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A CONTINUOUS VERSION OF DE FINETTI’'S THEOREM

By L. Accarpi anp Y. G. Lu!

Universita di Roma I

A continuous version of De Finetti’s theorem is proved in which the role
of the homogeneous product states is played by the independent increment
stationary processes on the real line. The proof is based on a conditional,
finite De Finetti’s theorem (i.e., a result involving only a finite number of
random variables and exchangeable conditional expectations rather than
exchangeable probabilities).

Our technique of proof improves and 51mp11ﬁes a result of Freedman

and includes a generalization of the quantum De Finetti’s theorem as well
as some more recent variants of it. The last section of the paper is an
attempt to answer a question of Diaconis and Freedman.

1. Introduction. It is known that De Finetti’s theorem characterizes the
sequences of independent identically distributed (i.i.d) random variables as the
extremal points of the sequences of exchangeable random variables, that is,
invariant under permutations (we identify a process with its law).

Now it is well known that the independent increment stationary processes
are the continuous analogue of the i.i.d sequences. Moreover, on the general
class of increment processes (also called additive processes) on the real line,
that is, stochastic processes {¢/}1 <~ indexed by the family # of bounded
closed intervals of R and satisfying

(1.1) §ta, 01 T €p5,c1 = €fa, e

one can naturally define an action of the permutation group by permuting
among themselves intervals which are the translates of one another (cf.
Section 3 for a precise definition of this action). An increment process is called
exchangeable if it is invariant under the above mentioned action of the
permutation group.

It is natural to conjecture that, in analogy with the discrete index case, the
extremal points of the exchangeable increment processes are the independent
increment stationary processes. This conjecture (in fact a much more general
one, which is restricted neither to real valued processes nor to one-dimensional
index sets and includes a quantum probabilistic generalization) shall be proved
in the present paper. The result follows as a corollary from a new proof of
De Finetti’s theorem (cf. Section 3) which unifies the classical and the quan-
tum (Boson) case (cf. [21]). The idea of the proof puts together the approaches
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of [5] and [2] into a conditional finite De Finetti’s theorem in the spirit of [6].
We also use a general result from operator algebras [cf. Theorem (3.2)] which
shows that the simplex property (i.e., the uniqueness of the mixing measure)
has to do with groups much more general than the symmetric group on N,
while the product structure of the extremals seems to be more strictly related
to this group. Our approach also provides a unified setting for the various De
Finetti type results discussed in [6] and for their quantum analogues (this
point is discussed in Section 5).

On the other hand, our algebraic approach, when restricted to the classical
probabilistic case, corresponds to De Finetti’s theorem on the field (not o-field)
generated by the cylindrical sets, hence it does not include the subtle and deep
results of Dubins and Freedman [7] which show that, when the Kolmogorov
extension theorem does not hold, De Finetti’s theorem, although universally
valid on the cylindrical field as shown by Hewitt and Savage [11], might fail on
the full o-field.

After the completion of the first draft of this paper, we have discovered that
a continuous version of De Finetti’s theorem had already been proved in 1963
by Freedman [10] (who also refers to a previous work of Biithlman [4] which we
were not able to find). Freedman’s technique is completely different from ours
and, in one respect, is more general since it yields analogous results for
stationary Markov chains, but in another respect is less general, since it does
not seem to allow a natural extension to processes with multidimensional
index set or to quantum process. Moreover, even in the case of a one-dimen-
sional index, we replace Freedman’s condition of absence of fixed points of
discontinuity with the (apparently) weaker condition (iii) of Theorem (4.1)
which, in the classical case, amounts to the statement that, if (I,) is a
sequence of open subintervals of an interval I ¢ R, whose union is dense in I,
then the o-field %, is generated by the o-fields 95 ,n €N, (if J is an interval
of R, %, denotes the o-field generated by the increments of the process in J).
An extended study of processes with exchangeable increments is due to
Kallenberg [14-17], with emphasis on connections with stopping times and
path properties. Also in this case, the techniques used seem to be different
from ours.

Because of Hudson’s result [13] according to which a locally normal ex-
changeable state is a mixture of normal states, our results also intersect (but
do not include completely) the results of Dubins and Freedman [7] and of
Diaconis and Freedman. Finally [6], the continuous De Finetti’s theorem
establishes in a rigorous way an interpretation, in terms of exchangeability of
the Fock space (and more generally of continuous tensor products of Hilbert
spaces), a fact which was shadowed in the deep analysis of several applications
in physics of De Finetti’s theorem due to Bach [3].

Our proof also applies to the recent extension of De Finetti’s theorem due to
Fannes, Lewis and Verbeure [8].

ReMARK. Recently L. Pratelli informed us that he was able to adapt the
technique of [13] to include the proof of the continuous De Finetti theorem for
classical independent increment processes.
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2. Basic notation and estimates. We shall use in the following a
formalism which is familiar in quantum probability (cf. [1] for a survey) but,
since we do not assume the reader to be familiar with the quantum probabilis-
tic formalism, we briefly outline the interpretation, in terms of classical
probability, of the notation we are going to use.

Let (X,,) be a sequence of random variables defined on a probability space
(Q, &, P) and with values in a measurable space (S, §). Denote & = L™(S, ),
&= L*(Q, %, P) (unless otherwise specified all the measurable functions we
consider are complex valued). Endowed with the sup (esssup) norm and
with the involution given by complex conjugation (f*(x) = f(x)) both &
and &7 are C* algebras and the P-integral on 27 defines a normalized positive
linear functional or, in the C* terminology, a state ¢ on .%7. Each random
variable X, defines a *-homomorphism

(2.0) ini € B>jf) =fcX, €

and the restriction of the state ¢ on the algebra j,(%#) uniquely determlnes
the distribution of X,,.

Denoting by &/ the norm closure in &/ of the algebra generated by the
Jj(B) for all natural integers n, & is a C* subalgebra of &/ and the
restriction of the state ¢ on & uniquely determines the restriction of the
probability measure P on the subfield (not a o-field) #, of % generated by
the cylindrical sets.

The abstract context in the following extends this situation to the case in
which the algebras & and & are arbitrary C* algebras (always with unit) and
the embedding j, need not be of the form (2.0). There are plenty of examples
in physics (quantum spin systems, quantum electromagnetic field in a bounded
region, . ..) which motivate this extension.

For N € N, denote by .}, the permutation group on {1, ..., N}. With the
convention

o(k) =%k fork >N, o€ A,

we consider ./ as acting on the natural integers N. With this convention
Ay € Ay and
U A
NeN
is a group of transformations of N, called the symmetric group on N.

Let &7, & be two topological algebras and assume that their topologies are
given by submultiplicative seminorms both denoted by || - |l. For each n € N
let there be given a continuous homomorphism j,: &4 — & and an action of
-~ by s*-automorphisms of & such that for each 7 ./, for each
nyng,...,n, €N, m €N and for each b,,b,,...,b,, € & one has

(2.1) T(Jnf01) " Jn(Om)) =Jnap(B1) 7 Trn, () -

ExampLE 2.1. Let & be a C* algebra, &/:= ® (% the C*-tensor product
of countably many copies of & and j,: & — & the canonical embedding on %
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into the nth factor of the product (n € N). There is a natural action of .2 on
& by endomorphisms characterized by the property

(2.2) TJn =Jmn) TE S

and with this action ./ is identified with a group of automorphisms of <.

In the case of & = L*(S,60), where (S, 0) is a standard Borel space, the
assignment of a state u on & is equivalent to the assignment of a cylindrical
measure on the sample space 2 := I15.S, hence, by Kolmogorov’s theorem, a
probability measure on (). The state u is exchangeable in the sense of
Definition 2.2 if and only if the measure, associated to u in the way previously
described, is exchangeable in the usual sense of classical probability. Therefore
the situation considered in the present Example 2.1 includes the formulation
of the classical De Finetti’s theorems.

DEFINITION 2.2. A state u on &7 will be called exchangeable or symmetric
or .2 invariant if it is a fixed point for the action of .2 on the states on &7,
that is, :

(2.3) pem=u, V&AL

The set of all exchangeable states on &/ will be denoted A(%7;.4). It is a
weak*-compact convex set. De Finetti’s theorem states that, in the conditions
of Example 2.1, A(&; #) is a Choquet simplex and its extremal points are
exactly the homogeneous product states.

Define, for each natural integer N,

1
(2.4) ESN=EN=m ;/w(-).

ProrosiTiON 2.3. The maps E have the following properties:
(i) For each N € N, m € A,
(2.5) EN=EN°7T=7T°EN.

(ii) Ey is a norm one projection [i.e., Ex = Ey; Eyn(1) = 1].
(iii) For each N € N the fixed points of Ep coincide with the fixed points
of An.

Proor. (i) is a simple computation. (ii) and (iii) follow from (i) and (2.4). O

ReMARK. The property (ii) implies that each map E, enjoys the properties
which, in the classical case, according to a result of Moy [19] characterize a
conditional expectation as an operator on the bounded measurable functions.
In the general case, Proposition 2.3 implies that Ej, is an Umegaki conditional
expectation on & (cf. [1] for the definition) and its range coincides with the
algebra o/(.#y) of its fixed points which are also the fixed points of .. Since
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N C An+1 one has also
(2.6) A (A) 24 (A1)

The exchangeable states can be characterized in terms of the Ej, in fact:

PrROPOSITION 2.4. A state u on & is exchangeable if and only if
2.7 weEy=u, N e N.

Proor. If u is exchangeable, then for each natural integer N,

1
(2.8) MoEN:ﬁT Y worm=p.
'WE/N

Conversely if (2.7) holds then, using (2.5), one easily sees that for each N and
T € 5 one has

(2.9) pom=poEyem=peEy=np.

Therefore, since each m &€ . belongs to ./, for N large enough, u is
exchangeable. O

LemMA 2.5. The family (Ey) enjoys the following properties:
(2.10a) Ey°-Ey=Ey forM<N,

1 N
(2.10b) Eyojo=— Y j. ifk<N.
Ny

Proor. Equation (2.10a) follows from (2.5) because, for M < N, 4}, C Ay
To prove (2.10b), notice that the number of permutations in ., which map %
toh (h,k=1,..., N)is exactly (N — 1)!. Then (2.4) implies that

Byl =~ % - Y me - %
o = — S o = — . O
VRTINS (NS 2 T TN

T,=h

The following result is a finite form of the conditional De Finetti’s theorem
much in the spirit of [6] (which considers the nonconditional case). Notice that
our conditional bound has the same order of magnitude, in m and in N, as the
bound of [6].

LEMMA 2.6. Let there be given k <n, <ny,< -+ <n, <NeN,meN.
For each a, b,,...,b,, € # one has
1En(jr(@) “dufb1) = “Jn (b))
2.1 ~En(js(@)) * B (Jn(B2) -+ - En(Jn, (b))l

2

m
< —I—V—Ilall g 21 IR | [
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In particular,
lim 1 Ey(ja(a) “Ja(B1) -+ *Jn, (b))

— Ex(ji(@)) - En(Jnf(B1)) - *** - En(Jn, (b))l = 0.

(2.12)

Proor. The difference in the norm || - || of the left-hand side of (2.11) is
equal to, by definition,

1
N(N-1)-- (N-m+ 1)

X Z Z Z Z jrl(bl) “'jrm(bm)

(2.13) l<r<N 1<r;<N 1ls<rg<N 1<r,<N
ro&{ry) re&{ry,ry rm&{ry, ..., P 1}
1 . .
_Nm Z Z E Jrl(bl).“-]rm(bm)‘
1<r;<N 1<ry<N l1<r,<N

Using the identity {1,..., N} = ({1,..., N}\ {r}) U {r}, one can rewrite the
second term of (2.13) as

1
W Z Z Z Z jrl(bl) ”'jr,,,(bm)
1<ri<N 1<ry<N 1<rg<N 1<r,<N
(2.14) reeind
1
+W Z Z Z jrl(bl)jrl(bz)jrs(bB) jr,,,(bm)'
1<r;<N 1l<rz<N l<r,<N

Notice the factor j,(by) [not j,(b,)] in the second term of (2.14) and also
that the summation over the index r, is absent, so that in the second term
there are only m — 1 summations.

Similarly using the identity {1,..., N} = ({1,..., N}\ {ry, rsD) U {ry, ry} we
see that the first term of (2.14) is equal to

1
= L L LT o T b0 igb)

1<r;<N 1<ry<N 1l<rg<N 1l=<r,<N l<r,<N
ro&{ry} rg&{ry, ry}

2.15 1 . .
S XN MR MIRTTID v X CAVA TS
1<ri<N 1<ry<N 1l<ry,<N l<r,<N

ro&{ry

X [Jrf(b3) +Jr(6)]Jr(ba) - Jr,(bm)-

Notice that again the second term of (2.15) has only m — 1 summations
(ry is absent). Iterating this argument for the index r,; then for the index
rs,...; and finally for the index r,,, the second term of (2.13) is found to be
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equal to
1 . . , .
—N_”‘ Z Z Z Z Jrl(bl) ”.er(bm)
1<r;<N 1<ry<N 1<rg<N 1<r,<N
ro@&{ry} rge{r,,ry} [ 0 ST S

1 . . . K3

tam & L N (01 Jn(b2)Jr(bs) e (B)
1<r;<N 1<rg<N l<r,<N

1 |
tom L X X X (b)n(by)
(2'16) N 1<r;<N 1<rp<N l<r,<N l1<r,<N R
rzf(rl}

X (.jrl(b-?a) +jr2(b3))jr4(b4) e jrm(bm)

1
t o+ —Iv_m E Z T Z Jrl(bl)Jrz(*bZ)
1<r;<N 1<r;<N 1<r,_1<N
rze(rl) rm—lﬁ(rly“'yrm—2)

 (Jrlbm) +irbn) + 0 A, (b))

Notice that for each p = 2,...,m, in the pth term of (2.16) one has only
m — 1 summations and therefore the norm of the pth term is majorized by

p-1r
1 — :
(2.17) N k[;llllbkll

This shows that the norm of the summation of the last m — 1 terms is less
than or equal to

m(m—1

2.18 —— Tl = ————= TT b,
(219) ,Ez N Ll v

The norm of the difference between the first term of (2.16) and the first
term of (2.13) is majorized by

1
N(N-1)---(N-m+1) N~

N(N - 1)
(2.19)

<o (N=m+ 1) TTI5,l,
E=1

where the factor N(N — 1) --- (N — m + 1), in the numerator, arises because
the r, summation has N terms, the r, summation N —1,..., the r,
summation N —m + 1.
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Now (2.19) is equal to

(2.19a) (1— (1—%)---(1—'"7_1))ﬁllbkll

and by induction one easily checks that

(2.20) (1—(1—%)--~(1— mlgl))s% 2<m<N.

Adding (2.18) to (2.19a) and taking into account (2.20), one ends the proof. O

3. De Finetti’s theorem. Let ¢ be an exchangeable state on &/ and
denote by {#, m, ®} the cyclic representation associated to {27, ¢}, that is, #
is an Hilbert space and 7: &/— () is the representation of 2/ by bounded
operators on %, characterized by the properties:

@) {m(a)®: a € &} is a dense subspace of # (cyclicity);
(i) (m(a)®, 7(b)P) = ¢(a*b) for all a,b € .

Let U denote the unitary representation of .2 on # characterized by

(3.1) Um(a) ®=m(o(a))®, acL, o€ A
Let &#, denote the fixed space of U, that is,
(3.2a) H,=(teH: Ut=¢(NVoe A)
and P, #— #, the orthogonal projection, and define
(3.2b) E(a) = Ef(a) =Pm(a)P,, acL.
LemMA 3.1. Let ¢ be exchangeable. Then for any k €N, ny,...,n, €N
such that n, < -+ < n,, and for any b,,...,b, € & one has
(8:2¢)  @(Jnfb1) 1 n (b)) =( @, Eby) - -+ - En(by)®).

Proor. For each N € N, let P, denote the orthogonal projection onto the
closure of m(Ey(27)) - ®. One easily checks that Py is characterized by the
property

Pym(a) - ® =7w(Ey(a)) - ®, Vaecd.

Because of (2.5), U, Py = Py for each o € 4}, hence Py > P,. The sequence
(Py) is decreasing so its strong limit @ exists. We claim that @ = P,. Assume
that @ # P,, then, since @ > P,, there exists a nonzero vector ¢, orthogonal to
#, and such that Q¢ = &, Therefore, for each N € N, Py¢ = PyQ& = &,
hence U, & = £ for each o € /. Since N is arbitrary, ¢ € #, so ¢ must be
zero, contrary to the assumption. O
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Now let k,7n;,b; be as in Lemma (3.1). Then the exchangeability of ¢ and
(2.12) imply that

(Jnfb1) "+ dn(B2))
= lim o(Ex(Ja(b1) = in(B4)))
Jlim o(Ey(ja(b1)) - - - En(Jn(54)))
= lim (®, Pym(j,(b1))Py -+ - Pym(in(0:)) Py - @)

=<q’, E(by) - 'Eoo(bk)q’)-

Recall from [15], Definition (3.1.11), that the triple {7, /2, ¢} is said to be
A-abelian if P ()P, is a commuting family of operators. Notice that in
classical probability, &/ is a subalgebra of L*(Q, &, P), which is an abelian
algebra. Hence the condition of .#-abelianity is automatically satisfied.

THEOREM 3.2 (De Finetti). Suppose that, for any exchangeable state ¢ on
&, the triple {7, S/, ¢} is A -abelian. Then the exchangeable states on &/ are
a Choquet simplex whose extremal points ¢ have the following property: There

exists a state ¢, on % such that for any k € N, n; < -+ <n,, n; € N and
by,...,b, € 4B,
(83)  @(Jnfb1) - 7 Jn (b)) = @0(b1) “ @o(b3) - -7 - @o(By).

Proor. The #-abelianity implies that the exchangeable states are a Cho-
quet simplex (cf. Theorem (3.1.14) of [20]). The same condition implies that for
an extremal state ¢ one has &#, = C - ® (C is the complex field), and since
for any a € &7,

e(a) = lim ¢(Ey(a)) = lim (@, Pym(a) Py® =(®, E(a)9),
it follows that
(3.3a) E(a) = ¢(a)P,, a €.

If ¢ is exchangeable, then the state on & defined by b € & — ¢(j, (b)) =
¢o(b) does not depend on 7; in fact if n < k are fixed and = € . is such that
7n =k, then

¢(Jn(8)) = (7 [jn(8)Je(1)]) = ¢(Ji(d)).
From this, (3.2¢) and (3.3a), (3.3) follows immediately. O
REMARK. Notice that, up to now, no commutativity condition has been

introduced. In particular we do not require that j,(b) and j,(b), b,b' € &,
commute or anticommute.
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A stationary state ¢ on & is called I-ergodic if for each b € & one has
N

1
(34) lim — ¥ 7(ju(5) = ¢:(b) = ¢(js(b),

n=1

the limit being meant strongly in the cyclic representation 7 of {7, ¢}. More
generally, ¢ is called k-ergodic if for each b,,...,b, € &, ny,n,,...,n, €N,

N
(3.5) 1\1’i1’n°° N n=077(jn+n0(b0)) T (Jnenf00) T (Fnen (b))

= ¢(Jng(b0) “Jnfb1) - Ja(B2))-
A state which is k-ergodic for each % is called x-ergodic.

CoROLLARY 3.3. In the assumptions of De Finetti’s theorem, let ¢ be an
exchangeable state on . Then the following statements are equivalent:

(1) ¢ is 1-ergodic.
(ii) ¢ is extremal exchangeable.
(iil) ¢ is x-ergodic.

Proor. (i) = (ii): Using (2.10b) and (2.11) we obtain, for every k € N,
ny< -+ <n,eN, b,...,b, € # and any N € N,

¢(jn1(b1) T jnk(bnk))

56 O(En(jn(b1) *** Jns(bn,)))

® Ly b Ly b)) ®)+0 !
=\® T ‘ﬁhEIJhl( 1) \Nth:IJh"( k) + (ﬁ)
Since each sequence (1/N)XN_,;j.(b,)), N € N, is bounded, by 1-ergodicity
the limit of (3.6) for N — « exists and is equal to ¢y(b;) - - - - ¢o(b,). This
implies (3.3), hence the extremality of ¢.
_(ii) = (iii): By De Finetti’s theorem, the extremal exchangeable states are
homogeneous product states, hence a fortiori ergodic (cf. [1]).
(iii) = (i): This is obvious.

REMARK. Let &/, & and j,, n € N, be as in Section 2. Recall that any
endomorphism u of & satisfying
(3.7) U jy=jus1, VYneN
is called a shift on & and that a state ¢ on A is called u-ergodic if for every
x € ,

1 N
(3.8) s lim = ¥ w(u"(x)) = o(x),

n=1

the limit being meant in the strong topology on the cyclic space of {27, ¢}.
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If o is such that the products j,(b) - - j,(b,); k€N, n; < -+ <n, €
N; b,,...,b, € & are total, then we say that o satisfies condition TOD (the
totally ordered products are dense). Clearly if condition TOD is satisfied, then
at most one shift can exist on 27 and in this case the notions of u-ergodicity
and ergodicity as defined above coincide.

4. A continuous version of De Finetti’s theorem. Let .# denote the
family of bounded intervals of R (open, closed or half-open). Then R acts on .#
by translation and an interval ¢/, which can be obtained by translation from an
interval I, is called a copy of I.

Given a C*-algebra &/ and a family of subalgebras &7, (I € .#) of & such
that

Icd= s c,

let v: x € R - v, € Aut(2) be a representation of R by endomorphisms of &/
for which the family (7}) is covariant, that is,

(4.) 0.() = %.,,, VYzeR,
We also assume that each v, has a left inverse, that is, there exists an
isomorphism v}: v,(2/) — & such that
viv,=1, VxeR.

Denoting, for each I € .#, by min(I) [resp., max(I)] the left (resp., right)
extremum of I, a partial order « is induced on .# by the prescription

I<J < minl < mind.
A tessellation of R is a sequence (I,,) of intervals in R such that all the I, are
copies of a single interval and

UL =R, I°NI’=Qifn+m,
n

where I° denotes the interior of I.
The symmetric group ./ acts in the obvious way on each tessellation
#=(I,) of R. Let us denote by 7 this action, that is,

Trj(In) = I‘rr(n)’ m™E A, n €N,

Suppose that for each tessellation .# of R there exists an action, still denoted
7, of % by automorphisms of & with the property that
T’ = Ve

n ‘n’(n)’

A state ¢ on & is called exchangeable if it is invariant under the action of 7
of each tessellation 7. Clearly this property is preserved under convex combi-
nations. The set of all =~ with 7 € 2 will be denoted .2~

ExaMpLE 4.0a. Let (X)), ¢t € R, be a real stationary, independent incre-
ment process on R. If I =[a,b] is an interval, define X;=X, — X,. If
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F=(I,) is a tessellation of R, for any n € N and F € L*(R"), define
T F( Xy X)) = F(Xp 0 Xp,)-
If (Q, &, P) is the space of the X process and
&= L*(Q, F, P) &) = L*(Q, F, P;),
& = the o-algebra spanned by the X, — X with (s, ¢) C I, then all the above

conditions are satisfied and the process (X;), I € .7, is exchangeable.

ExXamMPLE 4.0b. A quantum example is as follows. Let /# denote the Fock
space over L2(R) and let &/= #(H#). For I € .# denote by &#, the subspace
of &# spanned by the exponential vectors ¢( f) with f € L%R) and supp f c I.
Let finally &7, = #(#;) and v,(x € R) be the automorphism of &/ induced by
the second quantization of the translation by x on L2(R). Then the covariance
condition (4.1) is satisfied and v} = v_,. Let #= (I,) be a tessellation. Then

where [ := |I | is the length of I,,.
For each fixed finite interval [m, n] C Z we use the identifications

&= Mminam)l ® "MI,,‘ ® - ® ‘Q/I,, ® "M[max(l,,)
= Mmin(lm)] ® vmlo(‘Q/IO) ® - ® Unlo('%o) ® 'Sy[max(ln) ’

where &} = o _.,; & = &|; . Define the action of ./, ,, on & by
requiring that each permutation in .7, ,; acts trivially on the past of I,, and
on the future of I, and permutes the intervals (I,), for £ = 1,...,n. Then

71"j(a’min ) ' vmlo( bm) T Unlo(bn) ’ a[max(I,,))

= @ nin A ' vv-r(m)lo( bm) e vq-r(n)lo( bn) * Qmax(I,)

for any w € ‘/im,np amin(I,n)] € Mmin(lm)]’ a[ma.x(I,,) € ‘Q/[max(l,,)’ bm’ bm+1’ cre
b, € ;. The state ¢ on & defined by

p(a) =(®,ad),
where @ is the Fock vacuum, is exchangeable.
THEOREM 4.1. Let & and (&) be as in the beginning of this section, and

suppose that for each exchangeable state ¢ on -

(i) For each tessellation #= (I,), the triple {7, /7, ¢} is A -abelian.
(ii) For each interval I and subintervals I,,..., I, c I such that

v dy =

n
L<I,,j=1,...,n, UL=1,
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the products

a; -

. “ar withalje.sa/,j,j=1,...,n

are total in 2.
(ii) If (I,) is a sequence of subintervals of I such that I, <1, and the
closure of U,I, =1, then U,% is densein .

Then the exchangeable states are a simplex whose extremal points ¢ satisfy
(4.2) 4"(“11 T 'aln) = 4’(‘111) Tt ‘P(al,,)

foreachn € N, a I € %j and for any sequence of disjoint intervals I,,..., 1.

ProorF. We begin by showing that, for any n € N and for any set of
pairwise disjoint intervals I, ..., I, € .#, whose lengths are rational numbers,
(4.2) holds.

Since the length of each interval I, is rational, there exists a tessellation
(J,,) of R such that the length /, of J, is a rational number and each interval
I, is the union of a family of (J)).

From Theorem (3.2) and assumption (i) it follows that, if ¢ is extremal,
then

¢(aJ0aJ1 R aJM) = Gp(aJO)ﬂD(aJl) T €D(aJM)

for any a,, €, k=1,..., M.
Because of the" assumption (ii) it then follows that

‘P(azl'alz’ 'aI,,) - ‘P(azl) ce "P(aln)

for a set of a; dense in &, J =1,...,n. Thus (4.2) holds if the intervals I;
have rational lengths By approx1mat10n and assumption (iii) it holds in all
cases.

The simplex property remains to be proved.

By (iii), a state ¢ is exchangeable if and only if it is 77 invariant, for every
tessellation .#= (I,) with rational intervals.

If #’ and #” are two such tessellations, then there is a third one .#
which refines both of them. By condition (iii), if # refines .#’, then .2 can
be identified with a subgroup of /. This implies that the union of the .2~
over all the tessellations with rational intervals is a group [the inductive limit
of the family () for the given embeddings]. Therefore the simplex property
follows from [20], Theorem 3.1.14. O

ReEMARk. Let T be a topological space, G a topological group acting on T,
(x,8) € T X G — xg € T. The covariance condition (4.1), the notion of tessel-
lation on R and the three conditions of Theorem (4.1) are easily rephrased in
terms of G and T (the condition I < J is replaced by I1° N J° = & and the
family .# of intervals by a family of open sets). Given these adjustments, the
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proof of Theorem (4.1) applies with no changes to this more general situation.
If u is a G-invariant Borel measure on T, one can consider the Fock space (or
equivalently the unit Gaussian process) over L%(T, ), and an easy adaptation
of Example 4.0b provides an example of this more general situation.

5. Exchangeable conditional expectations. We conclude with a re-
mark which might shed at least some partial light on an interesting question
posed by Diaconis and Freedman. In [6] these authors show that, under
various sets of conditions, a probability measure turns out to be a mixture of
product measures and ask whether there might be a general principle underly-
ing these sets of conditions. The core of paper [6] is the explicit determination
of the factor and the mixing measures in a number of interesting situations, as
well as the bounds on the finite dimensional approximations. These results by
their very nature depend on the specific class of measures considered and the
only common feature seems to be the order of magnitude of the approxima-
tion, which is m /N in the notation of the remark before Lemma 2.6 (k/n in
the notation of [6]). As far as the qualitative picture is concerned, one may
notice that in all the cases considered in [6], the various classes of measures
are determined by:

(i) Assigning the conditional probabilities on a o-field determined by a
condition which is symmetric in the random variables (e.g., &,,..., £, =0;
Z;= 1€ = s).

(ii) The conditional probabilities of point (i) are themselves invariant under
finite permutations of the coordinates (the rotation invariance implies invari-
ance under permutations of any family of orthogonal coordinates).

In algebraic language and in the notations of Section 2, we can rephrase
(and generalize) conditions (i) and (ii) as follows: Let o, np N € N denote the
C*algebra generated by j,(#) with n = 1,..., N and &/, y(-#) denote the
fixed point subalgebra of &/, y, under the action of /5. From the remark
after Proposition 2.3 we know that &/, y(-#y) is the range of the restriction
of the conditional expectation E,, given by (2.4), on o, vy A conditional
expectation Fy: &, y) = &, n(-#y) is called exchangeable if

(5.1) FN°7T=FN, V"TE«/N.

With this notation, the following problem is a generalization of the various
problems considered in [6]: Let there be given for each N € N an algebra
tn C ¥y n) and an exchangeable conditional expectation Fy from Ko, N
onto €y. Characterize all the states ¢ on &/ such that

(5.2) poFy=9¢, VYNeN.

For example, € can be the algebra of all bounded measurable functions of the
random variables [IT}_,x( ()] (Z3_1€,) =t X (where &,...,¢,,... are
real valued random variables) and we can require (as in [6]) that, for any fixed
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s € [0, + ), Fy(-)x = s is the uniform distribution on the simplex {(¢,, ..., ¢y)
€ RY: £ ¢, = s}. It is obvious due to (5.1) and (5.2) that any ¢ satisfying
(5.2) is an exchangeable state, hence, by De Finetti’s theorem, a mixture of
homogeneous products.

Acknowledgments. The authors are grateful to E. Regazzini for pointing
out the results of O. Kallenberg on processes with exchangeable increments,
which they did not know. They learned more about Kallenberg’s work from
P. Diaconis’s lecture in Cortona (October 1991). On this occasion, the authors
benefited from several interesting conversations with P. Diaconis on the finite
De Finetti theorems. These conversations were a stimulus to try to improve
the exponential bound for the finite, conditional De Finetti theorem, by
reducing it to the quadratic bound obtained in the usual (i.e., not conditional)
case. Having obtained this result, our previous proof has been replaced by one
which yields the desired bound and, moreover, has a simpler and more
illuminating structure. ‘
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