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CONVOLUTION OF UNIMODAL DISTRIBUTIONS CAN
PRODUCE ANY NUMBER OF MODES

By KEN-1T1 SATO
Nagoya University

For any positive integer n, there exists a unimodal distribution yx such
that u*u is n-modal. Furthermore, there is a unimodal distribution u
such that u * u has infinitely many modes. Lattice analogues of the results
are also given.

1. Introduction. K. L. Chung [1] points out that the convolution of two
unimodal distributions is not necessarily unimodal (see also the Appendix in
his translation of Gnedenko and Kolmogorov [4]). He gives an example of a
unimodal distribution such that its convolution with itself is bimodal. Other
examples are given by Ibragimov [5], Feller [3], Wolfe [9, 10], Dharmadhikari
and Joag-dev [2], and others. But the resulting convolutions in these examples
are either bimodal distributions or distributions such that one can only check
that they are not unimodal. We will construct, in this note, a unimodal
distribution u such that w*pu is n-modal. Further we will give a unimodal
distribution u such that u * u is ®-modal.

After the discovery that unimodality is not preserved under convolution
operation, probabilists looked for conditions under which the convolution of
two unimodal distributions is again unimodal. Thus Ibragimov [5] introduces
the notion of strong unimodality and establishes its equivalence with log-con-
cavity of density functions, and Yamazato [11] finds a sufficient condition for
unimodality of the convolution of two unimodal distributions which are one-
sided in the opposite directions. Karlin [6] and several others study variation-
diminishing properties in general. However, as far as the author knows, no
attention has been paid to the problem of how complicated the convolution of
unimodal distributions can be. The infinitely divisible case will be of future
interest, because some Lévy processes get or lose unimodality as time passes,
and properties of their distributions in the period of non-unimodality are not
known (see Sato [8] for a survey).

2. Results. A distribution p on the line is said to be unimodal with mode
a if its distribution function F(x) is convex on (—x, a) and concave on (a, ).
Let n be a positive integer. In this note we say that a distribution u is strictly
n-modal if u is absolutely continuous with a continuous density function f(x)
and there are points

—o<b <a;<by;<ay< - <b,<a,<b,,; <+
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such that f(x) vanishes on (-, b;] and [b, ., +®), strictly increases on

[b;,a;1for i = 1,...,n, and strictly decreases on [a;, b, ]fori =1,...,n. We
say that u is strictly n-modal with modes a,a,,...,a, and bottoms
by, by, ..., b, 1. A distribution u is said to be strictly »-modal with modes
aq,Qq,... and bottoms by, b, ... if
—o<b <a; <by<ay,< -+ > 4w

and if u is absolutely continuous with a continuous density f(x) which
vanishes on (—, b,], strictly increases on [b;, a;] for i = 1,2,..., and strictly
decreases on [a;,b;,,] for i =1,2,.... For any a > 0 denote the uniform
distribution on [0, a] by u,. If a,,a,,... are positive reals and p,, p,,... are

nonnegative reals satisfying Y7_;p, = 1, then, obviously, the distribution u =
L7_1P;M,, is unimodal with mode 0.

THEOREM 1. Let n be an integer > 2 and let aq,...,a, be positive reals
satisfying 2a,<a;,, for i=1,...,n—1. Let p,,...,p, be positive reals
such that p; > p; ., fori=1,...,n —1and X}_p; = 1. Let p =X} p;p,..
Then up+*up is strictly n-modal with modes ai, a,,...,a, and bottoms
0,2a4,2a,,...,2a,.

THEOREM 2. Let a,a,,... be an infinite sequence of positive reals such
that 2a; < a;,; foreachi. Let p,, p,,... be positive reals such that p; > p;
for each i and T7_1p; = 1. Let p = ¥i_1p;po, Then p+p is strictly o-modal
with modes a, a,, ... and bottoms 0,2a4,2a,,... .

Proofs of these results are simple and elementary. They are given in the
next section. In Section 4 we show that lattice analogues of these theorems are
also true.

3. Proofs. The basic fact that we use is the following.

LEmMMA . Let a > 0. The convolution u,* pu, is a triangular distribution
with a continuous density f(x) and

f(x) =0,a"%,2a ! —a"2%,0

on (—=,0],[0,al,[a,2a],[2a, + ), respectively. If 0 < a; < a,, then Kay* Mo,
is a trapezoidal distribution with a continuous density f(x) such that

f(x) =0, (alaz)_lx, az’, (alaz)_l(al +a;—x),0
on (—»,0],[0,a,],[a;,a,l,[ay a; + a,l,[a; + a,, +®), respectively.

Proof of this lemma is straightforward.

Proor or THEOREM 1. Denote the density of u, * M, by f;;(x). Since
(1) pxp = Y pig * ta, T 2 L DiDika,* Ha,s
i

i>j
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the distribution wu * u has density
(2) f(x) = Xpifiu(x) +2 X pp; fi;(x).

i i>j
The graph of f;; is a polygonal line with vertices at x = 0,a;,2a;. If i > j,
then that of f;; is a polygonal line with vertices at x = 0,a¢;,a;,a; + a;.
Hence the graph of f(x) is also a polygonal line and the x-coordinates of its
vertices are, in increasing order,

0,a(,2a;,a,,ay +ay,2a,,a5,a3 + ay,a5 + ay,2a5,0a,,...,
a,,a,+aq,...,a, +a,_,2a,.

Note that we have used our assumption that 2a; < a,,,; for each i. In the
sequence there are i points between a, and a,,;. The derivative f'(x) is a
step function. Let us denote the value of f’ on an interval I by f’|I. For
convenience we denote a, = 0. We claim the following three facts:

O f12a;,a,,))>0for0<k<n-—1. .
() f'lla, +apa, +a,.) <fla, +a,.,a, +a,,5) for n>k>1+
1>1.
Gi)) f'l(a, +a,_1,2a,) <0forl <k <n.

These imply that, for each k, the function f is convex on (a,, a, ), strictly
decreasing on (a,,2a,), and strictly increasing on (2a,, a,.,). Hence, if (i),
(ii) and (iii) are established, then u * u is strictly n-modal with modes @, ..., a
and bottoms 0, 2a,...,2a,. Write ¢c; = p,/a; for i > 1.

Proof of (i): We have

(3 f'(x) = Lpifi(x) + 2 X pip; fi;(x),

i>j

n

except at the points in the sequence. On the interval (2a,,a, ), we see that
fi; vanishes for i <k, f;; vanishes for k > i >j and f;; is flat for i > & +
1 > j. Hence

fl(2ay,ap01) = L c2+2 Y cc;>0.

i>k i>jzk+1

Proof of (ii): Let £ > ! > 0 and denote I, = (a, + a;,a, + a,.;). On the
interval I, the functions f;; and f;; vanish for k > i > j, and f,; vanishes

12

for j <l. Moreover, f;; for i >k + 1> are flat there. Thus we have,
from (3),

fl = —ci + (cher + - +ei)
+2[(—cpre1 = 1 —ChCL_1) Tt ChunChin
(4) +(Cr43Che1 T CresChyio)
+(ChsaChi1 T CriaCriz + ChiaChsis)
+o (a0, )]
If & > 1 + 1, then the expression of f'|I, ;,, is obtained from the right-hand
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side of (4) by deleting the term —c,c,, ;. It follows that f’|I,, <f'll, , , for
n>k>1+12>=1
Proof of (iii): Let £ > 1. We get an expression for f'II, ,_; by letting

I =k — 1in(4). The term (—c,c;,, — -+ —c,c;_,) does not exist in this case.
Using the assumption p, > p,.; > -, we have
f'll, s SPZ{—aiz + (a;f—l tapi,+ o +a;2)

+2[a;}uza1;i1 +agis(arss t akis)
tagiq(api; +agis+ a;is)
+ e (et Fagi, + o +al)])
Now recall the assumption that 2‘a, < a,; for i > 1. Then
Fl oy <ci{-1+ (27242744 ... +27%n—h)
+2[272271 + 273271 + 272) + 274271 + 272 4 279)
+oee 27T 4 +2—(n—k—l))]}

© o i
<e2l-1422Y o402y 9 ¥ 9
i=0 i=0 Jj=0

=c(-1+381+3712)
=0.
The proof is complete. O

ProoF oF THEOREM 2. We can proceed similarly to the proof of Theorem 1.
The only difference is that now we deal with infinite sums instead of finite
sums. The distribution u is absolutely continuous with a density f(x) and the
expressions (1) and (2) still hold. Note that If;;| <a;'<aj' and If;1
(a,a;)"" < a;? for i > j. We see that the sums in the rlght hand side of (2)
are umformly convergent and are, except at a sequence of points, termwise
differentiable, yielding the expression (3). The exceptional points consist of
0,a,,as,... together with ¢ points

a;,+a,a;+a,,...,a; ta;_q,2a;

between a; and a;,, for each i. Thus the function f(x) is continuous on the
whole line and its graph is a polygonal line with vertices having x-coordinates
at these points. The assertion of the theorem is obtained by checking the three
facts (i), (ii) and (iii), where, in the statement, 0 <k <n -1, n>k > 1+
l1>1land1<k<n arereplacedwith0 <k <o, 0>k >[+1>1andl <
k < x, respectively. The proof of these three facts is accomplished in the same
way as before, except for an obvious change of some finite sums into infinite
sums. This completes the proof. O
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4. Lattice analogues. Let us consider lattice distributions, that is, dis-
tributions on the integers. In this section, for integers a,b with e < b, the
interval [a, b] means the set of integers x satisfying @ < x < b. The intervals
(—, a] and [b, + =) are understood similarly. Distributions in this section are
exclus1vely lattice distributions and numbers a, b, a;, b, are integers. Uni-

ir Y

modality and related properties are frequently 1nvest1gated also for lattice
distributions; see Keilson and Gerber [7] and Dharmadhikari and Joag-dev [2].
For any lattice distribution w, denote f(x) = u({x}) and g(x) = f(x + 1) — f(x)
for integers x. A distribution u is said to be unimodal with mode a if g(x) > 0
on (—x,a — 1] and g(x) <0 on [a, +x). We say that a distribution u is
strictly n-modal with modes a, ..., a, and bottoms by,..., b,  if

b;<a;<by<ay< - <b,<a,<b,,,
and if
gl(—,b,—11=0, gl[b,,1, +=) =0,
gl[b;,a; —11>0 forl<i<n,
glla;,b;,; —11<0 forl<i<n.

A distribution p is strictly «-modal with modes a,, a,, ... and bottoms
by, by, ... if

b;<a;<by<ay< -+
and if
gl(—»,b;, — 1] =0,
gl[b;,a; =11 >0 forix>1,
glla;,b,,, —11 <0 forix>1.

For a > 0, denote by u, the lattice uniform distribution on [0, a], that is,
f(x)=(a+ 1! for x €[0,al.
The lattice analogues of Theorems 1 and 2 are as follows.

THEOREM 3. Let a,,...,a, be positive integers such that 2a; +1 <a;,,
forl<i<n-1. Letp,,...,p, be positive reals satzsfyzng PL=py= 0 =
P, and L 1p; = 1,and let p = L}_1p;u,,. Then p*p is stmctly n-modal with
modes a,, aq,...,a, and bottoms —1, 2a1 +1,2a,+1,...,2a, + 1.

THEOREM 4. Let a,,a,,... be an infinite sequence of positive integers

satisfying 2a; + 1 < a;,, foreach i. Let p,, p,, ... be positive reals such that
Pi 2 D4 foreachiand I7_ p; = 1. Let p = X7_1p;p,, Then p* p is strictly
co-modal with modes a4, a,,... and bottoms —1,2a; + 1,2a, +1,....
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The analogue of the lemma is as follows.

LEMMA. Let 0 <a <b. If u = pu, *u,, then
f(x) =0,(a+1) X x+1),(a+1)"%(2a —x + 1),0,
g(x)=0,(a+1)"% —(a+1)7%0

on (—», —2],[-1,a — 1],[a,2a],[2a + 1, +®), respectively. If p = p, * fip,
then

f(x)=0,(a+1)"(b+1)"(x+1),(b+1)"},
(a+1)" " (b+1)"(a+b-x+1),0,
g(x)=0,(a+1)"(b+1)"H0,-(a+1) " (b+1)"}0
on (—xo, —2],[-1,a — 1],[a, b — 1],[b,a + bl,[a + b + 1, +x), respectively.

Now proofs of Theorems 3 and 4 are done in the same way as in Section 3.
Note that, by the lemma above, the function g(x) for the distribution u in
Theorem 3 is constant on each of the intervals

(_oo’ _2]’[_1, a; — 1],[01,201],[201 + 1,02 - 1],[02,(12 + al]’
[as +a, +1,2a,],[2a, + 1,a5 — 1],...,[2a, + 1, + =)

We can see that g(x) vanishes on (-, —2] and [2a,, + 1, +®), is positive on
[-1,a; — 1] and [2a; + 1,a;,,; — 1] for 1 <i <n — 1, and is negative on
[a;,2a;] for 1 <i <n. We have assumed that 2a; + 1 <a,,; in order to
guarantee non-emptiness of the interval [2a; + 1,a,,; — 1]. If we assume only
2a; < a;,, instead of 2a; + 1 < a,,, the assertion becomes false.

Acknowledgment. The results in this paper were conjectured from com-
puting of examples. The author thanks Shinta Sato for his assistance in the
computation.
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