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WEAK CONVERGENCE FOR REVERSIBLE RANDOM WALKS
IN A RANDOM ENVIRONMENT

By DANIEL BorviN

Ohio State University

Assign to each edge e of the square lattice Z2 a random bond conductiv-
ity c(e). If c(e) are stationary, ergodic and such that 0 <a <c(e) <b <
for all edges e, then there is a central limit theorem for the corresponding
reversible random walk on the lattice which holds for almost all environ-
ments.

1. Introduction. Let (7,: x € Z?2) be a given group of ergodic measure
preserving transformations of a probability space (Q, %, u), that is,

7.: Q - () is measurable for all x in 72,
pu(r,A) =u(A) forall Ain & andall x in 72,

= : 2
T, °T, =Ty, forallx,yinZ%

if r,A=A (up tonull sets) for some x # (0,0) then u(A) = Oor1.
Let ¢,(w) be two measurable functions such that
(1.1) 0<a<c(w)<b<w foralweQ,i=1,2.

For x in 72 the conductivity of the edge between x and x + e; is ¢,(7,w),
where e; = (1,0) and e, = (0, 1). We refer to w as an environment since each
w in O determines a conductivity for all edges of Z2.

Electrical networks and reversible random walks have long been known to
be related [see Doyle and Snell (1984)]. For w € Q) fixed, we consider a Markov
chain X, on 7Z2% X, =(0,0), whose transition probabilities p(w;x,y), are
given by

ci(wa) Ci(Tx—erw)
————— and p(w;x,x—¢)=—"7—,
() ¢(r,w)
where c(w) = ¢(w) + cy(@) + ¢y(7_, @) + cy(7_,, ). These random walks are
reversible since c(r,w)p(w; x,y) = c(r,w)p(w;y, x) for all adjacent vertices
x,y in 72 (i.e., |x; — y,| + lxy — ¥,/ = 1). And by Kolmogorov’s existence theo-
rem, these transition probabilities define a probability measure P, on (Z2)V.
The set of possible jumps will be denoted by A = {+e;, + e,} and for z in A we
abbreviate p(w; 0, z) by p(w; 2).

(1.2) p(w;x,x +e;) =
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1428 D. BOIVIN

In Kozlov (1985), a general framework for obtaining central limit theorems
for random walks in a random environment is described. In the case of
reversible random walks on Z¢, there is a 6 > 0 small enough so that if for all
z in A there is a constant p(z) such that |p(w; 2) — p(2)| < 8 n-a.e. and if (1.1)
holds, then n~'/2X, converges weakly to a normal law for w-almost all
environments.

The purpose of this paper is to show that in the two-dimensional case,
condition (1.1) is sufficient to obtain this CLT.

THEOREM 1. If (1.1) holds for some real numbers a, b then for p-a.a. w,
n~12X, converges weakly to a centered normal law with covariance matrix o
given in (4.6).

The main step of the proof is to show that the cocycle which is the solution
of Problem B has a moment of order strictly greater than 2.

The ellipticity condition (1.1) appears in Kozlov (1980), Papanicolaou and
Varadhan (1982) and Golden and Papanicolaou (1983). It was used to obtain a
CLT that holds in the mean for the continuous parameter case. The discrete
case is studied in Kiinneman (1983). Also related is Astrauskas (1989), where
different conditions are considered to obtain a CLT in the mean. In Lawler
(1982), there is a CLT for almost all environments for balanced walks. In that
case, there is no need for cocycles but the problem is to show the existence of
an invariant measure. In both cases however, a CLT for martingales is used.

SOME NOTATION. 0 = (0,0). For x = (x,, x,), lx| = (x? + x2)1/2,

For f: 72 - R, A, f(x) = f(x + ¢;) — f(x) and A% f(x) = f(x — e;) — f(x).
A% is the discrete Laplacian; A* = 1/4(A%A; + A%A,). For p, 1 <p < o, L (Z?)
is the space of functions f: Z2 - R such that || fll, = (X,If(x)IP)'/? is finite.
X, will always be a summation over all x in 72. The Fourler transform of f in

1(Z“’) is f(t) = L e f(x),t € T2 ={t =, t,): —7 <t <)

For 1 <p <, LP(Q) is the space (of equivalence classes) of measurable
functions f: Q — R such that [ fll, = (Jolf()I” du)*/? is finite. L (Q) is the
space of (essentially) bounded measurable functions f: Q — R. Often, we
consider 7,, x € 7%, as a linear isometry 7,: L, (Q) - L(Q), 1<p <
LY(Q) = {f in L,(Q): [o fdu = O}

"For f in L(Q), 9, f() = f(r, ) — f(w) and 3f(w) = f(r_, &) - f(w). &=
{fin L2 f=0,h for some A in L(Q)}. Because of the ergod1c1ty, & is dense
in LY, 1<p<oo L,={f=(fy, f): f; are in L,(Q)}. The norm on L,
Ifll, = C(ofil + Ilep) d,u,)l/” LS ={finL, [f, d/.L = 0} and E,, is the closed
subset of L9, E, = {f in LY: 4, f2 a, i) We note that

{f: f,=0,g forsome g in L,} is a dense subset of E,,, l<p <o,

There is a proof of this fact in Boivin and Derriennic (1991).
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2. L, theory of the discrete Laplacian.

ProBLEM A. Given h = (h}, hy) in L (Q), p > 2, find g = (g,,8,) in E,
such that X,0% g, = — X, 0Fh;.

For each h € L,(Q), Problem A has a unique solution; it is the element g in
E, such that

(2.1) Y [uigi= - ¥ [uh; forallu=(u,,u,)inE,,

which is a Hilbert space. This is a special case of the Lax—Milgram lemma. [See
for instance Gilbarg and Trudinger (1977), page 78.]
This defines a linear operator K: L, — E,. Then

(2.2) IKhll; < [hl; forallhin Ly(£).

To see why (2.2) holds, let g = Kh. Then by (1.5), there is a sequence u,, in L,
such that d;,u, — g, in L, norm as n — «. Then,

lgllolbllz > ~ X [g:h; dp = lim ~ ¥ [(du,)h; du
= lim — quna;"hidu

~ lim [u,( Lae,) du = lim T [(d,)g, du = gl

We can also write K as Kh = (K h, K,h), where K, are linear operators, K,:
L, - L)

Spitzer (1976) showed how some concepts for random walks are related to
classical potential theory. For example, the potential kernel a(x), x € 72, of
the simple symmetric random walk in the plane satisfies

(2.3) lim (a(x) — clnlx|) = constant.

|| — 00

The purpose of this section is to add one more fact to this analogy.

ProposiTiON. The operator K: L, —» E, is bounded for all p, 2 < p < ;
that is, there are finite constants v, that depend only on p such that

(2.4) Khl, < vy,lhll, forall hin L, andallp,2 <p < .

Before giving the proof, we recall some useful facts, first from Spitzer
(1976). The potential kernel a(x) is given by

1 1—cosr-@
o) = 42 sz 1-¢(0)

(2.5) de, «xe1?
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where ¢(6) = (cos 6, + cos 6,)/2 and we have the estimate

2.6 o 1 0 of*
. — < 1- < —.
(26) < 1-0(0) <
The important property of a(x) is

A2 — 1, if x = 0,
(2.7) Aa(x) {0, if x # 0.

The following discrete version of part of Theorem I1.2.2 of Stein (1970) will
also be useful. The proof is the same with obvious modifications and uses a
discrete version of Theorem 1.3.2, whose proof also holds with few changes.

LemMma. Let s: Z? - R be a function for which there is a constant B such
that

B B
(2.8) ls(x)| < P and |A;s(x)| < P Vx#0,i=1,2
x x :
and
(2.9) |§(¢)|<B a.e.onT?,
and for f: 7% - R with finite support, let
(2.10) Sf(x) =Y s(x—y)f(y), xe€Z2

yez?

C
(2.11) Then m{x: Sf(x) = A} < lef(x)l for all f with finite
support, where C is a constant that depends only on B.

Proor oF THE PROPOSITION. For A in &, let us set
(2.12) K,h(w) = Zki(y)h(fyw), hed&,i=1,2,
Yy

where k,(x) = (1/4)A%Aa(x).
A short calculation from (2.5) gives

1 cos x - 0 sin?(6,/2)

(2.13) ki(x) =~ [Tz T (o) do

For k4(x), we have

_ 1 cos x - 0 cos((e; — ey)/2 - 0)sin(6,/2)sin(0,/2)
ba(®) = =g ), 1-¢(0) @0
(2.14) N 1 j. sin x - 6 sin((e, — e3) /2 - 0)sin(6,/2)sin(0,/2) 20
4m? Jpe 1-¢(0)

= ky(x) + kYy(x).



CLT FOR REVERSIBLE RWRE 1431

Step 1. The first step will be to show that there is a positive constant B
such that for all x # (0, 0),

(2.15) |ky(x)] < Blxl™%,  |A;ky(x)| <Blxl™3, j=1,2,
(2.16) |ky(x)| < BlxI™%,  |A;ky(x)| <Blxl™3,  j=1,2,

(2.17) |ky(x)| < Blx| 2.

Both estimates in (2.15) follow from Theorem 1.6.5 of Lawler (1991). The
first one also follows from the calculations of Stéhr (1949). Similarly, if (2.17)
holds, (2.16) will also follow from Theorem 1.6.5 of Lawler. We will now show
in some detail how to obtain (2.17).

Assume x, > x4, > 0. Put

u(0) = sin b1~ 62 sin 5 sin %2 $(0) =(1-9¢) 'u
2 2 2 ¢
and
D ={6inT? |6, < wx;’ fori=1,2}.
Then
4m?ky(x) = [ sinx-0y(6)do + [ sinx-0y(6)do
TAD D
=1, +1,,
where
L] < f 51(6, — 02)6,8, - 8161 7* do
D
< 2fD|0I do < 2x73,
and
I = - + - —x7 ! cos x0y (0
! (faT? faT? fav, faV)( ! v (o)
] 92
+x7 2 sin xé)% + x7% cos xom do,

33
- f x73 cos xﬂ—% de
TAD a01
where dT? = {§ in T%: 0, = —}, dT2 = {6 in T2 9, = 7},
oV, ={0in D:6, = —wx;'} and 4D, = {0 in D: 8, = wx7?}.

Since ¢(m, 05) = Y(—m,8,), cos x(m, 8,) = cos x(—, 8,) and sin x(, 8,) =
sin x(—r, 6,), the difference of the first two integrals is 0. From the expres-
sions for the derivatives, we see that |0"¢/06}| < 8"|0,*"', n = 0,1, 2. Hence
the third and fourth integrals are bounded by 16x; 3.

’
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It remains to show that [yz, ; cos x0(3°)/367) d@ is bounded in x; > x, > 0

B3y _, Pu ] _, %u 92 1
Ez(l_‘P) 5@+3551‘(1—¢) 5@4‘35@(1—4’) 2,
33
+uaﬁu—¢yﬁ
A calculation of these derivatives shows that
3 2
(1-¢)" %} aaTl(l —e)" ‘2,7'2 + 2%
a2 _, du 8630, 62 20,0, 46%03
A Ea:‘( oF +W‘W‘W)
and .
93 1 120%20,(0, — 6,)  24(6, — 0,)6016,
ugﬁ(l -—9) - ( 0[° - T )

are integrable over T2.

Now if f(6) is any of these rational functions, [y, pcos x6f(6)d6 is
bounded in x; > x, > 0. The calculations are similar in all cases. For example,
for f(6) = 6,0,/101%,

fﬂ fcos x0f(0)do = —4fva sin x,0, sin x40, f(0) d6, d0,,
—a’d 0 “mrxgt
where

J=|-m —mxrt) U(masl, 7,

= 2[ j’wxfl sin x,0, sin x50, f(gl + ”xfl,oz) de, de,
0“0

T fr—mxyl . . _
i 2'/;) '[ K s xlol sin x202( f(01 + mxy 1702) - f(e))dﬂl d02

wag!

- 2/0 f 1sin x,0, sin x,0, f(0) d6, d6,

T—TX]
= I} + I + I,

where

I < 2[(:[0’”‘1'1|(491 +mat,6,)| 70 do, do,

< ‘rrfﬂxl_l(Ol + ‘rrxl_l)_1 do, =wIn2,
0
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and similarly for I3:

) < zfovf”j:”‘fw £(8, + w71, 6,) — £(8)| d6, d6,
TX]

< 2mayt [T [TTT5 510172 do, db,

0 Yt

< 27t fozﬂf;;_ﬁp_z dpda

< 207 a7 Y (x, — 1) < 20

SteP 2. Using these estimates, we can see why the series (2.12) converges
in norm for h in &. Let h(w) = h(7, @) — ho(w) for some A in L. (Q). Then

K h(0) = ¥ ki(y)h(r,0)

[-n,n]?

Z ki(y _61)ho(7yw)

(n+1X[—n,n]

(2.18)
+ )> Ak(y)ho(Tyw)

[-n+1,n]X[-n,n]

- L k(y)ho(r,0).
(—n)X[—-n,n]
And, ||IK; ,h — K, ,hll, < Cllholl(f2, ds/(n? + s?) + [™, ds/(m* + s?) +
wam‘/z_"dp/p2) which converges to 0 as n > m — », 1 <p < o,
For h in &, we also have that 9, K,h = d,K,h and, by (2.7),

(2.19) FEK h + BKh = Y A%Aja(y)h(1,0) = —dFh,
y

that is,

(2.20) (K\h, Kyh) = K(h,0) forall hiné&,i=1,2.

SteP 3. First we show that £(6) is essentially bounded in T2 \ {|6] > 1,10},
where k(x) is k,(x) or k,(x). For all z in 72, (1 — €' 2)k(9) = T, e *(k(x) —
k(x — z)). If 6, < 0, take z = e,, and if 0, > 0, take z = —e,; then |£(8)| <
SUP; /10 <o, < |1 — €% 'Z, B/Ix|> which is finite.
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Now if |6] < 1/10, write

(1 - e2)k(0) = lim Y e E(k(x) — k(x —2))

B=ol 011 <R
+ Y eR(x—2) - Y efTR(x - z))
lx—z| <6 ! lx—z| =161
lx| =161 "! lx|<l6]™*

+( Y, efTk(x—2)— Y e%h(x - z))
lx—z| <R lx—z| >R

lx|=R x| <R
=SI,R +S2 +S3,R‘

For |8] < 1/10, choose a vertex z = 2(8) in Z2 such that |z — 6/3/6/%| <
1. Then

IS gl < 9[l°;|—1(B|z|/p3)p dp = 4B|z| 6],
1Sl < 9J 5 5(B/p%)p dp + 9% /2(Bp /p?) dp

and
IS5, &l < 9/2%(B/p?)p dp for R > lz|.
Therefore ess sup,,,|<1/10|k(0)| < Csup; 3<;<151 — el ~! which is finite.

STEP 4. Define the operators S; for f: Z2 - R with finite support by
S; f(x) = Zk(x —y)f(y), i =1,2. Since k,(x) satisfy (2.9) and (2.10), by
(2.12),

C
(2.21) mfx:|S; f(x)| > A} < xllflll.

To transfer this inequality to the operators K »fixA>0andfor f: Q - R
and for any positive integer L, define

f(r,0), ifxe[-L,LJ,
X =
fo. (%) 0, otherwise.

If fisin &, by (2.18), there is an integer N such that |S;f, ,(x) -
K, f(r,®)] < A/3 whenever x + [-N, NP c[-L,L]? For fin & and A > 0
ﬁxed put

E= {w: lIflf(w)l > )t},
A(0) = {x:7,0 € E,x e [-L,LT?},

A 2
B(w) = {x: |Sf,, ()] > 3 %€ [—L?L] }
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Then

m(A(w)) < m(B(w)) + 4NL < %ufw,ﬂh + 4NL

and

Jm(A(@)de= [ ¥ Ip(re)du = (2L + 1)’u(E).
[-L,L1?

Combine these two facts, divide by L? and let L — « to obtain

3 c
(2.22) wlo: | f(w)] > 2} < ~Iflh forall fin&, A > 0.

Step 5. In Steps 3 and 4, we showed that K, are linear operators of
weak-type (1,1) and (2,2). Therefore, by the interpolation theorem [Stein
(1970)], there are finite constants vy, such that 1K, Rll, < Yollhllp, 1 <p <2,
for all A in &.

But 7, are measure preserving, k,(y) = k,(—y) and therefore, we see from
(2.18) that [o(K,h)udu = [oh(K,u)du for all A and u in &. Now fix p > 2
andlet ¢ =p/(p — 1), 1 < g < 2. Then, for any A in &,

K. hll, = sup = sup

K.h)u h(K,u
llullg<1 f( ' ) llullg<1 fQ ( ' )

ued ued

Equation (2.17) implies that k(x) € L{(Z?) and hence K}, the operator
induced by £%(x) on &, is bounded for all p, 1 < p < ». But K > is self-adjoint
since ky(y) = k,(—y) and since K, is bounded for p, 1 <p < 2, K} is also
bounded. Therefore the same reasoning applies to show that K} is also
bounded for p, 2 < p < » and hence, so is K,.

Because of (2.20), the density of & in L° and the fact that K(k,,0) = (0, 0)
if A is constant, the proposition is proved for the case h, = 0. Similar
calculations can be done if h = (0, 2,) and by linearity, the proof is complete.

O

< ylAll,.

To obtain a useful corollary, fix a number r > 2 and combine the proposi-
tion with (2.2) by the interpolation theorem of Riesz [Stein and Weiss (1971),
Chapter V, Theorem 1.3]

COROLLARY 1. Let r > p > 2, then |Khl||, < y//¢~2>-2/I|||,.

3. The potential differences are in L, for some p > 2. Although
this section follows the proof of Meyers’ theorem as it is found in Giaquinta
(1983), we give details because it shows why the condition of the smallness of
fluctuations of Kozlov (1985) is not necessary for the proof of the CLT for the
two-dimensional random walks.
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ProBLEM B. Find f = (f}, f;) in E, such that
(3.1) 01 (ci(@) (1 + £1(0))) + T (ex(@) fo()) = 0 ace.

Again, the existence and unicity of the solution follow from the Lax-
Milgram lemma.

THEOREM 2. There exists p, > 2 such that f = (fy, fy), the solution of
Problem B, is in E,

ProBLEM C. Given u in E,, find w in E, such that
a7cy

b

(3.2) S 0w, = Eiag"((l - %)u) -

By the Lax—Milgram lemma, this problem has a unique solution for every u
in E,. This defines an operator S: E, — E,, where Su = w.

Proor oF THEOREM 2. First, we show that S: E, —» E for any p > 2. Let
w = Su, g =K(c,/b,0) and hence g — w = Kh, where h;, =(1 —¢;/bu;.
Then, by the proposition, [wll, < ligl, + llg — wll, < v,/blle)ll, + 1 —
a/b)all,.

The second step is to show that for some p, > 2, there is a number g,
0 <B <1, such that [|Su - Su'll,, < Blu — Wll,, for all u,u’ in E,. By
Corollary 1,

a
||Su — Su’II,, < .yﬁr/(r—Z))((p—Z)/p)(l — .g)"u _ '||p

and therefore if p, is close to 2, we can find a constant 8 < 1.
Therefore the map S has a ﬁxed point in E,, [see, for instance, Gilbarg and
Trudinger (1977), page 69] and it is also the solutlon of Problem B. O

Let f be the solution of Problem B. Define a function F: Q X 72 - R by
(33) F(w,O) =0, F(w,ei) =fi(w)’
(3.4) F(o,x+y) =F(o,x) + F(1,0,y), x,y€Z%
Because 9, f, = d,f;, the value of F(w,x) obtained by (3.3) and (3.4) is
independent of the path from 0 to x chosen.

In the terminology of ergodic theory, a function which satisfies (3.4) is called

a cocycle. Therefore, if we combine Theorem 2 and the ergodic theorem for
cocycles [Boivin and Derriennic (1991)], we obtain the following corollary.

COROLLARY 2. Let F(w, x) be the cocycle defined by (3.3) and (3.4). Then
x| " 'F(w,x) = 0 a.e. as |x| = c.

Let V(w, x) = x; + F(w, x). Then V(w, x) is also a cocycle. It is a discrete
version of the potential function introduced in Papanicolaou and Varadhan
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(1982). In this formulation of the electrostatic problem, v(r, @) = 1 + f(7,0)
and vy(7,0) = fy(w) can be interpreted as the potential difference between x
and x + e;. Corollary 2 states that |x| ~(V(w, x) — x,) = 0 a.e. as |x| > .

4. Proof of Theorem 1. We can now follow the arguments of Kozlov
(1985) to complete the proof of this CLT. To keep the notation compatible with
the original references, ¢ and ¢ will now be used differently than they were in
Section 2; they will be functions on Q X A.

StEP 1 (Problem B'). Find g = (g;, &) in E, such that

9% (cy(w)g1(w)) + 05 (ca(@)(1 + gy(w))) =0 ace.

This problem also has a unique solution in E, for some p, > 2. With f the
solution of Problem B and g the solution of Problem B, we construct the
cocycle F: Q x 72 — R? by

(4.1) F(0,0) =0, F(o,e¢) = (fi(0),8()),
(4.2) F(ow,x +y) = F(w,x) + F(r,0,y) forall x,y € 72.

For a fixed environment w € Q, let &, be the o-algebra generated by
X,,..., X,. Then

(4.3) P, =X,+F(X,), n>1,9,=0
is a martingale with respect to P, and <&,. It can also be written as

zj=Xj+1_Xj, wj=TX1(l),

o(w,2) =2z +h,(w),
where h, = (f(w), g(w)) and h_, (o) = (—f(7_, 0), —g{7_, »)).

Step 2. The Markov chain {(wj, z;)} with state space (1 X A and initial
distribution p(w;z)c(w) is stationary and ergodic. The transition operator
of the chain is Qf(w, 2) = L, ,p(r,0;y)f(r,0,y) for fe L(Q X A),
Q*f(w,2) = plw; L, c , f(r_,0,y) and hence [oX, \Qf(w,2)g(w,2)dp =
JaX,en f(0,2)Q@*g(w,2)du for all f,g € LLO X A).

Let g(w,2) = p(w;2)c(w). Then @*g = g by (1.2). This implies that the
chain is stationary.

To show the ergodicity, suppose Qf =f for some fe€ L(Q X A). Put
g(w) = f(r_,w, 2), which is independent of z € A since f(7_,w,2) =
L,caf(o, Y)p(w; y). Then f(w,2) = g(r,w), z € A, and g(w) =
Lyea flo, y)plw; y) = ng(w) where @; is the transition operator of
the chain {w;}. That is, for h € L(Q), Q,h(w) = T, ,p(w;y)h(r,») and

Qi h(w) = ZyeAp(r_yw;y)h(T_yw).
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But

fn T c(w)p(w;5)(g(ry0) - g(@))’ du

yEA

= fn§C(T-yw)p(r_yw;y)gz(w)#(dw)
—2f Ye(w)p(w;¥)8%(w)u(dw)
QA
+[ Te(@)p(0:9)g%(0)u(dw) since Qug = g
QA

= [Qic(0)g*(@)n(do) = [ c(0)g*(w)n(dw) = 0.
And by (1.1) and the ergodicity of 7,, ¥ # 0, g, and hence f, are constant.

SteP 3. It is now possible to show that for each ¢ in R?, the martingale ¢®,
satisfies the conditions of the CLT of Brown (1971), that is, for u-a.a. environ-
ments,

(4.4) $,2V,2 > 1 in probability as n — o,

where V.2 = ¥"_  E(oX(w;_1,2;_))lg;_,), s2 = E V2, E, is the integration with
respect to P, and ¢, = ¢ - ¢, and

(4.5) 3;2 E Ew[‘ptz(wj—l’zj—l)I(|¢t(wj—1’zj—1)| = 3|3n|)] -0
j=1

in probability as n — o for all ¢ > 0. [I(A) is the indicator function of the set
Al
By the ergodic theorem and Step 2,

nTWVE=n"t T g(0,10) = [U(e)e(e)u(do)  c(w)unP,-ae.
j=1 @
as n — «, (where y(w) = ZyeAfptZ(w, YIp(w; y)).
Equation (4.4) follows after applying Fubini’s theorem and (1.1).
Similarly, for every real number [,

n
n~t .Elgptz(wj—l’ zj—l)I(I‘Pt(“’j—l’zj—l)I = gl)
e

- fn§¢t2(w,z)1(|¢t(w,z)| > el)p(w; z)c(w)p(dw)

cuP,-ae. as n > ». And by Fubini’s theorem, (1.1) and because [s,| — « as
n — o and ¢,-,2) € L, for all z in A, (4.5) follows.

Therefore for u-a.a. w and for all ¢ with ¢, and ¢, rational, n= /% - &,
converges weakly to a normal law with mean 0 and hence n~/2®, converges



CLT FOR REVERSIBLE RWRE 1439

weakly to a normal law with mean 0 and covariance matrix

(4.6) a'ij=fn§<pi(w,z)<pj(w,z)p(w;z)c(w)p,(dw) i=1,2.

StEP 4. Fix w (in the set of measure one for which (4.6) and Corollary 2
are true). Then for § > 0 fixed, there is a number R(8) such that |[F(x)| < 8|x|
for all x, |x| > R(5).

Put M(8) = sup,,, < pes) F(2)I:

|F(X,)| =|F(®, - F(X,))]

IA

max(8|®,| + 8| F(X,)|, M(3))

)
—|D .
Smax(1_6| ., M(5)

But by (4.6), P,(6(1 — 8) 'n~V2|®,|) > ¢ > P,(N(©0,0%) > (1 —6)6 %) as n
— oo forall§ > 0. Therefore P, (n-1/2|®, — X,| >¢) =P (n"2|F(X,)| > &) > 0
asn - xoforale>0 O
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