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HILBERT SPACE REPRESENTATIONS OF m-DEPENDENT
PROCESSES

By VINCENT DE VALK
University of Groningen

A representation of one-dependent processes is given in terms of Hilbert
spaces, vectors and bounded linear operators on Hilbert spaces. This gener-
alizes a construction of one-dependent processes that are not two-block-
factors. We show that all one-dependent processes admit a representation.
We prove that if there is in the Hilbert space a closed convex cone that is
invariant under certain operators and that is spanned by a finite number of
linearly independent vectors, then the corresponding process is a two-
block-factor of an independent process.

Apparently the difference between two-block-factors and non-two-
block-factors is determined by the geometry of invariant cones. The dimen-
sion of the smallest Hilbert space that represents a process is a measure for
the complexity of the structure of the process.

For two-valued one-dependent processes, if there is a cylinder with
measure equal to zero, then this process can be represented by a Hilbert
space with dimension smaller than or equal to the length of this cylinder.
In the two-valued case a cylinder (with measure equal to zero) whose length
is minimal and less than or equal to 7 is symmetric.

We generalize the concept of Hilbert space representation to m-depen-
dent processes and it turns out that all m-dependent processes admit a
representation. Several theorems can be generalized to m-dependent pro-
cesses.

1. Introduction. In this paper we consider one-dependent processes,
which are discrete time stationary stochastic processes (Xy)y < with the
property that for any given time ¢ the past (Xy)y., is independent of the
future (X )y ;-

Just like Markov processes, one-dependent processes are a weakening of
independence, but in contrast to these we assume no knowledge about the
present value X,. Although Markov processes have been investigated thor-
oughly for a long time, the theory of one-dependence is still young but
growing.

This paper is the first that uses Hilbert space techniques to investigate
one-dependent processes. The concept of Hilbert space representations was
initiated by Mike Keane. One-dependent processes arise in renormalization
theory as limits of rescaling operations (see [21]). In statistical physics many
models have rescaling properties for critical values (e.g., critical temperature)
of their parameters (as is conjectured by physicists). This means that the
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model is invariant under rescaling operations (such as, e.g., fractals). Such
random fields should therefore typically be one-dependent. The notion of
one-dependence can be generalized to m-dependence (m € N); which means
that for any given time ¢, (Xy)y ., and (Xy)y .., are independent.

Examples of m-dependent processes are m + 1-block-factors; let (Yy)y <2
be an i.i.d. sequence and f a function of m + 1 variables. If we define

Xy = f(YN""’YN+m)7

then the m + 1-block-factor (X, )y 7 is an m-dependent process, as follows
immediately from the definition. It is easily checked that for m + 1-block-
factors it is no restriction to assume that the underlying sequence (Yy)y < 7 is
identically distributed with the uniform distribution over the unit interval.
Although for quite a time probabilists conjectured ([3], [9], [15], [16], [17]
and [22]) that all m-dependent processes are m + l-block-factors, in [2] a
two-parameter family of counterexamples is shown of one-dependent pro-
cesses (assuming only two values) that are not two-block-factors. Later Jon
Aaronson, David Gilat and Mike Keane found an example of a five-state one-
dependent Markov chain that is not a two-block-factor ([1]). Recently Burton,
Goulet and Meester found a counterexample of a four-state one-dependent
process that is not an m-block-factor for any m € N ([4]). Several authors [3],
[10], [13], [17] and [22]) used this conjecture as hypothesis and therefore some
of their results on m-dependence are only valid for m + 1-block-factors. In
[25] the authors prove that every process (X,),.n has an a.s. nonlinear

regression representation X, =f.(X,,...,X,_;,U,) as. for some (f,),cn
and some i.i.d. sequence (U,),, <, where U, is independent of (X, ..., X, _,).
This implies the existence of a representation X, = g,(U;,...,U,) as. for

some (g,), cn- For so-called monotone m + 1-block-factors this supplies a
constructive method to obtain the m + 1-block-factor representation X, =
g, U,_,.,...,U). In this article we generalize the construction of the coun-
terexamples from [2] by representing one-dependent processes in terms of
Hilbert spaces, vectors and bounded linear operators on Hilbert spaces. A
crucial difference between the operators in Hilbert space representations
(HSR) and the operators in quantum probability is that the HSR operators are
defined on the whole space and are in general not self-adjoint and not even
normal, while the quantum probability operators are defined on a subspace
and are self-adjoint. These Hilbert space representations can supply new tools
to investigate the structure of one-dependent processes and especially the
essential difference between two-block-factors and non-two-block-factors. The
dimension of the smallest Hilbert space that represents a process is a measure
for the complexity of the structure of the process. One-dependent processes,
represented by a one-dimensional Hilbert space, are i.i.d. sequences. One-
dependent processes, represented by a two-dimensional Hilbert space, are
two-block-factors. The counterexamples from [2] fit with a three-dimensional
Hilbert space. The plan of this article is as follows.

In Section 2 we describe the Hilbert space representation and we show that
it actually represents a consistent probability measure that is one-dependent
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(Theorem 2.1). In Section 3 we show that each one-dependent process (Theo-
rem 3.2) admits a Hilbert space representation. We give some examples. In
Section 4 we introduce closed convex cones that are invariant under certain
operators. We prove that if there is an invariant cone that is spanned by a
finite number of linearly independent vectors, then the one-dependent process
is a two-block-factor (Theorem 4.4). This implies that one-dependent processes
with a two-dimensional Hilbert space representation are two-block-factors
(Theorem 4.3). It seems that the difference between two-block-factors and
non-two-block-factors is determined by the geometry of invariant cones. In
Section 5 we make some remarks on minimal zero-cylinders and minimal
dimension of the Hilbert space and we generalize the concept of Hilbert space
representation to m-dependent processes. Several theorems on one-dependent
processes can be generalized to m-dependent processes. In Section 6 we give a
contribution to the perpetuation of mathematics by a list of conjectures and
open problems.

2. The representation. In this section we describe the Hilbert space
representation and we show that it actually gives rise to a consistent probabil-
ity measure that is one-dependent. Let H be a real Hilbert space, and let
K > 2 be an integer, let A,,..., Ax: H - H be linear, continuous operators,
and let x,y € H be two fixed vectors with (x;y) = 1. We call
(H,x,y, Ay, ..., Ag) a weak Hilbert space representation (weak HSR) of a
one-dependent process (Xy)y <7 if

P[X1=i1""’XN=iN] =<Al1 cet AlNy;x>

1
M forall n eNandall iy,...,iy € {1,..., K}.

We call (H,x,y, A,,..., Ag) a strong HSR (or just an HSR) of a one-depen-
dent process (X )y <7 if in addition to (1) it satisfies the condition

(2) (A, + - +Ag)h = (h;x)y forall h e H.

We will show that every one-dependent process admits an HSR. First we prove
the converse, that every family (H,x,y, A,,..., Ag) that satisfies (2) and a
nonnegativity condition (that is obviously necessary, because probabilities are
nonnegative), represents a one-dependent process.

THEOREM 2.1. Let H be a real Hilbert space, A,..., Agx: H - H linear
continuous operators, x,y € H, {x,y) = 1. Assume that

(A + - +Ag)h = (h;xdy forallh € H
and

(A; -+ A,y;x>)=0 forallNeNandalli,,...,iye{1,...,K}.

Then there exists a one-dependent process (Xy )y < ; With state space {1, ..., K}
such that (H, x,y, Ay, ..., Ag) is a strong HSR of (X)) <7
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Proor. We have to check that
PIX,=iy,...,Xy=iy]l=(A, - A, y;x) NeN,iy...,iye(l,...,K)
defines consistently a probability measure on {1,..., K}? that gives rise to a

one-dependent process. We have (using the definitions)
K

Z P[X1=i1,-~-,XN=iN]

in=1

K
Y (A, AL yix)

iy=1
(A, A (A ARy )

=<Ai1.’” AiN—l y;x>y;x>

=<A; - A, y;x)=P[X;=i,,..., Xy 1 =iy_4]

and
K
Z P[X1=i1,...,XN=iN]
ii=1
K
= L (A, A yx)
i=1
=((Ay+ - +Ag) A, - A,y %)
=((4;, - Ay 9y %)
= <Ai2 AiNy;x> =P[X;=1iy,..., Xy =iy]
We see that

§P[X1 =i] =((A, + - +Ag)y;x)
i=1

={y;0y;2) = (y;2{y;x2) = 1
and we conclude that the inner product (which was required to be nonnega-
tive) consistently defines a probability measure.

From
K
Z P[X1 = i17""XN—1 = iN—l,XN =1, XN+1 = iN+17*“’XN+M = iN+M]
i=1
=(A; Ay (Ar+ - HAQA, L A Yi%)
=<Ai1 e AiN—l AiN+1 o AiN+My;x>y;x>
= <Ail AiN—l ;x><AiN+1 AiN+My;x>
= P[X1 = il:'“’XN—l = iN—1] 'P[XN+1 = iN+1’*“7XN+M = iN+M]7

we conclude that (X, )y <, is a one-dependent process. O
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3. Examples of Hilbert space representations. In this section we
show that every one-dependent process admits a Hilbert space representation
and we give some examples of representations. First we need a technical
theorem.

THEOREM 3.1. Let (Xy)y 7 be a one-dependent process over {1,..., K}~
Let (Hy, x,x, Ay, ..., Ag) be a weak HSR of (Xp)y ez

Then there exists a closed, separable subspace H c H, with x € H, such
that (H,x,x, PA,, ..., PAg) is a strong HSR of (Xy)y <z, where P: Hy — H
is the orthogonal projection from H, on H.

Proor. We define the collection s# of those closed subspaces H of H,
with the property that for the orthogonal projection P: H, — H,
(H,x,x, PA,,...,PAg) is a weak HSR of (Xy)yc;. We define a partial
ordering on & by

H, <H, if H D H,.

Note that ## & because H, € #.

CramM 1. We claim that every totally ordered subset of s# has an upper
bound.

Proor or CLamm 1. Let &#; = {H,: 6 € O} be a totally ordered subset of
. Define H, := N, H, We will show that H, is an upper bound of #,.
First we prove the following claim.

Cramm 2. H, € #.

Proor oF Cramm 2. Because H, C H, for all 9, we have H;* > H;* for all
9.S0 Hi" 5 U (Hg"), and Hi* O U 4( Hg"). Assume that there exists a & € H*
such that & € (U ,(H,"))*. Then h € (H;*)*=H, forall §,s0 h € N H, =

H,.But h € H;" and h € H; implies h = 0. We conclude that H* = U ,( H").
Let P;: Hy - H, and P,: H, > H, (9 € ©) be the orthogonal projections.
Let z € H;* . For any ¢ > 0 we can approximate z by a vector 2 € U ,(H,*)

such that |z — k|l <e. So h € H;t for some 6, For H, > H, we have

Pyh € Hy N Hy € Hy N Hy* = {0}. Therefore,

1Pzl = [|Pyz — Pyhll < | P,ll - llz — kIl < &
if Hy > H,,.
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Now let y € H,. Take z € H;* and w € H, suchthat y =z + w. Let ¢ > 0
be given. Take 6, as above. We have for H, > H, that

I(Py — Py = Py(z + w) — Py(z +w)
=Pz +w—0—wl| =Pzl <e.

We conclude that P,y —, P,y for all y € H,,.
This implies that (for all i,)

P[X,=i,] =(PjA;x;x) >y (P1A; x;x).
Because
I1P,A; PyA; x — P A; PiA; xll
=||PyA,(PyA, x — P,A, x) + (P, — P)(A,; PA, x)| -
<Pl - A, -||[(Py = P (A x)| + (P — P)(A, P A, %)
and ||P,|| = 1, we derive that (for all i,,i,)
P(X, =i, X,=1,] = (PyA; PyA, x;x) >4 (P1A; PIA, x;x).
By induction (on N) we derive that
P[X;=iy,...,Xn=iny] =(PA, ... PA; x;x) 24 (P1A, ... PlA; x;x)
(forall NeNandall i,...,iy€{1,...,K).
Because x € H, for all 6 € ®, we have x € H;. We conclude that
(H,x,x,PA,,...,PAg) is a weak HSR of (Xy)y <. Thus H, € #. This

proves Claim 2. Because H; C H, for all §, H, is an upper bound of &#,. This
proves Claim 1. O

Now that we have proved (Claim 1) that every totally ordered subset of #
has an upper bound, we can apply Zorn’s lemma that implies the existence of a
maximal element. Let H be a maximal element in &#. Let P: H, —» H be the
orthogonal projection on H.

CraiMm 3. We claim that (H,x,x, PA,,...,PAg) is a strong HSR of
XNy ez

Proor ofF Cramm 3. Consider the restricted operators PA, |g,..., PAg |lu
from H to H. Let B;: H — H be the adjoints of these restricted operators
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(i =1,..., K). We define the separable space
Hp=sp(B; -+ B, x:m20,j,...,j, €{1,...,K}}.

To prove Claim 3 we first have to prove the following claim.
CramM 4. We claim that H = Hp.

Assume that H D Hp. Apparently B,Hy C Hy for all i. Consider the
restricted operators B;ly, (i =1,..., K).

Let C;: Hz — Hpy be the adjoints of these restricted operators (i = 1, ..., K).
Now we will show that Hz € & and that Hyz > H, which contradicts the
maximality of H.

Let Pg: Hy — Hp be the orthogonal projection, and let y, z € Hg. Then

(PgA;y;2) = (PgPA;y; 2)
= (PA;y; Piz) =((PAlu)y; Pg2)
=((PA/ln)y;2) = (y; B;2)
=(9;(Bilm,)2) = (Ciy; 2.

This implies that Pz A, = C; forall i =1,..., K.
Further we have (for all N and for all i,,...,i5)

P[X,=i,...,Xy=iy]= (PAi1 o+ PA; x;%)
= <(PAi1|H) ... (PAiNlH)x;x> =(x;B;, - B;x)
= <x; (B;lug) - (Bi1|HB)x> =<C; -+ C;x;%).

Together with x € Hy (by definition of Hjp) this implies that Hy € #.
Because we assumed Hy ¢ H, we have Hp > H, which contradicts the maxi-
mality of H. We conclude that H = Hy. This proves Claim 4. To prove Claim 3
we have to show that

(PA, + -+ +PAg)h =h;x)x

forall h € H.
This is equivalent to
(*) ((PA, + -+ +PAg)h;g) = (hyx)(x;8)
for all g, h € H.
Because
H=sp(B;, -+ B; x:m 20, j,,...,j, €{1,...,K}}
and

H=sp{PA, --+ PA; x: N20,i,,...,iye{1,...,K}}

i
(if the right-hand side is a proper subspace of H, then this would contradict
the maximality of H) and because (*) is a linear equation in 4 and g, it is
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sufficient to check () for h = PA; -+ PA;, x and g =B; --- B; x (for all
N, meN,i,...,in, J1s---5Jm €{1,..., K}). For this 2 and g we have
((PA{ + -+ +PAg)h; 8)

=((PA, + -+ +PAg)PA, --- PA, x;B; --- B, x)

(PA; -+ PA;(PA, + -+ +PAg)PA, -+ PA; x;x)

K
Y P[X_, =jmres Xy =1, X =i, Xy =iy, Xy = iy]
i=1

—P[X_, =jpses Xy =y] PLX, =iyy..., Xy = in]
=(PA; -+ PAjx;x){PA; -+ PA, x;x)
= <x;BJl te Bme><PAll cr PAle;x>

=<{x;8)h;x).

This proves (*) and the proof of Claim 3 is finished. Claim 3 implies the
theorem. O

REMARK. We restricted ourselves in Theorem 3.1 to H ¢ H, because in
general (*) does not hold for all %, g € H, (as is easy to see in the proof of
Theorem 3.2, where we apply Theorem 3.1). Now we can prove the main
theorem of this section.

THEOREM 3.2. Let (Xy)y o, be a K-valued ( for some K € N) one-depen-
dent process. Then there exists an HSR of (Xy)y <z

Proor. Let (Xy)y., be a one-dependent process over {1,..., K}%.
(Xy)ny ez induces a probability measure P on {1,..., K}N. We define the
Hilbert space H, := L*(P). Let I € H, be the function that is identically one.
We have (I;I) = 1.

We define the operators A,,..., Agx: Hy, = H, by (A;h)w,, wy, wy,...) =
I(w)h(wy, wg,...) for h € H,, where

1, ifw=i,
Ii(w)"{o, ifw i

Apparently A,, ..., Ax are linear and continuous and they satisfy the equation
(Ay -+ AL D = [L(wy) L (wy) -+ L (wy) dP(w)

=P[X1=i1,...,XN=iN]

forall NeNandall iy,...,iy€{1,...,K}. Thus (Hy, I, I1,A,,...,Ag)is a
weak HSR of (X )y <7
Theorem 3.1 now implies the existence of a HSR of (X )y 7. O
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The Hilbert space representation of a one-dependent process is not unique.
We give some examples of HSR’s.

ExaMPLE. Let (Xy)y <7 be a one-dependent process over {0, 1}2. We show a
natural HSR of (X,)y <, with Hilbert space 2.

In [2] (Theorem 1) it is proved that the distribution of a 0 — 1 valued
one-dependent process is uniquely determined by its values

[lN]==P[X1= =XN=1] N e N.
Let
1
1
(1] 0
[11] 0
H=l2, y = s X = K
1 -1 0 0
o -1 o
[11] 0 0o -1
A, = ’
0 1 0 O
0 0 1 0
0 0 0 1
A=
0 0 0 O 1
Because
[IV*M+1] < P[X; = -+ =Xy=1,Xpn,2= " =Xyipe1 =1]
=P[X1= =XN=1]P[XN+2= =)(N+M+1=]-]
= [1V] - [1M],

it is easy to see that actually x,y € /2 and that A, and A, are continuous
operators on 2.
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It is trivial that (A, + A)h = (h;x)y holds for all h &€l? and that
(x;y) = 1. From

[1V] 1 |
(Ay;xy = [ [Y1,10] ) =[1¥] vNen

and Theorem 1 of [2], we conclude that (12, x, y, Ay, A;) is an HSR of (Xy)y c 2-

REMARK. The “special” processes in [2] are represented by H = R3,

1 1 1 -1 0 0 1 0
y=|al, x=10], Ay=|a 0 -1}, A;=10 0 1}.
B 0 B 0 0 0 0 O

The two-parameter family of counterexamples of one-dependent processes that
are not two-block-factors corresponds with HSR’s of this type.

ExaMPLE 3.3. Let (Xy)y <z be a K-valued (for some K € N) two-block-fac-
tor of an ii.d. sequence. We show a natural HSR of (Xy)y, with Hilbert
space L?0,1].

Let Xy = f(Yy, Yy, ) for some function f and some i.i.d. sequence (Yy)yez
of random variables that are uniformly distributed over the unit interval.

We define the sets V,; (i = 1,..., K) in the unit square

V.= {(t,s): f(t,s)=1i}.
Let H = L?0, 1], let the operators A; be defined by

(Ag)(t) = j;lIVi(t,s)g(s)ds i=1,..,K,

where Iy, is the indicator function of V;. Let | € H Dbe the function that is
identically one.
It is an easy exercise to prove that (H,[,0, A,..., Ag)isa HSR of (Xy)y < z-

The construction in Example 3.3 can be generalized to K-valued one-depen-
dent m-block-factors of i.i.d. sequences (m € N). Applying Theorem 3.1 leads
to an HSR with a subspace of L%([0,1]™~1) as Hilbert space. Generally an
m-block-factor is (m — 1)-dependent, but for special choices of the function f
the m-block-factor X, = f(Yy,..., Yy.+m-1) can be one-dependent. It is an
open problem whether there exist one-dependent m-block-factors (m > 3) that
can not be written as a two-block-factor.

The reversed process of a one-dependent process is also one-dependent. The
following theorem gives an HSR.
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THEOREM 3.4. Let (H,x,y,A,,...,Ag) be an HSR of a one-dependent
process (Xpy)ycz. Let (Yy)yc, be the reversed process; that is, Yy = X_j,
N € Z. Then (H,y, x, A%,..., A%) is an HSR of (Yy)n cz-

Proor.
((Af+ - +A%) ;8 =(h; (AL + -+ +Ag)g) =(h;(&; )
= (hiyX(g;x) =(h; ) %; 8
for all h, g € H. This implies that
(AY + - +A%Y)h =<h;y)x VheH.
Further,
<AT1 cee ATNx;y> = <x;AlN M Al1y> = P[Xl = iN,...,XN = i].]
=P[Yl=i17""YN=iN]' ) O
4. Finite dimension and invariant cones. In this section we prove
that an HSR with two-dimensional Hilbert space corresponds to a two-block-
factor. Further we show that if there is an invariant (under A,,..., Ax) cone
spanned by a finite number of linearly independent vectors, then the HSR
corresponds with a two-block-factor. The first theorem is just a special case of

the other one. We need a technical theorem to show that it is no restriction to
assume that the vectors x and y are equal.

THEOREM 4.1. Let (H,x,y,A,,...,Agx) be an HSR of a one-dependent
process (Xy)y <. Then there exists a vector x, € H and there exist operators
B,,...,Bg: H - H such that (H, x, x4, By, ..., Bg) is an HSR of (Xy)y c7-

Proor.

Case 1. If x and y are linearly dependent, then it is easy to see that
(H, x/llxll, x/llxll, Ay, ..., Ag) is an HSR of (Xy)y < 7-

Case 2. If x and y are linearly independent, then we consider the two-
dimensional subspace H,, that is spanned by x and y,

Hy = sp{x,y}
and its orthogonal complement H;",
Hy={heH:{h;x)=<h;y) =0}.

Take some orthonormal basis of H,, and assume that x = (2), y= (y 1) with
respect to this basis. We have 1 = {x;y) = x,y; + x5Y5.
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Let A € R, A # 0. We define the linear operator V: H - H by

Y1 _/\xz)

Vg =
o (yz Axy

and Vg, = identity.
It is easy to see that V is invertible and

1(ax Ax
1y — 1 2
v ‘HO A ( Y2 N1

and V™| = identity.
We claim that

(H((l)) ((1)),V—1A1V,...,V-1AKV)

is an HSR of (Xy)y < 5. It is clear that <(;); (}))>= 1. Further, let h € H. We
have

(VAV + - + VALV )h = VTI(A, + -+ +Ag)Vh

— V- Vh;x)y = (Vh; )V ly = <Vh;x>(3)

= wsvo(3) = (s (3))(3)

w3

_ 1
)

= <Ai1 AiNy;x>:

and

]

which proves Theorem 4.1. O

ReEMARK. The fact that any orthonormal basis of H, and any A # 0 can be
chosen in the proof of Theorem 4.1 shows the non-uniqueness of the Hilbert
space representations. In Theorem 4.3 we need the following lemma.

LEmMA 4.2. Let (H,x,x,A,,..., Ag) be an HSR of a one-dependent pro-
cess (Xy)yez Let T :=colaA, -+ A; x: a>20, NEN, i},...,iy€
{1,...K}}. If 3 veT, v+0 with {vix) =0, then (Xy)ycz has an HSR
with Hilbert space

H,={veT:{v;x) =0}lgH.
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ProoF. Let V:=sp{v € T: (v;x) = 0}, then H, = V*. Note that x € H,.
Let P be the orthogonal projection on H,. We show that

(Hy,x,x, PA,,...,PAg)

is an HSR of (X )y <. Let v € T with {v;x) = 0. Because A,T c T we have
(Ajv;x) >0foralli=1,..., K. Thus

K
0< Y (Au;x)=((A; + -+ +Ag)v; %)
i-1
={v;x;%) = (v;x) =0,

which implies that (A,v;x) =0 for all i =1,..., K, and all v € V. Hence
AVcViforalli=1,...,K.If h€ H ,then h — Ph €V, so

(A; -+ A, (h—Ph);x) =0
forall m e Nand all iy,...,7,, €{1,..., K}, and hence
(A, "+ A, Phix) =(A, - A, h;x).
Now we have (k € H)
(PA, + -+ +PAg)h = P(A, + -+ +Ag)h
=P{h;x)x =(h;x)Px ={(h;x)x,
and
(PA; PA;, -~ PA; x;x) = (A; PA; -+ PA, x; P*x)
= (A, A;,PA; -+ PA; x;x)
= o = (A, A aa),

which proves our lemma. O
Now we consider the case that the Hilbert space has dimension one or two.

THEOREM 4.3. Let (H,x,y,A,,...,Ag) be an HSR of a one-dependent
process (Xy)y < 7.

(@) If dim(H) = 1, then (Xy)y < is an i.i.d. sequence.
(b) If dim(H) =2, then (Xy)yc<z is a two-block-factor of an i.i.d. se-
quence.
Proor. (a) Ifdim H =1, then A; =(a,),i=1,..., K. We have
P[Xl = il""’XN=iN] = <Ai1 ce A,Ny;x>
=a; - a,{y;x)=a; - a
=P[X;=i,] - P[Xy=1iy]

(b) Theorem 4.1 implies that we may assume that x =y. If dim H = 2,
then we consider the closed convex cone spanned by the orbit of x under the

3%
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operators A,..., Ag:
T:= E{aAil ce AiNx:a > 0, NE N, il""’iNG {1,...,K)}.

Note that x € T, and that A, TcT Vi=1,..., K.
We choose an orthonormal basis of R? such that x = ( (1)) The claim implies

that there exist vectors v = (UZ), w= (ufz) such that v, — w, > 0 and
T = co{av, aw: a > 0}.
Let A, = (at.“ al”) be the matrix of A; (i = 1,..., K) with respect to the

a9y ah
basis {v, w} Because A,v, A,w colav, aw: a > 0} it follows that a G220

Vi=1,...,K,Vj,Jj, €11, 2} With respect to the standard basis we have

e sae = () - 2] -

On the other hand, we have

K
(A + - +Ax)v = Zl(auv + ahw);
hence
K
1=(x;x) = < Y (ah + abyw); >
(3) i=1

=1l= f: (‘111 + 021)

Analogously (considering (A; + -+ +Ax)w) we find that

K
(4) Z (a12 + azz) =1.
Further, we have
K
0= <x; ((1))> = <Z (alyv + ayw); ((1))>

(5)

K . .

=0= ) (aluvz + a’21w2).

i=1
Analogously,

K
(6) )y (a12v2 + azzwz) =0.

i=1

Equations (1), (2), (3) and (4) imply that £X 0}, = £X @}, and £X ,a}, =
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YK |ab,. Let us define the matrix S = (v12 $2)§ then
K 1
‘glau Uy — Wy
S t=1|"*
Lo —— |
al
i=1 21 Ug — Wy
as is easily checked.
We note that A; has matrix
ai;, a
s|oi 2o
Qg1 Qo

with respect to the standard basis. So we have (with respect to the standard

basis)
1. (1
(40 a5 (5))
A aly  a'y 1 1
- ([ o e LRI
ag; Qg ajl ag 0 0

al:111 a’:112 a’:ﬁ’ a‘:l"z’ g-1 1 .5+ 1
az  ag agl a3 0 0

S-1...8

K
o SR B 3
i1 i1 IN IN
_ @11 Q12| (@11 Ciz||i=1 (1)
- i i in in K ’
Qg1 Qg Qg Ay Z a 1
21

~
Il
-

By induction (on N € N) it now follows that (X, )y 7 is a two-block-factor of
an i.i.d. sequence (Yy)y ., of random variables that are uniformly distributed

over the unit interval. We have Xy = f(Yy, Yy, ) with
f(t,s) =i <

(t,5) < [aly + - +aiihial, + o +aiy) x [05al, + o +ak)

or
(t,s) € [al; + -+ +a¥ +aby + - +alyh
aly + - +a +al + o +aby) X [0;a); + - +ak)
or

(t,s) € [aly + -+ +aizhaly + -+ +aly) X [aly + -+ +a¥51)
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or
(t,s) € [ay+ -+ +aly +aby + -+ +alpl;

alp + - +aly +aby + o +aby) X [al, + -0 +afi51). O

We generalize Theorem 4.3 to the case of more dimensions when there

exists an invariant cone spanned by a finite number of linearly independent
vectors.

THEOREM 4.4. Let RY, x,,x¢, Ay, ..., Ag) be an HSR of a one-dependent
process (Xy)ycz. Assume that there exist N linearly independent vectors
Uy, ..., Uy € RY with (v;;x,) > 0 for all i and such that the cone

T={aw, + -+ +tayvy:a; 20,...,ay > 0}
is invariant; that is,
ATcT foralli=1,...,K.

Assume further that xy € T. Then (Xy)y <z is a two-block-factor of an i.i.d.
sequence.

Proor. Let AY =(a%)N;_, be the matrix of A, with respect to
{vy,...,vy). Since A; T T, we have A, v; = XN, a%v, € T (for all iy, j).

This implies that
a. >0 forallig,i,j.

LJ =

Let S be the matrix of {v;,..., vy} with respect to the standard basis {x, =
€q,...,€xn}, SO

v;e; V.

™M=

N .
S =(vy;); ;j_,; thatis, v;= i
1

l

Let R = S~! be the matrix of coordinates of the standard basis with respect to
{ve,...,uN), s0
N

N .
R = (tij)i,j=1; € = .thijvi vj.
iz

Because e; = x, = LN ;¢,;v;, € T, we have
t;; =0 forall:.
Because (v;; x,) > 0, we can assume by multiplying the v; that
vy = v;3x0) =1 foralli.
We have for all j,

K N
(Ap+ - +Ag)v; = 3 Y alsy,

ig=1i=1

and (Al + o +AK)UJ~ = <Uj;x0>x0 = X
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This implies that for all j,
K N K N
1=Axp520) = Y X anv;x0) = X X a’s.
ig=1i=1 ig=1i=1
Because evidently,
K N N
Xo= 2 2 alu; = Yt
ig=1i=1 i=1

we have that ¢,; = }:{‘; =1ai,.g. for all j and i (we make the crucial observation
that this sum is independent of j).
Because A, has matrix representation SA? R with respect to the standard

basis, we have
PlX,=i,....X,=i,]= (SA'{IR -+ SAj Rej;ey)
= <AgAll)1 tre A'E’"Rel;e1>

(A3, -+ A% Re;;S*ey)

ai; + - +a¥ 1
= AI;IH'A';M E ;
ayy+ o +af; [ \1

By induction (on m) it is easy to show (just as in the proof of Theorem 4.3)
that this corresponds to a two-block-factor. O

REMARK. In Section 3 we described the HSR of a class of counter-examples
of one-dependent processes that are not two-block-factors.Their Hilbert space
is three-dimensional. Theorem 4.3 states that a two-dimensional HSR is
always a two-block-factor. From Theorem 4.4 it follows that the crucial
difference between two and three dimensions is apparently the geometry of
cones. A closed convex cone in two dimensions is spanned by the convex hull of
two linearly independent vectors. In three dimensions closed convex cones
exist that are not spanned by the convex hull of three vectors, but of more
than three vectors (a finite or even infinite number). Note that these vectors
are the extreme points of a convex set. It seems that the difference between
two-block-factors and non-two-block-factors is determined by the geometry of
the invariant cone. We generalize Theorem 4.3(a) by showing that a one-
dependent process is an i.i.d. sequence if the operators commute.

THEOREM 4.5. Let (H,x,y,A,,...,Ag) be an HSR of a one-dependent
process (Xy)y 5. If the operators A,, ..., Ax commute (i.e., AA; =AA;
for all i, j), then (Xy)y <, is an i.i.d. sequence.
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Proor. We have

P[Xl = i1:'-~’ XN =iy, Xn41 =j1""’XN+m =jm]

K
Z P[Xl = il""’XN= iN’ XN+1 =j1""’XN+m =jm’ Xnim+1 = i]
i=1

(A, - A

131 in

A - Aijix;x)

J1

~

1
it

I
.MN

~
I
-

(A; "+ A AA; - A x;x)

31 INTTLTTY

I
M

P[X =i,....,Xn=in, Xns1=0, Xnvo =J1oos Xneme1 =Jml
i=1 .

= P[Xl = il""’XN = iN] ' P[XN+2 =j11""XN+m+1 =jm]7

and the theorem follows. O
5. Remarks.

Minimal zero—cylinders and minimal dimension. Let (Xy)y 7 be a one-
dependent process over {1,..., K}?. We call the cylinder [i;,...,i,]a minimal
zero-cylinder if P[ X, = i,,..., Xy =iyl = 0andif P[X, =j,,..., X,, =j,.] >
0 for all m <N and all j,...,Jj, €{1,..., K}. We call N the length of the
minimal zero-cylinder.

Let (H,x,y, A,..., Ag) be an HSR of a one-dependent process (Xp)y < 7
We call dim(H) the minimal dimension of (Xy)y., if for all HSR
(H,x',y,Al,..., Ag) of (Xy)y <7, we have dim(H') > dim(H).

For two-valued one-dependent processes, if there is a zero-cylinder, then the
length of the minimal zero-cylinder is greater than or equal to the minimal
dimension (see [29]). Minimal zero-cylinders play an important role in the
theory of two-valued one-dependent processes.

In [26] is proved that certain 0 — 1-valued two-block-factors with minimal
zero-cylinder [010] or [101] are extremal, that is, the probability of [13] is
maximal over the class of all 0 — 1-valued one-dependent processes with fixed
probability of a one. In [8] it is shown that the minimal probability of [13] (over
the class of all 0 — 1-valued two-block-factors with fixed probability of one) is
attained in processes with [1V] as minimal zero-cylinder (for some N). The
counterexamples in [2] of one-dependent processes that are not two-block-fac-
tors have minimal zero-cylinder [111].

Minimal zero-cylinders [i; --- i5] of two-valued one-dependent processes
with length N < 7 are symmetric, that is, i, = iy, ,_, for all ¢ (see [29]).
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Generalization of the HSR construction. When we replace condition (2) in
the definition of HSR by the conditions

(A + - +A)"h = (hya)y,
(A + - +Ag)y =,
(A% + - +A%)x = x,

we obtain the definition of HSR of an m-dependent process.

Analogously to Theorem 2.1, to every HSR corresponds an m-dependent
process and analogously to Theorem 3.2, every m-dependent process with
finite state space admits an HSR (see [29]). Theorems 3.4, 4.1, 4.3 and 4.5 can
be generalized to m-dependent processes (see [29]).

There are more dependence structures (such as Markov, ergodicity, mixing
and renewal) that can be translated to properties of operators in Hllbert space
representations; see [30].

6. Conjectures and open problems.

1. The essential difference between two-block-factors and one-dependent pro-
cesses that are not two-block-factors is determined by the geometry of the
invariant cone. More research is necessary to investigate this.

2. A 0 — 1 valued one-dependent process can have no other minimal zero-
cylinders than [101], [010], [1¥] and [0Y], N € N. The minimal dimensions
are 2, 2, N and N, respectively.

3. For any N € N, N > 3, there exists a one-dependent process that is not a
two-block-factor, with minimal dimension equal to N, and without zero-
cylinders.

4. For any N € N, N > 3, there exist a one-dependent process that is not a
two-block-factor, with minimal dimension equal to N, and with a minimal
zero-cylinder with length N.

5. For any N €N, N > 1, there exists a two-block-factor with minimal
dimension equal to N, and without zero-cylinders.

6. For any N N, N > 1, there exists a two-block-factor with minimal
dimension equal to N, and with a minimal zero-cylinder with length N.

7. Under which conditions is a one-dependent Markov process necessarily a
two-block factor?

8. Are one-dependent processes always functions of Markov processes, or
even functions of one-dependent Markov processes?

9. Do there exist one-dependent m-block-factors (m > 3) that can not be
written as a two-block-factor?

10. Is a one-dependent process with an m-dimensional HSR (m > 3) always
an m-block-factor?

11. Do there exist two-dependent processes that are not two-block-factors of
one-dependent processes?
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