) dy(@) = o [d(5,0) dy(0) in L7 @ p),
so that u-a.e.,

T ) T
. [0x00) dno)| = Jim E{ [T0(x,0) dro)]
0 k—oo 0
for some appropriate subsequence. O

The following theorem presents the main result in this section. The equa-
tion we derive for o,( f; w), may be regarded as a ‘“pathwise version” of the
Zakai equation.

THEOREM 5.1. Let f: R = R be a twice—differentiable function, with |f(x)|
<C, |f'(x)] <C, x € R. Assume that:

(i) [E(,rm){lqb,(x_, w)|} < o, for every t €[0,T]
() [Eroufldx, @)Pw(dt) < w.
(i) [FEAIL, f(x )|} dt < o, where

L,f(x.) = a/x)f'(x;) + 3b(x.) f"(x,).

Then, for every t € [0, T], the following identity holds u-a.e. in E:

o (f(x); @) = E{f(x0)}

(53) t . t .
+f0(rs(Lsf(x.),w)ds + [Oos(f(xs)qbs,w)dys(w).

ReEMARK. Condition (ii) above is known as the finite energy condition. Its
role in deriving the Zakai equation was studied by Ocone [16] in the case of
uncorrelated signal and noise.

Proor. We will show first that both integrals in the right side of (5.3) are
meaningful. For the first integral we have

[E,L{fOT|os(Lsf(x.);w)[ds} < LT57<|LSf(x.)|[E#{R‘j’(x,,w)}} ds

- [TEAIL A ds <=

To show that the stochastic integral in (5.3) exists, it is enough to verify that
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for p-a.e. w € E,

A@) = ["|o, = B[Rz, 0) f(2)0,(x, T2 (x30)))[v(ds)

< C2[0T[EW{R§’(x., O)JEA R (2, @)|8,(x, o5 0) o) <

In fact, we only need to show that the last relation holds for some modification
of the process E {R%(x,®)}, 0 <s < T. Taking a right-continuous modifica-
tion, we get

A(w) < 02(0:1:£T [E,,{R‘i’(x-,w)})

xj(;T[E,,{Rf(x., ©)| (2., T3 (x5 w))lz}v(ds):

The last integral is finite for u-a.e. w € E, because by Corollary 3.1,

[E“{j;)T[E,T{Rf(x., )| ¢y(x., T(x; w))lz}v(ds)}
= E{ [ E{ RO, )63, 705 0) o))

- [Ev{fOT[E“{MS(x,, w)|2>v(ds)} < .

Thus, the right side of (5.3) is correctly defined.
Now we will show the identity in (5.3). Define the stopping times

. t t 9
ol(u) = 1nf{t. te[0,T], folas(x.)|ds >n orfo|bs(x,)| ds > n},
T, if the above set is empty,

inf{t: teo,T], jot|d)s(x,, T (x., w))|2V(ds) >n

on(x.,w) =

or [t| R‘s?’(x.,w)qbs(x., Z$(x.,w))lzv(ds) > n},
0
T, if the above set is empty.

"

Set 7, = min{o,,0,} and x}' = I, , (s) = Iio, o1 (8) g on(s), 0 < s < T. Then,
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for every ¢ € [0, T'], the following equalities hold a.e.:

Zonn (1) = %o+ [XFay(x.) ds + [xby(x.) dB,(u),
0 0
R}, (x,0) = exp[ / Xobo(%. T (2, 0)) dy,(w)

t 2 2
- %fo/\/s"ld)s(x., T (x, 0))| v(ds)]|.
Itd’s differential rule now yields

f(5ens) BEnr, ey F(20) + [ YIR¥(x, ) (L, f)(x,) ds

(5.4) + [ XiRI (%, 0) F(2,)b(x.) dB,(u)

+[0"‘X:R;?>(x,, ) (2,) (2, T (x, 0)) dy,(@)

=f(xy) + A + Ay + A

Next we will take the expectation E,. on both sides of (5.4), but first we need to
check the validity of this operation. We have, for every ¢ € [0, T'],

6| RE, (o)

= [E#{thiaﬁ(x" w) X exp[ft/\a',ll ¢s(x~’ 9;3’(36, w))|21/(ds)]}
0

< e"E (R u(x,0)} = e".

Therefore
Eon [I0REGL0) (20,2 ds)
< C {[”ﬂb(x)ﬁm {Lo,mpi(5)| RE(x w)lz}ds}
= T o s . wr) “[0,05] s ]

< C2e"[E,,{[””|bs(x_)|2ds}
0

< C?%ne™.

The last relation shows that, for u-a.e. 0 € E, #,(-, w) is m-square-integrable
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with E_{Z(u, w)} = 0, pu-a.e. On the other hand,

[E(,,W){j:lxs"Rf(x,, ) f(x) (., T (%, w))|2V(ds)}

< CZIE(,,@M){fUﬂRf(x., 0)dy(x., TP (x, w))|2v(ds)}
0

< C?n,
and so, by Lemma 5.1,

E( ) = BBz, 0) f(x)6,(x, Tz, 0))dr(),  wae.
We can now apply E_ to both sides of (5.4) to get
Eo{ F(5nr) BE,)
(5.5) =@y Eo{ F(%0)) f E{x;RE(x., 0)(L,f)(x,)}ds

+ fo E{xIRS(x., 0) f(x,),(x., T3 (2., 0))} dy,(w).
We have RM, ™) Rf’, (7 ® p)-ae., and

1= [E(17®;L){Rf)/\ 1',,} _)(n) [E("T‘X’l"){R } =1

Thus, the family { f(x, ., )R $ ;- 1 = 1} is uniformly integrable ( f is bounded),
so

lim EE{|f(x,n0) RE,., — F(x) RE[) =
Hence, for some sequence (%,,),
;}l—l}}n [E'n'{ f( xt/\rkn) R;;S/\ ‘Tkn} = IE'n'{ f(xt) R;;S}’ p-a.e.

The dominated convergence theorem yields

[EAIC = x0) B2 0)(L, £)(,) dsl} ds =, 0,

LEAl - x0) BE 2, 0) (28,5, T (2, 0)) [ J(ds) >0, 0.

By the last relation, we have in w-probability,

lim j AxE R (2, 0) f(x,)b,(x, TP (%, 0))} dvyy(@)

= [E(RE(x.0) F(2)8,(x., T2, 0))} dr,(w).

We now replace (%,) with an appropriate subsequence, so that the last relation
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holds u-a.s. then, substituting %, for n in (5.5), and passing to the limit as
n — o, we get the result. O

Knowing the It6 differentials do,( f(x,); w) and do,(1; w), by the Itd formula
one can calculate directly the Ité differential of the process

®,(f(x,); 0) = ‘L(a%x_tz%) 0<t<T.

The result is the following.

CorOLLARY 5.1. Let all assumptions of Theorem 5.1 be met. Then the
following equation holds p-a.e. in E:

Of(x);0) = E(f(%0)) + [[@(L, f(x.); ) ds

(5.6) # 10, 1()8,50) = B(F(2);0) (8,5 0)]

x[dy, (@) = Oy(b; w)v(ds)].
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