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AN ORDERED PHASE WITH SLOW DECAY OF
CORRELATIONS IN CONTINUUM 1 /r? ISING MODELS

By Luiz RENaTO G. FonTES!

Instituto de Matemdtica e Estatistica

For continuum 1/r2 Ising models, we prove that the critical value of
the long range coupling constant (inverse temperature), above which an
ordered phase occurs (for strong short range cutoff), is exactly 1. This leads
to a proof of the existence of an ordered phase with slow decay of correla-
tions. Our arguments involve comparisons between continuum and discrete
Ising models, including (quenched and annealed) site diluted models, which
may be of independent interest.

1. Introduction. The model to be discussed below is an Ising model in
one dimension with long range, translation invariant, ferromagnetic pair
interaction. However, unlike the usual case, its configurations are +1 valued
functions on the real line R rather than on the discrete one dimensional
lattice Z. Thus, it is a continuous time stochastic process, to be more precisely
defined in the next section.

Such a process, which is called the continuum Ising model, arises in the
study of a quantum mechanical model of the motion of a particle subjected to a
field. The quantum mechanical energy operator, known as the spin-boson
Hamiltonian for this model, can be analysed by Feynman-Kac techniques,
leading to the reexpression of quantities related to the quantum model in
terms of continuum Ising quantities (see [11], [8] and [10]).

Two parameters, a and ¢, and a function W enter the model. The parameter
a is the long range coupling constant which can also be interpreted as the
inverse temperature; ¢ can be related to the inverse of the short range
coupling strength. W = W(r) is defined on [0, ©), nonnegative and decays at
infinity as 1/r2.

In previous work ([11] and [10]), the case of 1/r2 long range interactions
(corresponding to the ohmic case of the quantum model) has been studied
with, among other results, the following rigorous description of the phase
diagram (Theorem 2 in [10]). For @ < 1 and any £ > 0, the model shows no
spontaneous magnetization, whereas if o > 2, then for small ¢ (large short
range coupling force), there is spontaneous magnetization.

The strategy applied to get these results is to use the FK representation of
the Ising model, which in the continuum case leads to a continuum bond
percolation model, and then adapt the results existing for the discrete FK
model, obtained in [2], [9] and [1].
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Here, we establish the existence of long range order (in the strong form
known as long long range order, which implies spontaneous magnetization)
for o > 1, thus closing a gap in the phase picture.

Indeed, what we do is establish a comparison between the continuum model
and the discrete 1/r? Ising model at inverse temperature «, and nearest
neighbor coupling J,, with a, close to a and J, large when ¢ is small. We
then quote the results for the discrete model obtained in [6].

As in the discrete case, long long range order for a > 1 leads to the
existence of an intermediate phase (at least for 1 < a < 2) with slow decay of
correlations. Here, we prove lower bounds for the decay of the truncated
two-point function in the ordered phase. In the disordered phase, lower and
upper bounds for the two-point function were obtained in [10].

Upper bounds in the ordered phase remain to be obtained for the contin-
uum model, unlike for the discrete case, for which they were derived in [6].

Our results are stated and proved in the next 5 sections, one for the
description of the model and statement of results, one for each of three steps of
the comparison with the discrete model and the last one for the lower bounds
on the truncated two-point function.

2. The model. For T positive, let (), be the space of functions o, defined
in the interval [— T, T'] and taking values in {— 1, + 1}, which have only a finite
number of flips (and are right continuous, say). (), is the set of configurations
of the continuum system.

Let P/, be the measure on Q; such that the flip points form a Poisson
process with rate ¢ > 0 and o_;, equals +1 or —1 with equal probabilities
(free boundary conditions). P, will denote the measure on Q. such that the
flips form a Poisson process in [T, T] with rate &, conditioned on having
only an even number of flips in [T, T], and starting at +1 (i.e, o_, = +1),
which corresponds to plus boundary conditions.

Now, let W(¢) be a nonnegative bounded (piecewise) continuous function
decaying like 1/¢% at infinity, that is, £2W(¢) —» 1, as ¢ — ». It defines the
continuum ferromagnetic couplings and will be kept fixed throughout.

The finite volume continuum Ising measures with free and plus boundary
conditions are defined as follows:

1 .
(2.1) dpr(o) = Z—;dP;'fT(G)eXp‘“H @,
where * = f or +, and

(2.2) H(o) = —%[_TTf_TTW(u — sl)o,0, dtds,

(2.3) H*(o) = H'(o) - %fR\[_T T]f_TTW(h: — sl)o, dtds

are the Hamiltonians and Z} is a normalizing constant.
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We denote by p* the infinite volume limit (T — «) of p# (which exists by
standard arguments) and by ¢ - Y* and ( - )} the expectations w.r.t. p* and
p%, respectively.

DEerFINITION 2.1.  For given a and ¢ long long range order is said to occur if
there are positive constants v and w such that for all T > 0,

(000 )h = v? forall It| < uT.

Let M denote the spontaneous magnetization of ¢ - ), that is,
M=oy,
and G7(¢) its truncated two-point function, that is,
GT(¢) = (opo,) " — M2

We now state the main results.

THEOREM 1. If a > 1, then long long range order occurs for & small
enough.

THEOREM 2. If for given a and ¢ long long range order occurs, then, for
any 8 > 0, there exists some C > 0 so that

(2.4) GT(t) = C/It1” forallt > 1,
where y = min(1, ¢ — 1 + §).

Our proof of Theorem 1 will rely on a comparison between the continuum
model and an ordinary 1/r2 discrete Ising model at a slightly bigger tempera-
ture (for ¢ small), in such a way that the correlations of the former are bigger
than those of the latter. We then quote the corresponding discrete result to get
the continuum one. The comparison to the discrete model will be carried out in
three steps, one in each of the next three sections. We describe them briefly
now.

Previous attempts at proving the occurrence of spontaneous magnetization
in the continuum model for 1 < @ < 2 were based on either using the sequence
of discrete Ising models approximating the continuum one (see the beginning
of next section), which met the difficulty of conflicting limits of the couplings
(of the discrete models) in short and medium distances (the nearest neighbor
ones going to infinity while the medium distance ones go to 0), or by discretiz-
ing the a priori measure Pe'f r together with the interaction function W. In the
latter process too much coupling at short distances is lost, so that a compari-
son with a discrete 1/r? Ising model is obtained, but not with o (the discrete
model nearest neighbor interaction) as large as needed.

Our approach is the following. Consider the free b.c. Ising measure. In
Section 3, we modify the model by partitioning [T, T'] into intervals I,,
k=-K,-K+1,...,K— 1, oflength L = T/K. We then consider the model
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obtained similarly as the continuum Ising model, but with Ps'f r(a) replaced by
I1,P*(o),), where o, is a continuum configuration in I, and P® is a
measure similar to Psf r>» but on configurations restricted to I,. Since the
(positive) couplings among intervals existing (implicitly) in the original a priori
measure are not present in the product (independent) one, the correlations of
the original model are bigger.

We then identify the modified model as a sort of annealed site diluted Ising
model. The dilution variables are indicators of nonoccurrence of flips of o;, in
the intervals I, (subjected to an independent coin tossing; see the precise
meaning below). We establish the identification by conditioning on these
variables.

We derive in Section 4 a correlation inequality between this model and an
ordinary discrete quenched site diluted Ising model, using the GKS and
Harris-FKG inequalities, showing that the correlations of the latter are
smaller. The interactions for the quenched model will be given by J, ;=
J1,/y W(|t — s|) d¢ ds and the dilution by a family of Bernoulli random variables
(A,,) with mean 1 — O(e) (A, = 0 means the site i is diluted). \

Now, the correlation of the quenched model is the expected value of the
(random) correlation obtained from the (random) configuration of the A,’s, so
we would like to establish some sort of convexity of this random correlation (as
a function of the configuration in [0, 1]2X of the A,’s) in order to apply Jensen’s
inequality. In Section 5 this is done by first lowering the A,’s somewhat (by
replacing them by n(A,), with 0 < n(x) < x, n(x) = 1 as x — 1, which lowers
the correlations). Applying Jensen’s and the previous inequalities, we then
have that the continuum Ising correlations are bigger than those of a (nonran-
dom) discrete Ising model with inverse temperature a, = [7(1 — O(¢)))2%« and
interactions given by J; ; above. Notice that this is a 1/r% model whose nearest
neighbor coupling tends to infinity as L gets large. So, by starting with a > 1,
L large and ¢ small enough, the conditions for applying the discrete result will
be satisfied (see below) and we get the continuum model by the comparison
inequalities.

The arguments for proving Theorem 2, to be presented in the Section 6, are
essentially those for the discrete case with a few modifications to account for
the extra randomness of the continuum system.

3. Comparison to an annealed site-diluted model. We begin this
section by representing the continuum Ising measure (2.1) introduced in the
last section as a weak limit of discrete Ising measures. (This is a well known
result, the arguments for which we sketch here for completeness.) This
representation is then used to derive a comparison between the continuum
model and a sort of annealed site diluted Ising model.

Consider a discrete Ising model on the lattice A = §Z, where Z is the set of

integers and § is a positive number, with interactions o, ;j given by
J',i+3=%|10g86|’ 1 EA,

12

J;=ad?W(i—j), i, jeAli—jl>8
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and Hamiltonian
(3.1) HS(O') = _% ZJLJULO:]'

The finite volume (in [T, T']) Ising measure so defined is denoted by v} ,
and its expectation by ( - >T s, * =f, +, where the appropriate boundary
conditions are used.

We make the discrete configurations into continuum ones by setting o, = o,
for t €[i,i + 8),i € A. If A is a set of (distinct) points {¢,,...,¢,} in [T, T],
let o, denote the product 7,0, .

We can write H, as the sum H" + H®, where

HP(0) = -1 T J,00,
li—jl=8
HP®(o) = -3 L J;00;.

ijY%
li—jl>é

Notice that H{®(o) > H*(c) as 6 — 0, with H* the Hamiltonian of the
continuum system given by (2.2) and (2.3). Also, the measure

— 5O, .
e 7@ x counting measure

normalization

is that of a Markov chain which, as § — 0, converges weakly to the Poisson
measure P’ enterlng into the continuum Is1ng measure (2.1).

It follows that vy s converges weakly to p% as 8 — 0. In particular, (g, )% s
- (o) as § > 0.

From now on, we write H'(o) as H(o).

For K, N positive integers, let L =T/K and 6 = L/N. Consider the
discrete Ising model in A with interactions given by

Jii=4d;

ijo
for |i — jI > & and for |i — j| = §, but i # kL, and given by
Jirrp+s = 0,
for k € {-K,..., K}. Denote it by v’/ [ and its expectations by ¢ - )T 5. Since
Jij=dJd5 Vi J, we have by the GKS 1nequa11t1es (see [4] and [7]) that

(3.2) (o) b5 > (o7}

Now, as N — o, the measures vy’ [ converge weakly to the measure
1 K-1

(3.3) dpp /(o) = e *H@ TT dP®(a,),
A k=-K

where H is given by (2.2), o, is a continuum configuration in the interval
I, =[kL,(k + 1)L) and P is the measure in the set of those configurations
such that the flips form a Poisson process of rate ¢ and the initial distribution
assigns equal probabilities to +1. (By an abuse of notation, we will omit the
superscript from P from now on.)
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Denote expectations w.r.t. (3.3) by ¢ - ) (the dependence on T is omitted).
From (3.2) we conclude that

(3.4) (o 0k = (ayy.

(Concerning the preceding discussion, see also [11].)
Now, let N; denote the number of jumps of o; in the interval I,. We can
write the measure P as

dP(0;) = dP(a;IN; = 0)P(N, = 0) + dP(c;IN, > 0)P(N; > 0)
= (1 -¢)dPy(c;) + ¢ dP(a)),

where
dPy(0;) = dP(q;IN; = 0) = 3(8_1(;) + 8:(a;)),
dP(a;) = dP(c;IN; > 0),
¢ =1 — e L is approximately ¢L as ¢ | 0 and 8,(-) is the Dirac delta measure

at the constant function u.
We rewrite P further as

dP(0;) = (1 — 2¢') dPy(0;) + 2¢' dPy(0;),

where P, = (1/2X P, + P), and ¢ is so small that 2¢’ < 1.
Now, we can write the correlations

1
—aH(o) .
(op = [oue [1dP(a)

1
- EfaAe_aH(a)I:[((l —p) dPy(a;) + p dPy(a;)),

where A is a set of (distinct) points {¢,,...,¢,} in [— T, T]. We have rewritten
2¢' as p.

Expanding the product, we see that the integral can be viewed as an
expectation with respect to a family of i.i.d. random variables A = ();), where
A; has a Bernoulli distribution with parameter 1 — p, as follows:

(3.5) (o) = (fa e “H(")l_[ dP,(o;)

This model is a (sort of) annealed site diluted Ising model. In this case,
dilution applies to configurations in an interval and means that there can be
flips in the configuration in that interval.

We have thus shown that the correlations for { - )/ are bigger than the
corresponding ones of an annealed model.

4. Comparison to a quenched site-diluted model. In this section we
derive a comparison between the annealed site diluted model of the last section
and a regular quenched one. From now on, we restrict attention to sets
A = {¢},...,¢,) such that there are no two ¢,’s in the same I;.
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We write the expectation in (3.5) as

/O'Ae_aH(a)Hi dP, (a;)
Z(H)

E,\(/‘TAe_aH(a)l—iI dPA,(Ui)) = Z(H)[,

where Z,(H) = [e*"(I1, dP,(o;). We denote the quotient inside the expec-
tation sign above by {o4)\ .

LEmMA 4.1.

j ae “HO[] dP,(o;) > 0.
i

ProposITION 4.1. Z,(H) is increasing in A (w.r.t. the usual partial order-
ing).

ProrosiTION 4.2.

<0'A>A,H = <0'A>/\,H,

where

(4.1) H(o) = ;Aiaj[IfIW(|t — sl)o,0, dtds.

Proor or LEMMA 4.1. Expanding the exponential, we obtain
Joue " @T1dP, (o) = LC, [a,H" (o) [1dP, (o),
i n i

where C,, are positive numbers.
Expanding the nth power, the r.h.s. can be expressed as

ch]aA]_TT]_T f [ ( (It; = s,1)o, 0, dt, ds)l‘[dP (o).
Moving the integral w.r.t. o inside, we get
(4.2) ZC If ]/1‘[ (It; — s;1) dt; ds; (faAnat 1‘[ dPAl(ai)).

The expectation faAl_[ 0, 0, I'1; dP, (o;) factors into I1, fo, dP,(0;), where
A, is a set of points in the 1nterval I, for all i.
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Now, if |A;| is odd (| - | denotes the cardinality), then Joa,dP,(0;) = 0, by
the symmetry o; > —o; of P, and P,. If |A,| is even and /\ =1, then
o4, dP,(0;) = 1. 1t A; = 0, we have

Jou,dPy(0) = § [a, dPy(0) + § [0, dP

= %(1 +/0'Ald1_’).

Now, fo, dP > —1. Therefore, Jou, dPy(a) = 0.
We conclude that Joa,dP, (o) = 0, for all i. Thus, we see that (4.2) is
nonnegative and the lemma is proved O

ProOF OF PROPOSITION 4.1. Do the same steps as in the last proof and
notice that

Jou,dPy(a) < [0, dPy(o).

Indeed, both integrals are 0 if |A;| is odd and, if |A,| is even, the r.h.s. is 1,
which is the most the Lh.s. can be. This and positivity prove the proposi-
tion. O

PROOF OoF ProposIiTION 4.2. We will use the following terminology. Let

={i: A; = 1} and A° = {i: A; = 0}. We call an interval I, either a 1-interval or
a 0 1nterval depending on whether 1€ AorieA. Also let J;; denote the
integral [; f; W(lt — s|) dtds.

First, notice that if any of the elements of A, say ¢; , belongs to a 0-interval,
say I, , then (o), m = 0. This is because under H, all the O-intervals get
disconnected from the rest of the system, so that {(o4), g factors into terms,
one of which is fo, dP(a; ) (it is here that the restriction on A made at the
beginning of the section enters). This integral vanishes (by symmetry), making
the product vanish. Thus, we need only consider A’s all of whose elements
belong to l-intervals.

We change notation here and write S, instead of o, for #’s belonging to
l-intervals. Further, since S, is constant in each l-interval I,, we write S;
instead. Notice that (S, ), g is the correlation of a discrete Ising model (in
Z N [-K, K with interactions J;; = A,A;dJ; ;. Now, the proof:

Z(H)(Sp i = [Sae oS +Hao)+ HilS, ) IT dP(S)) IT dPy(e)
i€ e

= [Spem5.0 4Q(8) d§ (),
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where
H(S)= -1 ¥ J,8,8, (= “ITAASS, )
i,jEA
H,(o) = —1 ffW(lt - sl)o,0, dtds,
i,jer”]
le(S,"') = “Z Z Si‘/’i("'),
ieA
with

Yi(o) =X ff.W(lt — sl)o, dtds,

jea LI

dQ(S) = e“’Hl‘S’l_I dPy(S;),

dQ(o) = e " [T dPy(a;).

ieA°

Notice that @ is the unnormalized Ising measure with interactions J
We expand the exponential:

Z(H)(Su = [S, exp( T S (o)) dQ(S) dd(c)

i€A

= £C.J8 T Si(«)) da(s) dd(o)

ieA
=L T Com [ SaT1S™ dQ(S) [ TT (o) (o),
n m)eTl,

where I, = {(m) =(my,...,m,)lm; >0, L,m;=n} and C,,, are positive
numbers.
Now, by the GKS inequality, the first integral is bigger than

7 [5:da(s) [ TTsr da(s),

where Z" = [dQ(S) is a normalizing factor.

Also, the second integral is positive (this is proved like Lemma 4.1 by
expanding IT,4/*(c) as well as the exponential in @ and checking that
everything is positive, which is done as before).

Notice now that (1/Z")[S, dQ(S) = (S,), g and that this quantity does
not depend on (m) or n. We thus have

Z(H)(Sru =S g ZC,,FZCm)fl',I(Si%(o))'"" dQ(S) dQ(o)

= (8,1 [e HOT] dP, (o)

Now Proposition 4.2 follows by the fact that the last integral is Z,(H). O
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Proposition 4.2 and Lemma 4.1 imply the inequality
(4.3) E\({oy)r5Z)\(H)) = E,(Koy)r, 5Z,(H)).

We need one last result in this section.
PROPOSITION 4.3. {o4)\ H is increasing in A.

ProoF. Since (0, ),, g is always nonnegative and vanishes whenever there
is an element of A in a O-interval, we need only check the proposition for A’s
without elements in O-intervals. But this case follows by monotonicity in the
couplings for correlations of the ordinary discrete Ising ferromagnet. O

Now, Propositions 4.1 and 4.3 imply, via the Harris-FKG inequality (see
[5], the following inequality for (3.5):

v

1 1
'Z_,E).«O‘A)A,HZ,\(H)) ‘Z—,EA(<0'A>A,HZA(H))

ZE(on ) B(Z(H)

= E\({our 1),

v

since E,(Z,(H)) is by definition Z'.
We have thus obtained the following comparison:

(4.4) (o4) = E\(Copr, B)-

The latter expression is the correlation of a quenched site diluted Ising
model.

REMARK. For the case of regular (discrete) annealed site diluted models
(i.e., those where the spins at the sites are independently randomly diluted), a
similar inequality follows by the same arguments.

5. Comparison to a standard discrete Ising model. In this section, a
general inequality relating a quenched (site) diluted Ising model and an
ordinary undiluted Ising model is derived. We then apply it to the quenched
model at the end of the last section to complete the comparison of the
continuum to the discrete model and prove Theorem 1.

For an ordinary (discrete) Ising model in a finite volume A with ferromag-
netic pair interactions J;; and Hamiltonian

H(O’) = _% ZJija'io"p
t,J
let { - )., denote the expectation w.r.t. the Ising measure (with free or + b.c.)
at inverse temperature a.

Let (A,);c, be a sequence of independent nonnegative random variables
which are less than one and have means (¢,). Let { - ),, 7 denote the (random)
expectation w.r.t. the Ising measure with inverse temperature « and interac-
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tions J, ; = X;A;d; ;. We define the quenched site diluted Ising measure with
expectation ¢ - )7 ; to be the mean of the random measure w.r.t. the distribu-
tion of the A’s, that is,

4 a=Ey(C da,7)-

We prove the following result.

PrOPOSITION 5.1. Let A be a set of points in A. Then
(5.1) (0424, 2 040, J5

where J = (EIn(¢)d,;, and m; is an increasing continuous function in
[0,1] whzch is 0 at 0 and 1 at 1, for each i € A. [n; does not depend on the
distribution of the A;’s; it does depend on « and the dJ;;’s, specifically on
(a/2)L;d; j—see (5. 5) ]

Proor. For i € A, let ,(x) be a nonnegative function in [0, 1] such that
1n,(x) < x. (The specific form of n; will be chosen below.) By monotonicity of
Ising correlations in the couplings, we have

(5.2) (040,72 04 ), s,

where J% = n,(A)n,;(A,)J;.
Let N = |A| and write <0'A>a,J* as

<UA>a,J(n1(/\1)’ sy nN()‘N))
Now suppose that
02

(5.3) <0'A>a,J(71, e Yie M%) s Ve oo e VN) >0

ax?
forall 0 <y, <1,i € A and all x in (0,1). Then we get (5.1) by successively
applying Jensen’s inequality to {a,)Z ;.

By differentiating {o,).,s as above, we obtain the following expression:

— 2(m}) < X v 00>}

JEA

<[z |- s e
o[l B |- ol 5 Bsvne ]

where primes mean differentiation w.r.t. x. We have omitted the argument of
n; and the subscripts of the Ising expectation signs.

The expressions in square brackets are nonnegative, by the GKS inequality,
so that we only need the expression in braces to be positive. We use the
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boundedness of the ¢’s and y’s to bound it below by

(5.4) mf = Ti(n})?,
where I = (a/2)L;c ,d; ;.

Setting (5.4) to 0 and solving the differential equation with boundary
conditions 0 at 0 and 1 at 1, we obtain

(5.5) n; = (I, x) = log(l -(1- e‘r)x)
which satisfies all the conditions above. o
REMARK 1. The above proposition holds for both free and + b.c.

REMARK 2. A similar result is valid for quenched bond models with a
similar proof.

REMARK 3. These results can be used to derive lower bounds for the critical
temperature of diluted models in cases more general than, for example, those
studied in [8]. For the cases studied in this reference, our bounds are weaker.

We are ready now to prove Theorem 1.

Proor or THEOREM 1. The results of this and previous sections give us the
following comparison between the correlations of the continuum model (in
[-KL, KL], configurations denoted by the letter o) and those of the discrete
one (in {—K, ..., K}, configurations denoted by S):

(5.6) (o) = (Sp)),
where A is a set of points in [- KL, KL] such that no two are in the same
interval I, (=iL,(¢ + DL, i € {—K,..., K}, and A* is the set of integers
ie{-K,...,K} such that there is a pomt of A in I,. Here J = (T,
1- p))2JLJ, ‘with Jij = Ji, ;) W(t — sDdtds and T = (a/2)2 J;; (which does
not depend on i, by translatlon invariance, and is finite, due to the decay of W
—notice that by applying Proposition 5.1 directly, we obtain (5.6) but with the
finite sum for I'; we can then replace it by the infinite sum due to the
monotonicity of both ¢ and the Ising correlations).

Notice that the model in the r.h.s. of (5.6) is a (one dimensional) 1/r? Ising
model at inverse temperature a{*(I',1 — p). Notice also that o, ;=d; (L) is

such that, denoting
i+1 fj+1
dtds

i
by oJ; for |i —jl > 1, we have that, as L — o, J;;/J{; converges to 1 uni-
formly in i, j such that |i —j| > 2, and J; ;,; (which does not depend on i)
goes to .

We want to use the result of [6] (Theorem 3.4) stating that, as J} ;,; — =,

(SOSx>f' -1




1406 L. R. G. FONTES

uniformly in the volume and in x inside the volume, provided a > 1, to prove
the following corresponding continuum result: As ¢ — 0,

(opo)h =1

uniformly in the volume and in ¢, provided « > 1.

We proceed as follows. Given « > 1 and § > 0, let @ be such that 1 < & < a.
By the discrete result just quoted, there exists J such that for the model with
nearest neighbor interactions bigger than J, long range interactions given by
J/; and inverse temperature @, we have

(SeS)f=1-5

uniformly in the volume and in x. Now, let L be so big that J, =J; ;,; > J
and also ad;; > aJ]; for i, j with |i — j| > 2. Next, make ¢ so small that p is
so small that { is so close to 1 that {%aJ, >ad and {%ad;; > aJj;. By

applying the comparison (5.6), we get
(5.7) (o0go)p =16

uniformly in the volume and for |¢| > L. If necessary we can take ¢ smaller so
that (5.7) holds uniformly in ¢. The theorem is now proven. O

6. Slow decay of correlations. In this last section, we use the FK
representation of the continuum Ising model to derive lower bounds for the
truncated two point function, proving Theorem 2. It is done almost exactly in
the same way as has been done in [6] for discrete FK models, with a few
modifications (to account for the extra randomness of the continuum case).
For this reason we will be a bit sketchy, referring the reader to the discrete
results for missing details (also to [10] for definitions and properties of
continuum FK measures).

We start by defining the FK measures. Let 6,, i = 1,2, ... be the points of a
Poisson process of rate & on the real line and w; = (s st J=1,2,... the
points of a Poisson process in RZ = {(s, ¢): s < ¢} with density A = aW(¢ — s).
Denote these (random) sets of points by 6 and w, respectively, and call them
configurations. (We will alternatively use the terminology 6-points for 9.) The
w;’s will be given the meaning of occupied bonds linking s; and ¢;.

Consider the partition of R (resp., of the interval [— T, T], for T > 0) into
intervals, produced by the points 6, in [— T, T']. Call those 6-intervals. Say that
two disjoint intervals I and J are linked (denoted I ~ ) if there is an
occupied bond linking two points, one in each interval. (If there are none, we
denote this by I A J. Notice that the two infinite intervals of the partition of
R are linked with probability 1.) Two #-intervals I and J are connected if
there is a sequence of 6-intervals I,,..., I, with I, =1 and I, = J, so that
I, ~I,_,,i=1,...,n. Two points s and ¢ are connected (denoted s © ¢) if
either they belong to the same #6-interval or belong to distinct connected
f-intervals. A cluster is a maximal union of connected 6-intervals.

Let C7(6, w) [resp., C{f(o, )] be the number of distinct connected clusters
obtained with the 6-intervals of the partition of R (resp., of [—T,T]). We
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define the finite volume, continuum FK measures with parameter g as follows:
1
(6.1) AP s, 2(0,0) = 2 dP(0) dP'(w)q ),

where * = w or f for the wired and free cases (see [3]), P and P’ are the
Poisson processes mentioned and N is the normalizing factor. (We will drop
some subscripts sometimes.)

The infinite volume measure exists (by standard arguments) and is denoted
P 5. Notice that for ¢ = 1, P}, = P{, is an independent (continuum) perco-
lation model. We list the properties of the FK measures we will need.

1. P}, is a strong FKG measure, that is, for any region A in R X RZ and
f, & increasing functions in the configurations [w.r.t. the partial order (6, w) <
(¢, ') whenever 6 > 0’ and w C '], we have

Piu(f8l) = Py o(fl0) P} \(81),

where &7 is the o-algebra generated by the configurations in A.

For the properties below, we use the notation P(-) for the expectation w.r.t.
the measure P.

2. Pf(f)= Py y(f), for ¢ > q, A > A and f increasing.

8. P\(f) = P/ \f), for f increasing.

4. We have the following representation of continuum Ising correlations
(where the notation 0 <> « means that the cluster of the origin is infinite):

M ={og)"=P§(0 & ),
(0,0,)" = P§(s & t).
We conclude that
7(t) = Cog0,) "= M? = P{(0 & t) — (P¥(0 & x))®
> PY(0 & t,0 < o, t b o) =7(t).

So, all we need to prove Theorem 2 is to derive the same bounds for 7. We do
that in the following propositions.

As in [6], we begin with an estimate for the self similar percolation case,
that is, the ¢ = 1 case with

. 1
(6.2) W(t) =W(t) = t—z—l(,>1).

For ¢ a real number, let
T£=inf{013012§}, S§=Sup{0,:91S§}.

Define
/-"{ = Tgy
Moer = T;Li’ nzxl,
vi=8,,
vE = S,e, n>1,

that is, u is the nth 6-point after ¢ and v{ is the nth 6-point before ¢.
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Notice that u§ = ¢ +Y, and v{ = ¢ — W,, where Y, and W, are random
variables each having a gamma distribution with parameters n and . In
particular, Eué, = ¢ + n/e and Evi = ¢ — n/e.

We say that an interval [¢/, £] is dissociated if there is no occupied bond
from [S,, T,] to its complement. Below, we use the notation {I < o} for an
interval I none of whose points are in an infinite cluster.

ProposiTION 6.1. For L a positive integer, let F, = {3 an integer k €
[1, D0, uf) A (uf, ).

If a > 1, then there exist constants C and C’ so that in the self similar case
(6.2),
(6.3) P(F,)) >=C/L* ' forallL,

(6.4) P([0,L] 4 ®) = C"/L** Y forall L.
PRrOOF. Define
F} = {Janinteger &' € [1, L)I[v}, L] A (—,»})},
{(»2,0) A (L, =)},
{(L, k) A (—=,0)}.

Hy

H}
Then
P([0,L] ¢ ) = P(F, N F n H, N H})
> P}(F,)P}(H,),

with the second inequality due to the FKG property (all of the events are
decreasing).
Now,

P(H,) = E{exp( —a Of:(t —5)72 dtds)}

vE

- E{exp(—a/_oyflw(t - s)_zdtds)}

> exp(—af_OEyj;w(t -s5)7? dtds),

where the last inequality is Jensen’s inequality and the expectation E is w.r.t.
a gamma random variable Y.

The last expression is positive and does not depend on L. It follows that
(6.3) implies (6.4).

To derive (6.3), let

N =#{ke[1,L)NZ:[0,uk] A (] =)}
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F;, is the event that .#"> 0. We compute the expected value of /"

E(7) = :éllp ({0 :“'k] A (,U»k,°°))

L-1
Y E{exp
1

wk (% -2
—a(fo ka%H(t—s) dtds

+f’f“f0”‘1(t - s)_zdsdt)]}

L-1
) > const. Z

L-1
> const. Y E(

1 (,U«k)

( “k)
L-1 1
= const. Z m > const. L' ¢,

where the second inequality follows by Jensen’s inequality and E is expecta-
tion w.r.t. uk.
Now,
E(S)
E(A|H4>0)"
Let X = inf {k’ S [1 L) N Z: [0, u%] A (uk,)}. Then,

P> 0) =

E(AN| 4> 0) f (X =k, pfp € dtlt> 0)E(N X =k, uk =t)

k’l

= 2[ P(X =¥, uk €dtlr> 0)
k=1

<1 Pl 4 i)

I/\

Z f P(X =k, pk e dilr>0)
k=1

i Zefrl oo

< 2 f P(X =k, uk € dtlr>0)
k=1
® 1
x[{1+ Y E *a)
( p=1 \(Wh — 4 1)
= P(X=F, uk edtlr>0)|1+ E|l———
gl'[L 1( i < i ) kgl ((Yk+1) )

IA

1+ const. ) 7% = const.
1
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Combining all these inequalities, we get (6.3). O
In the next proposition, we omit the subscript A in P*.

ProrosITION 6.2. For |t| < L,
7(t) = P{ (0 & t)Py([-L, L] 4 ).

Proor. Let A; = {bonds s,# with |s|, [¢| < L}. Then,
7'(¢) = P(0 & t by bonds in Ay |[-L, L] < ©)P¥([—L, L] < «).

The first probability on the r.h.s. can be estimated by first noticing that the
conditioning event only depend on bonds in A% and points of 6 outside
[-L, L]. Proceed now exactly as in the proof of Proposition 2.1 in [6], by
conditioning further on such configurations, expressing the infinite volume
measure as the proper limit of the finite volume ones, and then using the
strong FKG property to conclude that

Py(0 < t by bondsin A |[—L, L] )
> lim Py’;,(0 © ¢ by bonds in A, | A occupied bonds in A%)

L' — o
=PJ(0 & t). O
PropoOSITION 6.3. If a > 1, then for any 8 > 0, there exists some C' > 0 so
that
Py ([0, L] ¢ ®) > C'/L**"D* forall L > 1.
Proor. Let W= W x(lt| <R) + W- x(l¢| > R), for W given by (6.2),
where y is the indicator function of a set. Given 8, choose & > @ so that

2(&¢ — 1) = 2(a — 1) + §, and R so that W > oW, for ¢ > R. Let W = H,,.
We then have

PyA([0, L] ) = Py 4([0, L] 4 ),

by the monotonicity properties of the FK measures.
Exactly as in Proposition 6.1,

Py ([0, L] ¢ ©) > const. P} ;; (Fy).

Define FL ={3 £ €[L,2L] N Z| there is no occupied bond longer than R
linking [0, T,1to (Tg, )},

Since F, does not involve the short bonds distinguishing between P, ; and
P, 4w, we have

Pl’Hﬁ(ﬁL) - Ply&W(FAL) > Py 4w(F,) = C/LY,

by Proposition 6.1.
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Now, conditioning,

P n(F) = P af BBy n(FiE)
= Pl,Ha(FAL)E{e'd/TTéRfTTg*RW(t—smtds}’
= const. Py y(Fy).

To complete the proof of Theorem 2 we need the following result.

ProposITION 6.4. There is a constant C > 0 such that
7'(t) = C/t> fortlarge.
Proor. We consider the event A, that the 6-intervals I, I, containing the
origin and the point ¢, respectively, are connected to each other but to no other

#-interval. Condition on # and observe that the resulting measure is a discrete
FK measure. Follow the steps of [6] to find

PY(A)0) = (1 — e “Io/uVt=shdids)
X e~ JiiW(t=sDdtds,—afy, [EW(|t=sdt ds
=f(1o, I,).
Now, there exist constants 0 <a <b < o, 0 < ¢ < 1, such that
P¥(a <)l <b,a<|I| <b)>c,

where a, b, ¢ do not depend on ¢.
We conclude that for ¢ large enough,

PE(A,) = PE(f(I,, I)1(a < |I)) <b,a < |I] <b))

const
——Py(a < Il <b,a <|I| <b)

v

const /2.

Acknowledgments. This paper is part of the author’s Ph.D. research.
Thanks are due to Charles M. Newman for his fruitful advice during this and
other work and for his comments and corrections to a previous version of this
text, and to Herbert Spohn for pointing out this problem. Thanks also to the
referee for his suggestions.

REFERENCES

[1] A1zENMmaN, M., CHAYES, J. T., CHAYES, L. and NEwwMmaN, C. M., (1988). Discontinuity of the
magnetization in one dimensional 1/|x — y|? Ising and Potts models. J. Statist. Phys.
50 1-40.

[2] A1izeENmaN, M. and NewwmaN, C. M. (1986). Discontinuity of the percolation density in one
dimensional 1/|x — y|? percolation models. Comm. Math. Phys. 10T 611-647.

[3] BERGSTRESSER, T. K. (1977). Rigorous upper and lower bounds on the critical temperature in
Ising models with random, quenched, broken bond disorder. J. Phys. C: Solid State
Phys. 10 3831-3849.



1412 L. R. G. FONTES

[4] GrirFiTHS, R. B. (1967). Correlations in Ising ferromagnet I and II. J. Math. Phys. 8
478-489.
[5] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation
process. Proceedings of the Cambridge Philosophical Society 56 13-20.
[6] IMBRIE, J. Z. and NEewman, C. M. (1988). An intermediate phase with slow decay of
correlations in one dimensional 1/|x — y|? pecolation, Ising and Potts models. Comm.
Math. Phys. 118 303-336.
[7] KeLLY, D. G. AND SHERMAN, S. (1968). General Griffiths inequalities on correlations in Ising
ferromagnets. J. Math. Phys. 9 466-484.
[8] LEGGET, A. J., CHAKRAVARTY, S., DORsEY, A. T., FisHEr, M. P. A. and ZweRGER, W. (1987).
Dynamics of the dissipative two-state system. Rev. Modern Phys. 59 1-85.
[9] NEwMaAN, C. M. and ScHULMAN, L. S. (1986). One dimensional 1/]i — j|° percolation models:
The existence of a transition for s < 2. Comm. Math. Phys. 104 547-571.
[10] Sponn, H. (1989). Ground state(s) of the spin-boson Hamiltonian. Comm. Math. Phys. 123
277-304.
[11] SporN, H. and DtMCKE, R. (1985). Quantum tunneling with dissipation and the Ising model
over R. J. Statist. Phys. 41 389-423.

INsSTITUTO DE MATEMATICA E ESTATiSTICA, USP
Carxa PostaL 20570

SZo PauLo, SP 01498

BraziL



