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THE “STABLE ROOMMATES” PROBLEM
WITH RANDOM PREFERENCES*

By Boris PITTEL

Ohio State University

In a set of even cardinality n, each member ranks all the others in order
of preference. A stable matching is a partition of the set into n/2 pairs,
with the property that no two unpaired members both prefer each other to
their partners under matching. It is known that for some problem in-
stances no stable matching exists. What if an instance of the ranking
system is chosen uniformly at random? We show that the mean and the
variance of the total number of stable matchings for the random problem
instance are asymptotic to el/2 and (wn/4e)'/?, respectively. Conse-
quently, Prob (a stable matching exists) > (4e3/7n)*/%2 We also prove
that, given the last event, in every stable matching the sum of the ranks of
all members (as rank ordered by their partners) is asymptotic to n3/2, and
the largest rank of a partner is of order n!/? log n, with superpolynomially
high conditional probability. In other words, stable partners are very likely
to be relatively close to the tops of each other’s preference lists.

1. Introduction, history and main results. Consider a set I of even
cardinality r, and assume that for each member a € I there is given a subset
I(a) of “acceptable” partners ranked (without ties) according to a’s individual
preferences. A stable matching problem is to find a partition of I into n/2
admissible pairs with the property that no two unpaired members both prefer
each other to their partners under matching. In 1962, Gale and Shapley [8]
introduced and studied a ‘““stable marriages” problem, which is a bipartite
version of the stable matching problem, that is I =1, + I,, |I;| = |I,| = n/2
and I(a) = I, or I, dependent upon whether a € I, or a € I,. The sets I, I,
can be interpreted as the set of men and the set of women, and a matching
between I, and I, as a set of marriages (a marriage assignment). Gale and
Shapley described a finite-step algorithm; it consists of rounds of proposals of
currently free men, each to his next best woman, with every collision of suitors
resolved in favor of the better suitor and all the rejected men having to propose
in the next round, (see [8] for the complete description). They proved that a
final round results in a stable matching, thus establishing that at least one
such matching (marriage assignment) always exists. In 1971, McVitie and
Wilson [20] suggested an alternative proposal algorithm in which, unlike
Gale-Shapley’s algorithm, the proposals by men are made one at a time.
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1442 B. PITTEL

Remarkably, this algorithm yields the same stable matching, and it requires in
the course of its work the same set of proposals as the algorithm in [8].

For every n, however, there are problem instances with only one stable
matching. (Can the reader think of an example?) As for a nonbipartite version,
the authors of [8] found a simple instance of a ‘“‘stable roommates” problem
[I(x) = I\ {x}; x € I], for which no stable matching exists. Years later, it was
found that, for both the stable marriage problem and the stable roommates
problem, the maximal number of stable matchings grows (at least) exponen-
tially fast with n (Knuth [16, 17], Irving and Leather [12] and Gusfield and
Irving [10]).

Since the number of stable matchings varies so greatly from one instance to
another, it is natural to ask how large this number is “typically,”” that is, in
the case when rankings are chosen independently and uniformly from possible
rankings of acceptable partners. For the stable marriage problem, this was one
of the questions posed by Knuth in his book [16]; he suggested that it might be
possible to estimate the average number of stable matchings via-asymptotic
study of his multidimensional integral-type formula for the probability that a
given matching is stable. We performed this analysis in [21]; it turned out that
E(S,) (the expected value of S,, the total number of stable marriages) is
asymptotic to n log n/2e. Besides, we established that with high probability
(whp) the two extreme stable matchings—male optimal and female
optimal—dramatically differ from each other, whence S, > 2 whp.

Soon after, Knuth, Motwani and Pittel [18] proved that whp S, >
(1/2 — e)log n, ¥V € > 0, that is, whp S, is unbounded. The proof was based
on a careful probabilistic analysis of a version of the McVitie-Wilson algorithm
[20], which determines sequentially all stable partners of a particular woman;
it was shown that whp ¢,, the total number of those men is at least (1/2 —
e)log n. In [22], we suggested another way to analyze this algorithm. It turned
out that ¢, is asymptotically Gaussian with mean and variance ~ log n. Thus,
whp S, >¢, > (1 — e)logn, VY £ > 0. Subsequently, we were able to narrow
somewhat this glaring gap between the whp lower bound of S, and its
expectation E(S,) ~ n log n/2e. Using the results of Irving and Leather on
the structure of stable marriages [13], and extending the techniques of our
paper [21], we proved in [22] that whp S, > (n/2log n)'/2.

Regardless of the sharpness of the last bound, one thing is already clear:
Typically, the stable marriage problem has plenty of solutions, nl/2*°® at
least. What about the random instance of the stable roommates problem?

In 1985, Irving [11] solved a difficult problem proposed by Knuth [16] in
1976. Irving found a polynomial-time in the worst case [O(n?)] algorithm that
determines, for any instance of the stable roommates problem, whether a
stable matching exists, and if so, finds such a matching. The algorithm has two
phases, a proposal phase (not unlike McVitie~Wilson’s algorithm), and a
second phase based on an interesting notion of a stable table and rotations
exposed in it. Having made experimental runs of the algorithm, Irving
concluded that the proportion of problem instances with a stable match-
ing [P(S,, > 1)] appears to be a decreasing function of n. However, the
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decrease rate seems to be rather slow, so that it would be difficult to choose
between two competing conjectures, lim, _,, P(S, > 1) =0 or lim, ,_, P(S,
>1)>0.

In this article, (Section 3), we show that lim , ,, E(S,) = e'/?, so that the
expected number of stable matchings is bounded, in a striking contrast with
the case of stable marriages [21]. [Rob Irving has informed me that his
student’s results of simulations obtained several years ago indicated that
E(S,) had to be a bounded function of r.] Thus, S, is bounded in probability
as n > . But what about the value of lim, _,, P(S, > 1)? In an attempt to
answer this question, we decided to study the asymptotic behavior of the
second order moment E(S2Z). Had that turned out to be bounded also,
we would have been able to conclude [by means of Cauchy’s inequality
P(S,>1) > EXS,)/E(S2)] that P(S, > 1) is bounded away form 0. How-
ever, this moment happens to be unbounded; namely E(S2) ~ (mn/4e)'/?, as
n — «. So, we can assert only that

2e3/2
(11) P(SnZI)ZW’ n — o,

Thus, it remains unclear whether P(S, > 1) converges to zero. In the case it
does, the rate of convergence is quite slow. At this moment, we have a feeling
that P(S, > 1) - 0, which is conjectured by Gusfield and Irving in their
recently published book [10]. (See Note added in proof at the end of the text.)

We also demonstrate (Section 4) that only with superpolynomially low
probability may the random problem instance have a stable matching with the
sum of the ranks of all members (as ranked by their partners) being outside
[(1 — e)n®2,(1 + €)n®2], or the largest rank of a member being outside
[(1 — e)nt2logn,(1 + e)n'’%2logn], V € > 0. So, by (1.1), given that a stable
matching exists, with superpolynomially high conditional probability for every
stable matching the sum of the ranks of all members is close to 73/, while the
largest rank of a member is of order n!/2 log n, precisely. Loosely speaking, all
the stable matchings (whenever they exist) are very likely to be well balanced.
This provides another illustration of how sharply the stable roommates prob-
lem differs from the stable marriages problem. We had earlier proved [22] a
very likely existence of a large variety of stable marriage assignments, with the
total spouses’ rank ranging from (n3/2)!/2 to n%/4log n, and the largest rank
of a spouse ranging from (n/2)"/2log n to n/2.

Concluding, we should note that there is a conceptual (and mathematical)
similarity between the problems on likely structure of stable matchings and a
class of problems in population genetics, concerning likely size and shape of
stable polymorphisms (under an assumption that the various genotypic fit-
nesses are independently random); see Karlin [13] and Kingman [14, 15].

2. Integral formulas. There are [(n — 1)!]* instances of the ranking
system in the case of the stable roommates problem, since every member a € I
can order the remaining (n — 1) members in (n — 1)! ways. The random



1444 B. PITTEL

instance, chosen according to the uniform distribution, can be generated
as follows. Introduce an n X n array of the independent random variables
X;;(1 <i+#j<n), each uniformly distributed on [0, 1]. Postulate that each
member i ranks the members of I\ {i} in the increasing order of the variables
X, ;(j € I\{i}). Obviously, such an ordering is uniform for every i, and the
orderings by different members are independent.

Assuming that I={1,2,...,n}, introduce a standard matching M, =
{G,i + n/2): 1 <i <n/2}). Denote the probability that M, is stable by P,,
and the probability that M, is stable and the sum of the ranks of all members
in M, equals k& by P,,. By symmetry, the values of these probabilities for any
other fixed matching are P, and P,,, too. The random scheme we introduced
above allows us to represent P, and P,, as the values of certain multidimen-
sional integrals, not unlike those in Knuth [16], and Pittel [21] for the stable
marriages (cf. Kingman [14, 15]).

LEMMA 1. Let C denote the n-dimensional unit cube, that is, C = {x =

(xq,...,%,):0<x;,<1,1<i<n} Then
(2.1) P = [ IT (1-=xx;)dx, dx=dx,...dx,,
C (i, jyeMs

and, fork > n,

(2.2) P,,=|[z*"] TI (&% +2x;X; + 2%,x;|dx

k ‘[C G} EMS ( J J J )
(¥, =1 — x,). Both products are taken over all unordered pairs of distinct
members of I that do not form a match in M,. The integrand in (2.2) is the
coefficient of z* ™" in the polynomial expansion of the product.

Proor. For clarity, we give separate proofs of the relations (2.1) and (2.2),
even though the former is a consequence of the latter. (Does the reader see
why?)

(a) By the definition of stability,

(2.3) {M, is stable} = () Af,
(i, j}eM§
where
(2.4) A= {Xij <X, iins2 X < Xj,j+n/2};

(both i + n/2 and j + n/2 are taken modulo n). Now, all X,p are inde-
pendent (and uniform on [0,1]). So, by Fubini’s theorem, conditioned on
X asns2 =%l <a <n), the events A,}, {i, j} € M, are independent, and

P(AZJI ') = xixj.
[PC|-) here, and E( | -) below denote the conditional probability and the
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conditional expectation.] Therefore,
P(Myisstable| )= [1 (1-xx;)
{i,j}eM;

and (2.1) follows.
(b) Let R denote the sum of the ranks of all members in M, and x(&/), [or
x.o(*)] the set indicator of an event &. Then

(2.5) R=n+ Y [X(Xij < Xi,i+n/2) + X(in < Xj,j+n/2)]’
{i,j}eM§

and
(2.6) P,, = [2*1E[2%x(M, is stable)] .
Further, by (2.3)-(2.5) and Fubini’s theorem, again conditioning on

Xot,a+n/2 = X
E[z%7"x( M, is stable)| ]

E[( I_I X(Acltj)zx(xij<Xi,i+n/2)+X(in<Xj,j+n/2))| ]

{i,jleM§

Il

I1 E[X({Xij <x; X;; < xj}c)zx(X,-j<xi)+x(Xﬁ<xj)]
i, j}eM;

[T (%% +ax,&, + 2&.x,).
(i, j)eMs

This and (2.6) imply (2.2). O

Continuing, suppose that we have a pair of distinct matchings, M; and M,.
How do we compute the probability P(M;, M,) that both matchings are
stable? Together, M; and M, determine a graph G(M;, M,) = (I, E), E =
M, U M,, that is, the edge set is formed by pairs {i, j} from M, or M,. A
component of G is either an edge, and the set of all such edges is M; N M,, or
a circuit of even length greater than or equal to 4 in which the edges from M,
and M, alternate. The edge set for all these circuits is M, AM, =
(M,\ M,) U (M,\ M. We call the circuits alternating, by analogy with
alternating paths in matching theory (see, e.g., Swamy and Thulasiraman
[26)]).

LEMMA 2. Given a graph G = G(M,, M,), let D be the set of all (x,y) €

C X C such that (a) x, =y, for every noncyclic vertex a, and (b) for every
circuit {i;, ig,...,1,) Of the graph G either

X > Vi Xiy <Vigrooor %

Im

<Yi,»
or

hold. (Recall that each m is even.) Then, denoting min(a, b) by a A b, and the
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matching function for M, by m (), a = 1,2,

P(M,My) = [ TI [1-xx -5+ (5 Ay)(x; A y;)] dady,
D (i, jyeM{nM;§

dx = []dx,, dy = I'l dy

a=1 a: my(a)#myla)

a*

Proor. By the definition of stability, we have

{M,, M, are both stable} = N B;;.
(i, j) (M, M)

Here, if {i, j} € M{ N M3,
B;; = {Xi; <X; myy
u{X;; <X,

i, my(i)?

Xji <Xj i)
Xi <Xj muihs
if {i, j} € M{ N M,, then j = m,(i) and i = m,(j) and
B =X myiy < Xirmuirs Kivmaty < X myi)}3
likewise for {i, j} € M; N M3,

B = (X muir < Xi,myirs X myiy < Kjymaii)}-

Conditioned on the values X, ,, ) = %4 X4 mya) = Yar 1 < @ < 1, the events
B;; (whence Bf;) are independent, and
L—xx; =y + (% Ayi) (%5 A Yy), {1,7} e M} n M3,
P(B;l-) = x({yi = x;, 0r y; = x}), {i,7} e M n M,,
X({xizyi,orxj Zyj}), {i,j} e M, n MS.

Therefore,
P(M,, M, are both stable | -)

= Il [1 —x;x; — ¥y + (% Ay)(x; /\yj)],
(i, YeMEnMS

under the condition “{i, j} € M{ N My, = y; > x;, or y; > x; and {i, j} € M; N
M; = x;>y;, or x; >y;” If the condition does not hold, the conditional
probability is zero. Since the edges from M; A M, form the disjoint alternating
cycles in the graph G, the condition means that for every such cycle
{iy,ig,...,0,,) [with (i, i) € My, (iy,i5) € M,,...,@0,,, i) € M,, say]

Vi, =% or y;, =%,
Yi, =%, Or Yy, =X,

(2.7

Yip S%, , Or Yy =<x;,
Yi, Z%;,  Or Yy 2x.
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Since my(i;) # my(i;) for 1 <j<m on an alternating circuit, y; =

X, myip * X, mp = %, almost surely for these j. Butif y;, #x; , 1 <j<m,
then the conditions (2.7) are met if either x; >y, ,x; <y, ....%; <¥; ,o0r
Xp <Y Xiy > Vigsooos Xy > Vi (The inequaiities alternate.) This proves the
lemma. O

3. Two moments of the number of stable matchings. Let S, stand
for the total number of stable matchings. We use the results of Section 2 in
order to obtain asymptotics of the first two moments, E(S,) and E(S?).

THEOREM 1. lim, . E(S,) = e'/? so, in particular, S, is bounded in
probability, as n — .

PrOOF. Since the total number of matchings is 1:3-5- - -(n —1)
(=gt (n — D), we have

E(S,) = (n - 1)IP,.

Here P, = P(M, is stable) is given by (see Lemma 1)

(3.1) P, = [1(x) dx,
C
where

M(x)= T1 (1~ x;x;).

{i, jyeM§

To estimate P,, and elsewhere, we will frequently use the following bound
(cf. Pittel [22)).

LEMMA 3. Defines = L?_,x;, and v = {v; = x;/s; 1 < i < n}, so that L7_v;
=1. Let L™ ={L{; 1 <i<n} be the set of lengths of the consecutive
subintervals of [0, 1] obtained by selecting, independently and uniformly at
random, (n — 1) points in [0, 1]. Then for nonnegative (measurable) functions
f(s), g(w),

sn—l

[ £(5)a(w) e = [F(s) Gy B8 (L) ma L < 51)) ds

(3.2)

sn—l

SE(g(L(")))fonf(s)@'—_'1—)!ds,

with equality if suv € C whenever f(s) > 0 and g(v) > 0.
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More generally, if {I;; 1 <j < m} is a partition of {1, ..., n}, then introduc-
ing s; =X, x; v ={x,/s;;i €L}, n; = I,

ff(sl,...,sm)( l_[gj(v(j)))dx
C Jj=1

k
= || f(s15---,8,)
(3.3) OfSS[ !
m J(lj—l
x E|g(L ( L < 1))
JI:Il (n; —1)! (g( )X 12‘2}21 s
Xdsy - ds,,.

The proof is short. On the left-hand side in (3.2), we switch from x to s,
Uy ..., U,_q (so that v, < s'l, 1 <i < n), notice that the Jacobian of the
inverse transform equals s”~!, and then recall that p(v,,...,v,_;), the den-
sity of (L{,..., L™ ), is glven by

n—1
_J(n=1), ifv>0, Y u<1
p= i=1
0, otherwise,

(Breiman [2]).
The relation (3.2) clearly implies (3.3) for f=TIT;f;(s;). A usual extension
argument yields then (3.3) for an arbitrary f. O

The bounds (3.2) and (3.3) are particularly effective in combination with a
well-known fact; namely, that

w; .
(3.4) LW =,{ — ;1<i<ny,
J=1%j
where w,,...,w, are exponential (with parameter 1, say), independent ran-

dom variables, (Breiman [2] and Rényi [24]).
For clarity, we break the remaining argument into steps.

STEP 1. Since 1 — v < e™”, we have

H(x)Sexp(— Y xixj)

(i, jleM§
n n/2
(35) = exp(_%s % Z + Exlxl+n/2)
= i=1

382+ Y xf) < exp(—gs® +5).
i-1
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Besides, by Stirling’s formula,

1 n/2
(3.6) (n—1)u=n—n=0((f) )
2"/2(—)! €
2
Define
(3.7 C,={xeC:s<n'?logn};
then

(n — 1)!!fcﬂ(x) dx = (n - 1)!![011'[(x) dx + O(exp(—gn log® n)),
because, by (3.5)-(3.7),

.n
(n - 1)!!fC_CH(x) dx = O(exp(—%n logZn + n'2logn + in log;)).

Step 2. Introduce #,(v), i = 1,2, 3, as follows:

n n/2 n
(3.8) ty= ) v, ty= ) UiUin s2 ty= ) v
i=1 i=1 i=1

Define C, as a subset of C; such that

(3.9) ;(l—an) stls§(1+sn),

(3.10) i(l—sn) Stzs—l-(1+5n)
2n 2n

and

(3.11) ty < 25073,

where

e, =n"Y*log?n.

Let us agree to read ““ —(3.9),” say, as the negation of the condition (3.9), that
is, “¢; < (2/nX1 —¢,) or t; > (2/nX1 + ¢,).” Denote by R;, R, and R4 the
contributions to the value of (n — D!!/o I1dx made by C; N —(3.9), C; N
—(3.10) and C; N —(8.11), respectively. Obviously,

(n— 1)1![0 (x)dx = (n - 1)11[Cn(x)dx +O(R, + Ry + Ry).
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Let us estimate R;. Using Lemma 3 with g(v) = x_ 54/(v), and also (3.5),
(3.7) and (8.8), we have

n—1
T 1/2 Tgmst2 S
R, <(n - 1)llexp(n logn)(j; e =D ds)

t,(L™) o,
. _ > —s“/2,n—1 — _ n
(3.12) XP( 9T 1 >e, [foe s""ds = (n — 2) ]

(L™
=exp(n1/2logn)P( 1; _1) - 1|>¢,|,
n

where [see (3.4)]

n n n 2
(3.13) t(L™)y =Y (L(i"))2 =, ( Y w,z) ( wj) .
i=1 i=1 j=1
LeEmMma 4. IfY,,Y,,... arei.i.d. random variables with E(e?¥) < » for |z|
sufficiently small, then there exist ¢ > 0 and 8, > 0 such that

% %Yi—E(Y) 26) = O(exp(—cmd?)), V4§ <38§,.

(3.14) P(
i=1

(The proof is standard, based on the Chernoff method [3].)

Now, E(w,) = 1, E(w?) = 2; so by this lemma,

n

P1=defp“7l‘zwi_1

zn‘l/“logn)
i-1

= O(exp(—cn'/?logZn)), ¢, >0,
(3.15) (exp(—c; g’ n)) 1

1
P, =defP(‘— Y wi-2 2n“1/4logn)
ni-a

= O(exp(—cyn'/?log®n)), ¢, > 0.
Then, since n"*logn < ¢, = n"*log? n,
t,(L™)

~1
(3.16) (’ 2n~!

>£n) <P, +P,

= O(exp(—cn'/?log®n)), c=c; Acy> 0.
Consequently, by (3.12),
R, = O(exp(—c'n'/?log®n)), ¢ <c.
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Similarly, since E(w,w,) = E(w)E(w,) =1,

ta(L™)

2 1p71 -1

R, = exp(n'/? log n)P( > e,

= O exp(—c"n'/?log® n)), c¢" >0,
and [ E(w?) = 24],

to( LW 25
R, = exp(n'/? log n)P( (L) )

—_— > R
24n~3 24
= O(exp(—c"n)), " >0.

Therefore,

(n-—l)HﬁjH(x)dx
=(n - 1)!!]; II(x) dx + O(exp(—cn'/?log®n)), ¢ > 0.

SteP 8. Using 1 — y < exp(—y — y2/2), we have on Cy:

[ 1
M(x) <exp|— ). (xixj + Ex’zsz)l
i, j}eM;

1 n n/2 1( n 2 n
= exp __32+_in2+zxixi+n/2__ Y x| +0|l Xxf
2 23 i=1 45 i=1

(3.17)

LI

S5ty - 2ty) — 252+ O
exp 23( 4 ty) 4st1+

ool

[ 1 3 s
= exp —532(1 - ;) — st O(n~'*log®n)

Then, by Lemma 3,
(n - 1)!!fC M(x)dx < [1+ O0(n""*log® n)]
(n =1 = 1, 3 st |
X———(n_l)!j;)exp — 38 (1—;)—;3 ds.

The integrand of the one-dimensional integral attains its sharp maximum at a
point s = n'/2 + O(n~1/2), and a little reflection shows that the integral is
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asymptotic to

3\ 2% & s?
=e'1(1——) f exp(——)s”'lds
0

2
1
=(n- 2)!!exp(§ + O(n_l))~
So,

limsup (n — 1)!!/H(x) dx = limsup(n — 1)!![ [I(x) dx < e'/?
C C,

STEP 4. It remains to prove that
liminf(n — ! [ T(x) dx > '/
c

To this end, introduce Cj, the set of all x € C, such that, in addition,

210 n
s < 2n'/? max v; g .
l<i<n n
Notice that these new conditions imply that
log
max x; < 4 =0(1), n - o,

l<i<n

whence the condition “max,_;_, x; < 1” is met automatically. Using 1 — x =
exp(—x — x%/2 + O(x®)), x — 0, we obtain [similarly to (3.17)] on Cj:
2
)
1

P

1 1 .
I(x) =exp| —=s*(1 — ¢, — 2¢,) — —s*2+ 0
2 o4

s2 3 st logbn
Zexpl——z—(l—;)—?+O(n'1/4log6n)+0( g;l )]

So, using Lemma 3 (the case of equality), within a factor 1 + O(n~1/* log® n),
(n—1)!t[ Ti(x) dx
Cs
3.18 HNe? 1 1 3 "
( . ) Z(n )..e j; 1/2 —8 - — —(n———l_)'

2logn
xP({maxLS-")s g } OB),
Jj n
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where
t(L™) to( L)
B={ 9T -1ll<e,} N —2_17—1
The integral is asymptotic to e3*(n — 2)!!/(n — 1)!. We also know that
P(B) — 1. Besides,

< sn} N {ts(L™) < 25n78%}.

. 2logn 2logn
P(maxLy" < g ) >1- nP(L({‘) > g )
J n
3.19 2logn \" 1!
( ) =]1- n(l - g )
n
=1-0(n").

Therefore, the probability factor in (3.18) approaches 1,as n — o,

Note. Actually, log n/n is the sharp probabilistic estimate of max L
(Levy [19] and Darling [4]). Devroye [6, 7] analyzed in great detail the almost
sure behavior of the %th largest subinterval L{", for each fixed & > 1.

Consequently,
lim inf (r — 1)!1 [ T(x) dx > lim inf(n - ! [ Ti(x) dx
c Cy

=el/2,
The theorem that lim, _,,, E(S,) = e!/? is proven. O
Turn now to the second ordei‘ moment. The computations are considerably
more involved, but the above proof provides a starting insight into the

structure of those stable matchings which are responsible for the dominant
part of E(S2).

THEOREM 2. E(S2) ~ (mn/4e)'/? asn — .

Proor. To begin, we observe first that

E(S,(8,-1)) = MZM P(M,, My),

where, for two distinct matchings M,, M,, P(M;, M,) is the probability that
both M, and M, are stable. By Lemma 2,
(3.20) P(My, M,) = [ (=, y) dxdy;
D
here

M(x,y) = [T [1 -z -5+ (1 Ay (x5 A 95)]
(i, ) EMS M
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and D = D(M,, M,) c C X C is defined by the additional conditions

(3.21) Xy = Yo» a &€,

¢ = €(M,, M,) being the set of cyclic vertices of the graph G = G(M,, M,);
for every circuit {i,,...,7,,} of G, either

(3.22) X > Vi Xiy <Yigroor % <Y,

or

(3.23) %, <Yips Xig > Vigroor Xy > Yy .

STEP 1. Introduce s = ¥;x;, s, = L,y,. Since the (i, j)th factor in II(x, y)
is at most 1 — (x;x; V y,5,) (a V b =4, max(a, b)),

(x,y) < exp(~ §s* + § Tx?) A exp( - 353 + 3 T7)
i i

< exp(gn —1(sV s*)z).

Also, the total number of ordered pairs of matchings (M,, M,) is
(n — D(n — D'— 1) = O(n"). Therefore,

I(x,y) dxdy = O(n" exp(in — 1n log?

M, M, DNfsVs, =n'/2log n}) (x y) X ay (n eXp(zn sn log n))
= O(exp(—3n log® n)).

Thus

(3.24) E(S,(S,-1)) = MZM fD I(x,y) dxdy + O(exp(— 3n log® n)),

where D, = D (M,, M,) is defined by
D, =Dn{sVs, <n'?logn).

StEP 2. Let 2v = 2v(M,, M,) stand for |€(M,, M,)|, the total length of all
circuits in G(M,, M,). Introduce v, = n®/* log n. We want to show that

(3.25) 3, =4 X fD II(x,y) dxdy = O(exp(—cn'/?logn)), ¢>0,

v=vy

that is [see (3.24)],

(3.26) E(S,(S,-1)= Y ]D M(x,y) dxdy + O(exp(—cn/? log n)).
v=v; 1
[The sums in (3.25) and (3.26) are over all pairs (M,, M,) such that
v(My, M,) > v, and v(M,, M,) < vy, respectively.] The bound (3.25) implies
that, with superpolynomially high probability, for every two stable matchings
A* and A**, at least n — 2v; = n — 2n®*log n members have the same
partners in .#* and .#**. Using this fact, we will be able later to replace
n — 2v; by an essentially best bound n — 2n'/2 log n.
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To prove (3.25), we first write

M(x,y) < exp(— Y [xmx vy — (A p) (x5 A y,-)])
{i, le MMy

(827) =< exp(— 5 [xi; + 35 = (5 A3 (5 A 9)] + L (s +y?))
i-1

iL#j

)

n
< exp(—%sz ~ 383 + 352 + 3 Y (27 +y?)
i=1
where s,, = L (x; A y;). Therefore, for (x,y) € D;,
M(x,y) < exp(3n/2log n)1(x,y),
3.38) (3,9 < expl )iz, )
I:I(x7y) “def exp(—és2 - %Si + %s?k*)

A crucial property of I is that, unlike II, it depends only on the sums, s, s,
and s,,. This and the nature of the conditions (3.21)-(3.23) make it obvious
that

n 2v
(3.29) J 1i(x,y) dxedy < 24@ [ Ti(x,y)| T1dx, [Tdyg|,
D, D* a=1 B=1 P

where u(G) is the total number of circuits in G, y, =g X, 2v + 1 < a < n,
and D* is such that

Ya2%,20, l<acx<v,
X, =2y,20, v+1l<acx<v,
x, >0, 2v+l<acx<n.

a =

It is possible to evaluate the last integral precisely.

To achieve this, introduce x' = {x/; 1 <a <n},y' ={y: 1 <a < 2v} x, =
Xy = Yo v+ 1<a<2y x),=x, otherwise; y, =y, —x,, 1 <a <v, y, =y,
v + 1 < a < 2v. In the new variables, D* is the cone of all nonnegative (x', y'),
and the Jacobian d(x,y)/d(x’, y) equals 1. Furthermore, a simple calculation
shows that

n 2v 2v
1 1.2 1,2 1
—38% — §5% + 5%, = “E( Yoxt Ly + Zyé)( by xl;)

a=1 a=1 a=1 B=v+1

So, using
m am

(3.30) f [Tdz;=—, a20,

220,Z7 1z;<aj=1 m:
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we have

. 1
Lﬁuunmh=UL$@gﬁ—ya+@+@f+@g
(3.31)

{z 1 5'2'_1 v 1
RN ORI R
where
v n 2v v 2v
§1= Zxa+ Z xa+ Z Yas §2= Zy:x’ §3= Z x:r‘
a=1 a=2v+1 a=v+1 a=1 a=v+1
Using exp(£,€3) = L5 056X /B! and a formula
m
| feXP[—-( Z§) }ljl(f;‘f d¢;)
(3.32) Osfi<m !

- 0/ Z<%+1)—Qu

[ay,...,a,, being integers such that X7 ,(a; + 1) is even], we finally get from
(3.30):

((v — 1+ k))?
((v = )N 40 kl(n + 2v + 2k — )1

(3.33) fD*fI(x,y) dxdy =

[A simple derivation of (3.32) is based on (3.30) and [ exp(—s2/2)s'ds =
(= DN, if I is odd.]

According to the last formula and (3.29), the value of [, 11 dx dy is bounded
by a number which depends only on v = v(G) and u = p,(G) the length of all
circuits in G and the total number of circuits in G, respectively. We also notice
that a given graph G [which is a collection of u disjoint circuits of even
lengths, and of total length 2v, plus (n — 2v)/2 isolated edges] gives rise to
exactly 2 ordered pairs (M, M,) such that G(M,, M,) = G, because for each
circuit there are two ways to assign its edges alternately to M, and to M,.
Keeping these facts in mind, and using (3.28), (3.29) and (3.33), we obtain

3, <exp(3n'/?logn) ), ( ) (n—2v— 1)”(222“}‘(21/,/.:,))

(3.34) vzvy a
X( Y s(n,v,k)),
k>0
where
(3.35) s(n,v, k) = (v =1+k))

((v = DD%kY(n + 20 + 2 — 1)1
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and f(2v, ) is the total number of ways to arrange a 2v-element set in u
disjoint circuits, each of even length. [( )(2n — 2v — 1! is the total number

of ways to choose n — 2v members out of n, and arrange them in pairs.] We
show in the Appendix that

(3.36) lin;((2v)!)_1 Y 2% f(2w,u) = e},

®
so, in particular,

(3.37) Y 224f(2v, 1) = O((2v)!).

Let us see what follows from the bound (3.34). First of all,
s(n,v,k+1) (v + k)?

3
if > 2
s(mv k) (krD(n+2st2k) 40 TR

so that

(3.38) Y s(n,v, k) = O(vmaxs(n,»,k)).
E>0 k<2v
Applying Stirling’s formula, we obtain: For & < 2v,
s(n,v,k) = O(exp(H(v,k))),
where
n
H(v,k) =< +v—2vlogv + 2(v + k)log(v + k) — klogk
2
(3.39) n
_(E +v+ k)log(n + 2v + 2k).

As a function of a continuous argument &, H(v, k) achleves its maximum at
the root % of the equation

(3.40) Hy(v,k) =2log(v +k) —logk — log(n + 2v + 2k) =0,
which is given by

(3.41) E=k(v) =V2[n/2+ m]‘l

<v%/n.
If v also varies continuously, then [by (3.39)-(3.41)]

d K = ’
EH(v,k(V)) =% (v, k) .

—2logv + 2log(v + k) — log(2n + 2v + 2%
52 (v + %) — log( )

log & — 2log v

kn
—logn + log(—z) < —logn.
14



1458 B. PITTEL
Since
H(0,0) = ~log~
( ) ) - 9 Ogn )

the inequality (3.42) and (3.38) imply that

(3.43) Y s(n,v, k) = o(n(%)n/zn-v), v 1.

k>0

Furthermore, according to (3.36),

(va)(n - 1)!1(§2Z“f(2v,u))

(3.44) 0((n - 1)!!V]:[1(n - 2j)) = O((n - n” exp(—-v—z))
Jj=0 n

0((%)“# log( —:2)).

Combining (3.34), (3.43) and (3.44), we conclude that, since v, = n%/*log n,

2
3, = O(n exp(3n'/?logn) Y, exp(—ljr—t—))

vy,

(3.45
) = O(n® exp(3n'/?log n ~ n'/?log® n))

= O(exp(—cn'/?logn)), Vec>0.
The relation (3.25) is established.

REMARK. The computation in (3.45) demonstrates that we had to choose v,
as large as we did in order to cancel this huge factor exp(3n!/2 log n), which
was obtained as an obvious bound for exp((3/2)L?_,(x? + y2)). Now that we
can concentrate on v < v,, it becomes possible to discard all (x, y)’s for which
this function exceeds exp(c log? n) (Step 3) and then to reduce the range of
dominant »’s to v < 4n'/? log n (Step 4). Conceptually, this kind of reasoning
resembles a bootstrapping technique which is used so effectively in asymptotic
analysis; see de Bruijn [5], and Graham, Knuth and Patashnik [9], for instance.

Step 3. Denoting ¢; = L7_v2, v=2x/s and ¢, = L'_ 0%, Uy =y/S4,
consider

=Y O(x,y)dxdy + Y, (x,y) dxdy.

v<v, "D1N{t; 23771 vsw, "D1N{t1,23n7Y
According to (3.27), on D,
II(x,y) < exp(3n'/?log n)(exp(~s2/2) A exp(—s% /2)).
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So (cf. Step 2),
3, < 2exp(3n'/?log n)

SZ (;/)(n -2 — 1)!1(§z2ﬂf(2v,u))

X

f exp(—s2/2) dx.
{t, =371}

Here, according to (3.44), the sum is of order
(n =1 ¥ n"=0((n — 1) exp(n®*log? n)).

As for the integral, by Lemma 3 it is bounded by
(n—2)! (n—2)”
(n -1 (n—l)"

[the exponential bound for the probability is based on (3.4) and Lemma 4;
compare with the bound (3.16)]. Thus,

3, = O(exp(n®“log® n — cn)),

which is exponentially small.
Consequently, (3.26) becomes

P(t,(L™) 2 3n71) = O( ), c>0;

(3.46) E(S,(S,-1) ¥ j H(x y) dxdy + O(exp(—cn'/?log n)),

v<v,

where D, = Dy(M;, M,) C D, is such that, in addition, ¢,,¢,, < 3n~!

StEP 4. For (x,y) € D,, the inequality (3.27) yields
(3.47) (x,y) < exp(9log? n)M(x,y).
Set v, = 4n'/? log n. Repeating verbatim the argument in Step 2,
b f O(x,y) dxdy = O(n exp(9log®n) ), exp(—v%/n)

v>v, "2 v=vy
= O(n® exp(—"7log®n)).
Thus [see (3.46)],
E(S,(8,-1)= Y [ M(x,y) dxdy + O(exp(—6log® n)).
V=V, D,
To repeat, D, is a subset of D such that
s,84 <n'2logn,

bt <3n71

vy =4n'?logn.
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StEP 5. As we shall see shortly, the dominant values of s, s, and v are all
of exact order n'/2, so that the bounds above are quite accurate. However, D,
is still too “thick” for sharp asymptotic evaluations. A subset Dj =
Dy(M,, M,) c D,, which will do the job, is defined by the following extra
conditions:

Y v, Y v, <n"12logdn,
ie€ ie€

(3.48) .
Yvh, Y vk <n3?log’n,
ie€ ie€

and (cf. the proof of Theorem 1, Step 2),
n n
2n" Y1 —-¢,) < Y v, Y vl <2n"Y1l+se,),
i=1 i=1

(349) 27'n"Y1-¢)< Y v, Y vl <2771 +g,),

J
(i, j}eM, (i, j}eM,

n n
Youd, Yout, <2578
i=1 =1

where ¢, =n~"/*log®n. _
Now, using (3.49) and 1I(x, y) < exp(—s2/2), we estimate (via Lemma 3)

II(x,y) dxdy
v <y D3N =(3.49)

Y n'(n - 1)!!) [ 349exp(—.<32/2) dx

v<vy —-(3.49)

- O(exp(9 log? n)(

= O(exp(9log® n + 4n'?log® n)(@; + Q; + Qs)).

Here
t(L™)
Q, =P 2T -1 >¢,],
to(L™)
Q2=P(‘m'_—1 -1{>¢,
and
ts(L™) 25
Q3_P( 24n3 ~ 24)

As we recall, @, is exponentially small. Arguing as in the derivation of (3.16)
[but with n~'/*log n in (8.15) being replaced by n~'/*log®/? n, which is still
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o(e, )], we obtain

Q: = O(exp(—c,;n'/?log® n)),  ¢; > 0.
Likewise,

Q; = O(exp(—cyn'/?log®n)), ¢, > 0.
Therefore,

I(x,y) dxdy = O(exp(—c3n'/? log® n)), cg>0.
v 2y " D30 =(3.49)

The same technique yields

II(x,y) dxdy = O(exp(—c,n'/*log® n)), ¢, >0.
v2vy Dy —(3.48)

Summarizing,

(3.50) E(S,(S,-1)= % jD I(x,y) dxdy + O(exp(—61log? n)).

V=vgy

REMARK. On the set D, the sums s, s, and s,, are all close to each
other, namely

(3.51) $/Sxx,Sx/Sxx =1+ 0(n"12log3 n).
STEP 6. Let us show that, uniformly over v < v,,

1/2 (’7'/‘3)n/2
n’(n — 1)1’
where u = u(G) is the number of circuits of the graph G = G(M,, M,).

(3.52) jD I(x,y) dxdy < (1 + o(1))2*(me/n)

To this end, we define z; = x; A y;, 1 <i < n, and write

H(x,y) = Il (l_xixj_yiyj+zij)
(i, YEMEAMS

< exp| — )y (% + 395 — 2:2;)
(3.53) [ G, jyeM{nMg ! ! !

2
-3 by (%;x; +y;5; — 2,2;)"| = exp(—3; — 2,).
{i, jyeMSnMs

Now

(SIS

L “i“j=%(ia,.)2—

(i, }eMs Mg i=1

i

i=1

- ) a;a; —- ( ) a;a; + > a;a;l,

{i,j}eM;NM, (i, }eM{nM, @i, j}eM,nM§



1462 B. PITTEL

and the total value of the two last sums is at most ¥, . ,a?, while

1 2 1 2 —
—EZGLS Z aiaj_ Z aiajSEZai, a—1,2.
ie€ G, }eM;nM, G, )eM, iet

Consequently,
3= 38%(1 =ty — 2t,) + 355(1 — t14 — 2¢54)
—%Si*(l —tigx — 2544) T 0( Z (xlz +yi2)),
i€t

where, by definition, #,, =t,(V,), fi4s = t,(Vss), Vsx = 2/545, a =1,2.
Using (3.48), (3.49) and (3.51), we obtain from the last relation that on D,

1 1 1 3
(3.54) 3, = 582 + 583‘ - -z—si* - E—};si* +O0(n~""*log* n).

Furthermore, 3, is obviously close to (1/2)L; ;x?x? = (1/4)XZ,;x?)?. A care-
ful check shows, via

(%;%; + .95 — zizj)2 < (2 + yzz)(sz + yf),

that
1 2
3, = —( b z?) +0(n™"*log" n)
4\,
4
s
(3.55) _ ”:2* +O0(n""*log®n) + O(n~*%1og" n)
S%x

2 +0(n"*logbn).

[We could have written (3/2n)s?, say, in (8.54) instead of (3/2n)s2,, and
—s*/n? instead of s%, /n? in (3.55). The benefits of our choice will become
clear shortly.]

Thus, from (3.53) it follows that

1 1
(x,y) < exp -——2-82 - Es?,, + Esi* + %si* - ?Si*

+0(n" 14 logsn)).

So, just like [1(x, y) in Step 2, the bound above depends only on the sums s, s,
and s,,, if we neglect the remainder term. Furthermore, in the notation of
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Step 2, (3.31), we have s,, = &, which is the promised benefit. Thus, simi-
larly to (8.29) and (8.31), neglecting the factor 1 + O(n~1/4 log® n),

[ N(x,y) dxdy
D,

1 3 1
(3.56) < 2#<G>[/fAexp[— S+ &+ E) + ol + ottt

-1 -1 -1
1 3 3

eI CES IS

! dgl d§2’ §3'

The set A, according to the definition of D, and the genesis of the variables
£1,€,, €5, is given by

0<¢,<n'2logn,
(3.57) 1

0< €s) é3 < 10g4 n.

Denote the corresponding integral by I,
Given ¢,, £, we estimate first

fmexp[— l(§1 +é+E)° + —3—§f - i&i‘] 17hdg,
(3.58) 0 2 2 2n n?

H(&y,65,63) = —3(& + & + §3)2 + nlogé;.

As a function of ¢, H is concave down, and it achieves its maximum at

1
=gl +4n)) (1 b+ )

(3.59)

1 n?
=vn - 3Tt gt O(n=22log' n).
A direct computation shows that
_ n n 1
H(Ey £2,60) = G108 ) = Vi (60 + &) = 7 (6 + £)°
+ O(n~'log' n).
Also,

_ n
Hgf)(§1,§2,§3) =—-1- ? = -2+0(n"2log*n),
1
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so (Laplace’s method) the integral in (3.58) is

(1 o@n exp(% + H(E,, 6, &))(%)1/2
(3.60) e y
=(1+0(1))(7) (_ exp[ \/—(524‘53) _(§2+§3)
Next,

f:/:exp[—ﬁ(sz T &) — M+ &)+ 8,637y e, dey
(361 = [ [Texp[ ~Vn (& + &) ~ 3£ ~ £)7] 8575 gy ay

- 2
< ([exp(—me)erae] = n (- 12
Thus [see (3.60)],

V2 (n/e)"”

. + o(1 _—
(3.62) <@+om)(T) " ST
and, by (3.56), the bound (3.52) follows.
This estimate and the formula (3.50) show that
E(Sn( Sn - 1))

V2 (n/e)"*

(3.63) <(1+°(1))( ) (-1

‘(222"]"(21/, ,u)) + O(exp(—6log? n)).

o

h n_"(zny)(n - 2v - 1!

V<1/

In view of (3.36), the last sum is asymptotic to

e l(n-—1It Y n7” n (n—2j)

v<vy

(8.64) =e}(n— 1) Y exp(—v?/n + O(vi/n?))

v<vy
=(1+o0(1))e Y(n - D)!(wn)"?/2,
(fee™*" dx = vV /2). Plugging (3.64) into (3.63), and using

U —r——

(
= (1 + O(—;))e(wn)_l/z(n )Wz) ;
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we conclude that
mn 1/2
(3.65) E(S,(S, - 1)) < (1+ 0(1))(4—e) .

REMARK. We should notice that the double integral (3.61) is, in fact,
asymptotic to n "((v — 1)!)?, since the integrand achieves its sharply pro-
nounced maximum at a point (£, £;) = (v — 1)/ Vn,(v — 1)/ Vn), for which
(¢, — £5)% = 0. Also, since v < 4n'/2log n,

§_2a §_3 < 4lOg n’
and [see (3.59)],

5—1 = 5_1(52,53) =Vn + 0(1084 n).

In view of the conditions (3.57), we can see then that I, is asymptotic to its
upper bound given in (3.62):

STeEP 7. The insight we have gained makes it relatively easy to demon-
strate that

mn\1/2
E(S.(8, - )= (1L +oW) 1)

as well. All we have to do is to confine ourselves to the summands, and the
integration domains, which we expect to contribute most to the value of
E(S,(S, — 1)), and then to estimate sharply their overall contribution.

Define v = n'2log*! n. For v_<v <v_, introduce D, = D,(M, M,), a
subset of D = D(M,, M,), such that, in addition,

4log3 n _
(3.66) xi,yiS(sn =def—__172_—i ].Slsn,
n
(367) ni/2(1 - en) < S0 =def Z X; < n1/2(1 + en)’ ('g= {(Ml’ MZ))y
e’

and, denoting u; = x,/8,, I € €°,

2n Y (1-¢,) < Y u?<2n7'(1+¢,),
e’

27In" Y1 -¢,) < Y wiu; <2 'n"H1+e,).

;=
{i,j}eM,NM,

Here ¢, = n"1/*log? n.
Using 1 — y = exp(—y — v2/2 + O(y?)), y - 0, and the condition (3.66),

we get
(i:l(xi Vyt)s) ”

=exp[—3; — 3, + O(log'® n/n)|;

I(x,y) = exp[—El -3,+0
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see (3.53) for the definition of the sums 3., 3,. Strengthening [via (3.66) and
(3.67)] the argument in Step 6, we obtain further that

I(x,y) = exp(3 + O(e,))(x,y),
fi(x,7) = exp(~3s* = $o + o)

[e'/2 is the asymptotic value of exp((8/2n)s% — (1/n?)sd)]. So, within the
factor 1 + O(e,),

n 2v
(3.68) [ M(x,y)dxdy = 2@ e [ Ti(x,y)| ITdx, [1dy),
D4 D" a=1 aﬁ=1 “

when D is such that

(3.69) 0,2y,=2%x,20, l<ac<v,
0,2x,2y,=>0, v+1<a=<2y,
(3.70) 8, >x,>0, 2v+1<a<n,

n
(8.71) n'?(1-¢,)<s,= Y. x;<nY%(1+s,),
i=2r+1

n
(3.72) 2nl(1-¢,) < Y ul<2n7Y(1+¢),
i=2v+1
(n+2v)/2
(873) 2771l -e,) < X wiltjnozyp<27'n7(1+s,),

i=2v+1

u; =x;/S9, 2v+ 1 <i < n. In the variables (x', y) (see Step 2), the conditions
(3.70) remain unchanged, while (3.69) becomes

6,=2x,>0, y, =0, x, +y,<86,, l<a<v,
6,>2y,=>0, x, >0, x,+y,<8,, v+1l<ax<v.
The latter are certainly satisfied if
0<x,, y,<6,/2, l<acx<v,
(3.74) 0<x,, %,<6,/2 v+1l<ac<?.

Let us further reduce the domain of integration, by requiring that

14 14
— — !
81 Zaet 2 Xi» Sg =aer 2 Vi < 2logn,
i=1

i=1
(3.75) 2 o
S3 =def Z xﬁ, S4 =def Z y; < 210g' n.
i=v+1 i=v+1

[In the notation of (3.31), s, = &,, s3 =&;.] Two important properties of
II(x, y) and the conditions (3.71)-(3.75) are straightforward.
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(a) T(x, y) depends on (x, y) only through the sums s;, 0 < i < 4, namely
[see the integrand in (3.31)]:

4 \2
fl(x,y) =exp[—%( Zsi) "‘3233]-
) i=0

(b) Each of the five groups of variables, {x;2v +1<i<n}l{x;1<i<v),
ys1<i<v){x;v+1<i<2v)and {yi;v + 1 <i < 2}, enters its own set
of the conditions.

So, using Lemma 3, we can assert that

—_—— 2
fDAl:Idxdyz f"-fexp[——;—(iéosi) +szs3]

SQy.--s 84
Py(s0)s572 71 ﬁ P(s;)si™!
(n—2v-1)! ;7 (v-1)!

Here s;, 0 <i < 4, satisfy (3.71) and (3.75); furthermore,

dsy --+ ds,).

Py(sy) = P( max LU <§, /s0;2n" (1 - £,)

l<j<n-2v 7

n—2v

< ¥ (L) <2n7 (1 +¢,);
Jj=1

(n—-2v)/2
27n7Y1-5,)< ¥ L&”'z”’Lﬁ’i'(f”_’zu)/z <27 Y1 +e,)|,
j=1

and
P(6) = P( max LY < 5,,/20).
l<j<v

[L{™(1 < j < m) are the lengths of m subintervals of [0, 1] induced by (m — 1)
random points.] Now, since n'/2log™! n < v < 4n'/2 log n, we have

) ]

8, n log®n

> =
2s;  4logn  n'/?

1 logl 1
_logn _ (2+0( og ogn)) ogv.
logn

14 14

Thus, by (3.19),

4
i]:IIP(si) =1-0(Y).

Analogously (see the proof of Theorem 1), Py(sy) = 1 uniformly over the
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integration domain, since

5, 2log®n

log n
> (1+¢,) "> er
So n n

and
n—2v=n(l+0(n""?logn))=n(1+o(z,)).

Consequently, within a factor approaching 1,

5
1

- N 1 :
Jp Tty = J . J GXP[_E(Z si) ' 8283]

1=0

4
sgT- (]_I v- 1) ds, ds, ds, ds,; ds,,

where
(3.76) n’?2(1 —¢,) <so<n?(1+sg,),
(3.77) 0<s;<2logn, 1=1,2,3,4.

The rest resembles the computations in Step 6. We write the integrand as

4
(sgli[[ls{l)exp[H(s)],

where

2 4

+ 8,8, +n'logs,+v ) logs;, (n' =n-2v)
i-1

4
H(s) =4 — %( Z S
i=0

is strictly concave down. Given that s;, i = 1,2,3,4, satisfy (3.77), as a
function of s,, H achieves its maximum at

2

1 0 4
§o=Vn' — -0+ —— +O0(n"%2log*n), 6= Y s,.
° 2" 8/ i-1

So,
’ ’

n n 1
H(5,s;, 85, 83,84) = Elog(:) —Vn'6 - 202 + 8,85 + O(n~'log* n)
and
(2)(30»31» S3,83,84) = =2+ 0(771_1/2 log n)

Besides, [n'/%(1 +¢,) — §,| is of order at least n!/%, = n'/*log* n, since
n'=nl + 0O@w/n)) =n(l + O(n"'%log n)). In other words, 3, is well within
the boundaries (3.76). With the help of concavity of H, we obtain then that the
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integral with respect to s, is asymptotic to

n\"7/2( 4 2 1/2
— s; 1|5, texp[ H#(s
(e) (1131 ! ) o exp[H( )]((—Hs(oz)(§o,sl,sz,s3,s4))
(3.78)
TA\/2( p'\"/2) 4 .
= | — J— - A
)% (iﬂsl )exp[ )],
where
4 4 2 4
H(S) =get — \/’7( Zsi) - %( Y5 | +sys5+v ) logs;.
i=1 i=1 i=1

In its turn, &# is also strictly concave down, and its maximum is attained at
§ = (5, 5,, 55, §,) such that

2v v \2
§1=§4 N 1—74'0(;) N

-2 o[

5 -—+0[l=] .

°3 Vn' n' (n’)

Since v <v,=n'?logn, n' = n — 2v, we see that 5, < (1 + o(1)logn, 1 <

i < 4, that is 5 satisfies the restriction (3.77), and the distance from 5 to the
boundary is of an exact order log n. After some work, we obtain that

< ?“v

Sg

14 V2 V3
H(§) = 4vlog(—) —2vlogn+ — + 0| = |,
e n n
that is, the remainder term is O(n~1/2 log® n). Besides,

14 n
[%’,’sj(s)]i’j=1 = - ;14 + 0(1)’

I, being the 4 X 4 identity matrix. We notice also that for every s on the

boundary of the 4-cube (3.77), lls — 5l is of order log™' n, at least, since

v=v_=n"?log"! n; so, (s — §)T#"(5)s — 5) is of order n'/2log=®n, at

least. Then, integrating (3.78) over s, s,, 53, s,, we can claim that within a

factor 1 + o(1),

(m/n)*(n'/e)""? n? ( v )4"n‘2" e”’/"(2m)?
(n' = DI((v — 1))* »* (n/v)?
[det[#"(5)] ~ (n/v)*]. Now, v! ~ (27v)/%(v/e)” and

fDAﬁ dxdy >

e

" 10\ /2 1/2 -n/2
() ) e

(n' = 1)! 27 e
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Hence, after massive cancellations,

[ Mdzdy>(1+ 0(1))%(%)_"/2n—u.

Then [see (3.68)],

e\1/2/n\-n/2
f I(x,y)dxdy > (1 + 0(1))2“(6)(—) (—) n”v,
D, 2 e

and we observe that this lower bound is asymptotic to the upper bound in
(3.52).
Thus, since v_/Vn — 0, v,/ Vn — », using (3.36) we come to

B(S.(5, - 1) = (1 +o)(5)  (2)

e

Vi

x ¥ n_”(znv)(n -2 — 1)!!(222#(2»,“))

n 1/2 v n 2
=(1+o(1))(—) f =2
e v_/yn
(mn/e)””
5 .

Taken together with (3.65), this finishes the proof of Theorem 2, since
E(S,) =0(1). O

=(1+0(1))

COROLLARY.
1/2

P(S,>1)>(1+ 0(1))( es)

Tn
The proof is immediate, based on Theorems 1 and 2, and the inequality
P(IX| > 0) > E*(1X|)/E(X?).

(The last relation is a direct consequence of Cauchy’s inequality.)

Consequently, if P(S, > 1) goes to 0, it does so quite reluctantly, not faster
than n~'/2 Considering how simple-minded our last argument is, we would
venture to guess that the true rate of convergence is slower, something of the
order n™%, o <1/2, or maybe even (log n)™*, p > 0. [Of course, a logical
possibility remains that P(S, > 1) is bounded away from 0.]

[A reviewer’s comment: “For a critical finite variance simple branching
process {Z, = the size of the nth generation}), E(Z,) =1, E(Z2) ~ Cn and
P(Z, > 1) ~ C,/n, so that the corollary could well be sharp.”’]
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4. Stable ranks. In this last section, we prove that the stable matchings,
when they exist, are likely to be well balanced, in a sense that in every stable
matching the partners are likely to be close to the top of each other’s
preference lists.

Here are the precise statements.

THEOREM 3. For a given stable matching # let £ (#') denote the largest
rank of a partner. Then, for every € > 0,

P(RAs.t. L(A)
<(l-¢)n"?logn)=1-0(e™), Vc<eAl/2,
(4.2) P(AAst. L(H#)>(1+¢e)n?logn)=1-0(n"°), Ve<e. -

[In (4.1), & < 1.] Consequently, -£(#) is asymptotic, in probability, to
n'/? log n, uniformly over all stable matchings #.

(4.1)

THEOREM 4. Let R(.#) denote the sum of the ranks of all partners in a
stable matching #. Then

(43) P(AAst. R(A)<(1—-¢e)n*?)=1-0(e"""), Vee(0,1)
for every
c< —log(l—¢) —e+¢2/2,
and
(44) P(AAst. R(A)>(1+e)n¥?)=1-0(e" "), Ve>0
for every
c< —log(l+e¢)+e+e%/2.

Consequently [the function f(2) =4 — log(1 + 2) + 2 + 22/2 > 0 forz > —1],
R(#) is asymptotic to n®/%, uniformly over all stable matchings #, with
exponentially high probability.

REMARK. So (see the Corollary), given that at least one stable matching
exists,
(1 —¢e)n'2logn < Z(AH),
(1 -e)n* 2?2 <R(A) < (1 +¢)n®?
with superpolynomially high probability, and
L(A) < (15 +¢)n"2logn
with probability > 1 — O(n™°), V ¢ < &, uniformly over all stable matchings.

Proor or THEOREM 3. The argument is based on the bounds
log n

Pl maxL{ < (1 - ¢) = O(exp(—-n°)), Ve<e,
J
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([22], Appendix) and
log n

(4.5) P(maxLﬁ-") > (1+e¢) ) =0(n"°, Vc<e.
J

[cf. (3.19)].
Consider, for instance, (4.2). For a stable matching .#, introduce X(.#) =4,
max; X; ) where m(i) is the corresponding matching function.

LEmMA 5. For every 6 > 0,

P,(5) =t P| B4 5.0 X() > (1+0) 1/:)=1—0(n_°), Ve<s.

Proor. First of all,

1—P(5)<(n—1)n[ II(x) dx,

max, x,>(1+6)log n/n'/?

where [see (3.5)]
H(x) < exp( 3824+ Y xf)
Second, the quantity

(n - 1)1!/ II(x) dx, where ¢, = i (x,/5)7,

t,=3/n

is O(e™*"), a > 0 (see Steps 1 and 2 in the proof of Theorem 1). So, neglecting
an exponentially small term,

1 6
— — " a2 —_
1-P,(5) < (n—1)! faxx>(1+8)logn/nl/2exp( 55 (1 n))dx.

m.

Fix 6, € (0,6), and break the integration domain into two parts, s > (1 +
8)n'/? and s < (1 + 8,)n'/2 The contribution of the first domain is at most

(n -1 1, 6\) .
(D) ™| 20 (1_5) s

— 1N 1 "
O( (('; 1))1 eXp(_En(l " 81)2)((1 o)) )
— 1N "
- 0( (n (’3 _(f)/!e) exp(—nf(51))) = O(exp(~nf(51))),

which is exponentially small. The second domain contributes at most (see
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Lemma 3)
(n -1 1, 6 1+6 logn
A ——s2[1 - = ]]sn1 Q)
(n_l)!foexp 23( n)s dstlaxLL 21+61 -
6\"/2 1+6 logn
= (1 - —) P| max L™ > .
n i 1+6; n

It remains to notice that, by (4.5), the probability factor is O(n~°), if
8 - 81

< .
“S 1+,

Clearly, ¢ can be made arbitrarily close to 6 if we choose §; > 0 sufficiently
small. O

To continue, let us choose & € (0, ¢). Recall that the variables X, are
independent and uniform [0, 1]. Using Chernoff’s bound for tails of the bino-
mial distribution [3], one can easily show that a fixed row of [ X;;] contains at
most (1 + £)n'/? log n entries not exceeding (1 + 8)log n/n'/?, with probabil-
ity > 1 — exp(—c,n'/? log n), for every c, such that

+ €

1
¢; < (1 + ¢&)log +6—e.

1+
Invoking Lemma 5, we obtain then

P@EAst. £(A) > (1 +e)n'/logn)
—0(n~) + P A st. L(A)
> (1+¢&)n'?logn, X(#) < (1 + 8)log n/n'/?)
= 0(n=°) + O(n exp(—c,n'/?log n))
=0(n™°).

(Recall that, by definition, X(.#) = max; X and

i, m(i)’
L(A) = maxl{j # i: X;; <X, p)l + 1.)
13

The relation (4.2) follows, since we can select § arbitrarily close to ¢, and ¢
arbitrarily close to 6. O

Finally, we have the following:
Proor oF THEOREM 4. We prove only (4.4), since the argument for (4.3) is

similar. Denote % = [(1 + £)n3/2]. We have obviously

P(3.#st. R(A) 27?,) <(n-1)NtY P,,
k>Fk
where P,, is the probability that the standard matching M, is stable and its
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total partners’ rank equals k. By Lemma 1 (2.2),

Y P, = f Y [# 1 11 (fifj +2x,%; + zo?ixj) dx
k>F C >k i, jleM§

< inf (z"_k
C z=1 G, jeMg

(%% + 22,%; + zaz,.xj)) dz,
(2™ increases with m, if z > 1). Now,
X;X; + 2w, X + 2%x; = 1+ (1 - 22)x;x; + (2 — 1)(x; + %),

so (“‘exponentiating” and using ¥,x2 < s)

- 1-2z -
| (-)sexp[ 32+3(2z—1+n—1(z—1))+(n—k)logz].
i, jyeMs 2

Applying then Lemma 3, we get

- (n =11«
P(3#st. R(A) 2 k) < (n_—ﬁfo inf (exp(# (2, 5))) ds,
where
H(z,8) = _ z32 +s5(2z2-1+n-1(z-1)) +(n—k)logz + (n — 1)log s.

As a function of z, /# is concave up, and has its absolute minimum at

i E-n
(4.6) z=m.

Let s, be the smaller root of the quadratic equation
s2—s(n+1)+k—n=0;

a simple computation shows that

k
sp=—+ 0(1) = (1 +&)n'2+ 0(1).
Define a function z(s) as follows:

z(s), ifs<sy,
if s > s;.

Clearly, z(s) = 1 for all s. So, we have a bound

-1 a
%L exp(h(s)) ds,

h(s) =t #(2(5),5).

@7 P(3Ast. R(A)2Ek) <



STABLE ROOMMATES 1475

(a) s > s,. Here
h(s) = —2s2+s+ (n—1)logs
and

n_(n
(4.8) lsga;xh(s) =h(sy) = Elog(—e—) — nf(e) + O(n'/?).

So, the contribution of these values of s to the bound in (4.7) is of order
O(exp(—nf(e) + O(n'/?2)).
(b) s < s;. Here, using (4.6),
2

B(s) = R (5) =a g — (5) + (B = n)

+(n —k)log 5 + (n — 1)logs,

s(n+1)—s

and it can be checked that A(s) is concave down for s < n’ V o < 3/4, and,
furthermore,

maxh(s) = h(sy), s,= % +0(1).

s<n?

Since fl"(s)_= O(n'/?) for s of order n'/?, we obtain then [via Taylor’s approxi-
mation of h(s;) (= h(s;) at s,]:

h(sy) = h(s;) — h"(8)(s, — 55)°/2 (3 lies between s, and s,)
= h(s;) + O(n'/?).
Invoking (4.8), we obtain that
(n— 1! 5 ) ) s
—————————(n 1/, exp(h(s)) ds = O(exp(—nf(e) + O(n ))),
too.

The proof of Theorem 4 is now complete. O

An interesting consequence of Theorem 3 is that for a “typical’’ instance of
the problem, we can greatly reduce all the preference lists, leaving in each
member’s list only the corresponding cn!/? log n top choices, and declaring the
remaining (n — 1 — cn!/? log n) options unacceptable to this member. If ¢ > 1,
then almost surely no stable matching will be lost.

APPENDIX

PropoSITION. Let f(2v, u) denote the total numbeér of ways to arrange a
2v-element set in w disjoint circuits, of even length each. Then

lim ((2v)!) "' T 2%f(2v,u) = e L.
voe "
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ProoF. Since u circuits can be oriented in 2* ways, g(2v, u) =4¢ 2*f2v, u)
is the total number of permutations of the set {1, 2, ..., 2v} with u cycles, each
of even length greater than or equal to 4. A general enumerative identity for
permutations with restricted cycle lengths (e.g., Sachkov [25]) implies that

h

Z —,( Y g(k, 1)z ) ~ exp(a(t)),

where
> ¥ 1 1
= — = —[1 —t%].
a(?) E’Z 2/ 2(0g1—t2 ¢ )
Therefore,
0 tk —t2
1

and the statement follows via a standard application of the Darboux formula
(Bender [1)).
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NOTE ADDED IN PROOF. Very recently, Rob Irving and I proved that
limsup P(S,, > 1) < e'/2/2 in “An upper bound for the solovability probabil-
ity of a random stable roommates instance’” submitted to Combinatorics,
Probability and Computing Journal.
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