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LOCAL CHARACTERISTICS, ENTROPY AND LIMIT THEOREMS

1. Introduction.

FOR SPANNING TREES AND DOMINO TILINGS VIA
TRANSFER-IMPEDANCES

By RoBERT BURTON! AND ROBIN PEMANTLE?

Oregon State University

Let G be a finite graph or an infinite graph on which Z¢ acts with finite
fundamental domain. If G is finite, let T be a random spanning tree chosen
uniformly from all spanning trees of G; if G is infinite, methods from
Pemantle show that this still makes sense, producing a random essential
spanning forest of G. A method for calculating local characteristics (i.e.,
finite-dimensional marginals) of T from the transfer-impedance matrix is
presented. This differs from the classical matrix-tree theorem in that only
small pieces of the matrix (n-dimensional minors) are needed to compute
small (n-dimensional) marginals. Calculation of the matrix entries relies on
the calculation of the Green’s function for G, which is not a local calcula-
tion. However, it is shown how the calculation of the Green’s function may
be reduced to a finite computation in the case when G is an infinite graph
admitting a Z%action with finite quotient. The same computation also
gives the entropy of the law of T.

These results are applied to the problem of tiling certain lattices by
dominos—the so-called dimer problem. Another application of these re-
sults is to prove modified versions of conjectures of Aldous on the limiting
distribution of degrees of a vertex and on the local structure near a vertex
of a uniform random spanning tree in a lattice whose dimension is going to
infinity. Included is a generalization of moments to tree-valued random
variables and criteria for these generalized moments to determine a distri-
bution.

We discuss spanning trees and domino tilings (perfect

matchings) of periodic lattices. To define these terms, let S =(1,...,%} be a
generic k-element set and let G be a graph whose vertex set is Z¢ X S, that is,
its vertices are all pairs (x, i), where x = (x4, ..., x,) is a vector of integers of
length d and i is an integer between 1 and k. We will usually allow G to
denote the vertex set Z¢ X S, since this causes no ambiguity. We say that G is
periodic if its edge set is invariant under the natural Z%-action; in other words
we require that (x, 7) is connected to (y, j) [written (x, ) ~ (y, j)]if and only if
(0,i) ~ (y — x, j). Assume throughout that G is connected and locally finite.
By periodicity there is a maximal degree D of vertices of G. Graphs that we
consider may have parallel edges; in other words, more than one edge may
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1330 R. BURTON AND R. PEMANTLE

connect the same two vertices. It is convenient to add self-edges (edges
connecting a vertex to itself) until all vertices have degree D; such a graph is
called D-regular. Adding self-edges does not alter any of the problems we
address, so we assume throughout that all vertices of G have degree D. It will
also be convenient to assume that simple random walk on G is aperiodic. Since
this is true whenever G has a self-edge, we assume the presence of at least one
self-edge.

A spanning tree of any graph is subcollection of the edges having no loops,
but such that every pair of vertices is connected within the subcollection. A
loopless subgraph that is not necessarily connected is called a forest, and a
forest in which every vertex is connected to infinitely many others is called an
essential spanning forest. It is shown in Pemantle (1991) that the uniform
measures on spanning trees of a cube of finite size n in the integer lattice Z¢
converge weakly as n — » to a measure u,« on essential spanning forests of
Z°. This measure chooses a spanning tree with probability 1 if d < 4 and with
probability 0 if d > 5. The first purpose of the present work is to show how
the finite dimensional marginals (f.d.m.’s) and the entropy of the limiting
measure uz« may be effectively computed. Since the computations may be
carried out in the more general setting of periodic lattices, and since some of
these (e.g., the hexagonal lattice in the plane) seem as interesting as Z¢ from
the point of view of physical modelling, we treat the problem in this generality.
The methods of Pemantle (1991) extend to the case of arbitrary periodic
graphs to show that u; chooses a spanning tree with probability 1 if d < 4
and 0 if d > 5. We will not reprove this result in the more general setting,
since that would involve a completely straightforward but lengthy redevelop-
ment of the theory of loop-erased random walks [Lawler (1980)] for periodic
graphs.

A domino tiling of a graph is a partition of the vertices into sets of size 2,
each set containing two adjacent vertices. Domino tilings on Z2 have been
studied [Kasteleyn (1961)] and the exponential growth rates of the number of
tilings of large regions with various boundary conditions have been calculated.
The growth rates for domino tilings are different for different bound-
ary conditions [Kasteleyn (1961), Temperley and Fisher (1961) and Elkies,
Kuperberg, Larsen and Propp (1992)]. The second purpose of this work is to
exhibit the domino tiling of maximal entropy for each periodic lattice in a
special class (that includes Z2), and to compute the entropy. We exploit a
general version of a known connection between domino tilings and spanning
forests, so that this follows more or less immediately from the results on -
spanning forests. The correspondence also gives a way to calculate probabili-
ties of various contours arising in a uniform random domino tiling. The first
few of these are calculated by Fisher (1961, 1963) using Pfaffians.

The method we use to calculate the f.d.m.’s of u; is to calculate the Green’s
function for G and then to write the f.d.m.’s as determinants of the transfer-
impedance matrix, which is a matrix of differences of the Green’s function.
The main result on transfer impedance matrices is stated and proved in
Section 4 (Theorem 4.2) in the general setting of periodic lattices. Since the
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result is interesting in itself and is for the rest of the paper sine qua non, we
state here a simplified version for finite graphs.

THEOREM 1.1. Let G be a finite D-regular graph. Fix an arbitrary orienta-
tion of the edges of G and for edges e = E;/ and f of G define H(e, f) to be the
expected signed number of transits of f by a random walk started at x and
stopped when it hits y (this can be written as a difference of Green’s functions).
For edges e,,...,e, let M(e,,...,e,) denote the matrix whose i, j entry is
H(e;e)). If T is a random spanning tree, uniformly distributed among all
spanning trees of G, then

P(e,,...,e, € T) = det M(eq,...,e;,).

The idea of a transfer-impedance matrix is not new, the terminology being
taken from Weinberg (1962). We have not, however, been able to find the key
result (Theorem 4.2) on determinants of the transfer-impedance matrix stated
anywhere. Furthermore, extending results about transfer-impedances from
finite graphs to infinite graphs is not immediate (at least when simple random
walk on the infinite graph is transient) and requires an argument based on
triviality of the Poisson boundary. For these reasons, we include a derivation
of all results on transfer-impedances from scratch.

The rest of the paper is organized as follows. The next section contains the
notation used in the rest of the paper and a derivation of the Green’s function
for a periodic lattice. Section 3 contains lemmas, such as a discrete Harnack’s
principle, about simple random walks on periodic lattices. Rather than provid-
ing detailed proofs, we include in an appendix the outline of a standard proof
for the case G = Z¢ and indicate the necessary modifications for arbitrary
periodic lattices. The connection between simple random walks and spanning
trees is documented in Pemantle (1991); the main result that will be used from
there is that P(e € T) is determined by certain hitting probabilities, but the
reader desiring more details may also consult Aldous (1990) or Broder (1988).
Section 4 uses these lemmas to show that the Green’s function is the unique
limit of Green’s functions on finite subgraphs and that it in fact determines
the f.d.m.’s for u; via determinants of the transfer-impedance matrix. Section
5 considers two examples. The first is the case G = Z2, which is special
because the Green’s function for general periodic lattices is given by a definite
integral which is only explicitly evaluable when G = Z2. The second is the high
dimensional limit of G = Z%, d — «, which converges in a sense to be defined
later to a critical Galton-Watson Poisson (1) branching process, in accordance
with a conjecture of Aldous (1991a). Section 6 calculates the entropy of .
Section 7 discusses the connection between spanning trees of a lattice and
domino tilings of the join of a lattice and its dual. From this follows a
determination of the topological entropy for domino tilings of graphs that are
joins of a periodic lattice and its dual. It is also possible from this to exhibit
f.d.m.’s of the maximal entropy domino tiling in a few special cases.

Certain characterizations of the Green’s function and Harnack principles
are required that are essentially adaptations of known results on Z¢ to
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arbitrary periodic lattices. These adaptations are treated briefly in the ap-
pendix. Also given in the Appendix are criteria for determining limits of
probability distributions on trees from knowledge of certain functionals which
act as generalized moments.

2. Notation and a Green’s function. Let G be a periodic lattice with
the assumptions of connectedness, D-regularity and there being at least one
loop, as in the previous section. Let u,; denote the weak limit as n — « of the
uniform measures on spanning trees of the induced subgraph on G with
vertices {(x,7): ||x|l. < n}. The arguments in Pemantle (1991) show that this
limit exists because the probability of the elementary event of a finite set of
edges all being in the tree is always decreasing in n and because the measures
of these elementary events determine u . It follows from Corollary 3.4, the
random walk construction of spanning trees and the first equality of Lemma
4.3 that, as in the case where G = Z¢, the limit can be taken independent of
the boundary conditions, that is, the limit for induced subgraphs is the same
as for tori. For an edge e, we often write P(e € T) for u{T: e € T}.

For any finite set of edges e, ..., e, that form no loop among them there is
a graph G/e,...,e, called the contraction of G by ey, ..., e,. Its vertices are
the vertices of G modulo the equivalence relation of being connected by edges
in {e;, ..., e,}. Let the projection from vertices in G to vertices of G/e,,...,¢e,
be called 7. Then the edges of G/e,,...,e, are precisely one edge connecting
m(x) to w(y) for each edge connecting x to ¥y in G. If W is a subset of the
vertices of G, the induced subgraph of G on W is the graph with vertex set W
and an edge 37;))/ for each edge 95)/ € G with x,y € W. For use in Section 7 we
include the dual notion to contraction, namely deletion. If e, ..., e, are edges
of a connected graph G whose removal does not disconnect G, then the
deletion of G by eq,...,e,, denoted G — ey, ..., e, is simply G with e,...,e,
removed. The salient point is that deletion and contraction by different edges
commute, so that G/e,,...,e, —e),...,e; is well defined when e; + e} for
all 7, j.

Let SRWS denote simple random walk on G starting from x. More pre-
cisely, a path in G is a function f from the nonnegative integers to the
vertices of G such that f(i + 1) is always adjacent to f(i); SRWS makes all
possible initial segments of a given length equally likely. Write P(SRW.S(i) = y)
for the probability that a simple random walk on G started from x is at y at
time i. Either G or x may be suppressed in the notation when no ambiguity
arises. For a subset B of the vertices of G, let B denote the boundary of B,
namely those vertices x € B that have neighbors in B°. For any x ¢ B, let
2 = inf{j: SRW,_(j) € B} denote the (possibly infinite) hitting time of B
from x.

Define the vector spaces 75, 7,« and 7; to be the set of complex-valued
functions on S, Z%¢ and Z? X 8, respectively, with pointwise addition, scalar
multiplication and the topology of pointwise convergence. For u € 7; and
g € V5 let u ® g denote the f € 7, for which f(x,i) = g(x)u(i). Let T¢
denote the d-dimensional torus R?/Z?, written as d-tuples of elements of
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(=1/2,1/2]. For « € T% and x € Z¢, the inner product « - x =, ¢ ,a,x, is
a well-defined element of R/Z; for fixed o € T?, let £ € 7,4 be deﬁned by
f"‘(x) = e2™%'* Define the adjacency operator A: 7; = 7; by (Af)Xx,i) =

120 Iy~ 0) f(y, j). Here, and in all subsequent such summations, the
element (y, j) is to be counted as many times as there are edges from (x, ) to
(y, J). A function f < 7 is called harmonic if Af = f and harmonic at (x, i) if
(AfXx,7) = f(x,1). We define a family of £ by % adjacency matrices {R*:
x € 7% by letting R*(i, j) equal 1 if (0,7) ~ (x, j) and 0 otherwise. Observe
that R* =0 for all but finitely many x € Z? and that R~* = (R*)T. For
a € T? define the £ by % matrix @Q(a) by the essentially finite sum
D—lzx ezde%ﬂa‘xRx'

Now we begin building Green’s functions for simple random walk on G. For
a transient walk, the Green’s function H(x,y) can be defined as the expected
number of visits to y starting from x. This is symmetric, and harmonic in each
argument except on the diagonal. Here, we construct a function g/ that is
harmonic except at a finite number of points x, at which (I — A)g/(x) is equal
to some specified f. Later, a uniqueness theorem will show that when f =6,
for some x € G, then gf specializes to H(x, - ). In dimension two, s1mple
random walk is recurrent. In this case, although the Green’s function may still
be defined classically by subtracting the expected number of visits from x to
itself, the integral defining g/ will blow up for f=6,. It will, however, be
finite for f =5, — 4,

When G is Just Z" with the usual nearest-neighbor edges, the eigenfunc-
tions in 7; for the adjacency operator are just the functions &% The first
lemma uses these to construct eigenfunctions for A.

LEmMMA 2.1. Suppose u € 75 satisfies Q(a)u) = Au for some real A. Then
A(u ® %) = Au ® £°.

Proor.

ol =

Y (u®&)(,))

(&, )~ (x,1)

A(u ® £%)(x,1)

1 )
—_ Z Rz(i,j)uje2m“‘(x+z)

ze7% 1<j<k

) 1 )
=e2ﬂ'la>x Z (5 Z e27-rla~sz)(i,j)uj

1<j<k zez¢

=emer 3 Qa)(i, j)u,

l<j<k
— e21-ria~x)‘ui

= Mu ® £9)(x,i). O
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This lemma tells us how to invert (I — A) on elements of 7; of the form
u ® £% where u is an eigenvector of @(a) with eigenvalue not equal to 1. By
representing general elements of 7 as integrals of eigenfunctions we can
then invert (I — A) on these integrals since (I — A)~! commutes with the
integral, at least when absolute integrability conditions are satisfied. A prelimi-
nary observation is that for any u € 75,

fu@f“da=u®30,

where da is the usual Haar measure on T¢. To see this, note that the
integrand is bounded in magnitude by |u|, so the integral makes sense and
integrating pointwise gives

Ju®¢(x,i)da = u e da = u;8o(x).

Inverting (I — A) on elements of 7; with finitely many nonzero coordinates is
easily reduced to inverting (I — A) on things of the form u ® §, and their
translates by elements of Z¢. The preceding representation shows that these
are integrals of u ® ¢% which are sums of eigenfunctions [the eigenfunctions
given by letting u be an eigenvector of @(a)]. So the above representation
solves the problem as long as the inverted integrand (1 — A) "'y ® £* remains
integrable. With this in mind, observe that @(«) is Hermitian for each a. It is
therefore diagonalizable with real eigenvalues and has a unitary basis of
eigenvectors. Let {v(a,i): « € T?, 1 < i < k) denote a measurable selection of
an ordered eigenbasis for @(a) and let A(a, i) be the eigenvalue corresponding
to v(a, ). Now for u € 75, let ¢*(a,i) = ({u,v(a,i))) denote the coefficients
of u in the chosen eigenbasis; in other words,

Zc“(a,i)v(a,i) =u
for each a € T¢. Then we haive the following theorem.
THEOREM 2.2. Foru € 7g, let
(1) gt = [f Re{c*(a,i)(1 = A(a,i)) 'v(a,i) ® £°} da
and forj <d, deﬁr;: 1
(2) g¥/= f f Refc*(a,i)(1 = A(a,i)) (1 — e ") v(a,i) ® £} da.
i=1

The integrals are meant pointwise, that is, as defining g“(x) and g*7(x) for
each x € G. Then:

(i) The integrand in (2) is always integrable and the integrand in (1) is
integrable when d > 3 or when d = 1or 2 and L,u; = 0.
() (I-A)g*=u®8,and (I - A)g*“’ =u ® (8, — 8,) whenever the in-
tegrals exist, e; being the jth standard basis vector in 74’
(iii) g* and g*’ are bounded whenever the defining integrals exist.
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ReMARK. When d > 2, it is not necessary to take the real part in (1) and
(2) since the imaginary part integrates to 0. When d = 1, however, the
imaginary part fails to be integrable.

For f,g € 7;, say f is a translate of g if f(x,i) = g(x + a,i) for some
ac€ 7% If f€ ¥; has finitely many nonzero coordinates, then it can be
represented as a finite sum of translates of elements of the form u ® §,.
Further, if the sum of f(x, i) is zero, then f can be represented as the sum of
translates of elements u ® §, for which Yu ; = 0 together with translates of

elements u ® (8, — 8, ). Thus the following is an immediate corollary.

CoROLLARY 2.3. Let f€ ¥; have finitely many nonzero coordinates. If
d>3o0rd=1o0r2and X, . f(x) =0, then the previous two theorems can be
used to construct a bounded solution g to (I — A)g =f.

The proof of Theorem 2.2 depends on the following lemma which bounds
the eigenvalues of @Q(a) away from 1 in terms of |a| in order to get the
necessary integrability results.

LEMMA 2.4. There is a constant K = K(G) for which max; |[Mea,i)| <1 —
Kla|?, where for specificity we take |a| = max Jlal.

Proor. The eigenvalues of a matrix are continuous functions of its entries
[Kato (1976)], so it suffices to show that this is true in a neighborhood of 0 and
to show that A(e, i) # 1 for a # 0. For the first of these, it suffices to find for
each s <d a constant K, for which the eigenvalues of @(a) are bounded in
magnitude by 1 — K la,|*. So fix an s < d.

Begin with a description of the entries of @(a)". The quantity @(a)(i, j) is
the sum over edges of G connecting (0,i) to (x, j) for x € Z¢ of complex
numbers of modulus 1/D. Furthermore, as i or j varies with the other fixed,
there are precisely D of these paths. It follows that @(a)"(i, j) is the sum over
paths of length r connecting (0,i) to some (x, j) of complex numbers of
modulus D" and that there are D" of these contributions in every row and
every column.

Suppose we can find an r = r(s) such that for every i < k there is a path of
length r from (0, ¢) to (e,, i) where e, is the sth standard basis vector. Since
there is a self-edge at every vertex, there is perforce a path of length r from
(0,i) to (0, i). These two paths represent summands in the preceding decompo-
sition of @(a)"(i,i) whose arguments differ by «,. By the law of cosines, the
sum of these two terms has magnitude D~"(2 + 2 cos(a,))'/? < 2D (1 — ca?)
for any ¢ < 1/8 and a in an appropriate neighborhood of zero. Adding in the
rest of the terms in the ith row of @(a)” and using the triangle inequality
shows that the sum of the magnitudes of the entries in the ith row is most
1 — 2¢D"a? for a, in a neighborhood of zero. The usual Perron-Frobenius
argument then shows that no eigenvalue has greater modulus than the
maximal row sum of moduli. This implies that in an appropriate neighborhood
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of zero, no eigenvalue of Q(a) has modulus greater than (1 — 2¢D "a )" <
1 — K a2, where K, = 2¢D"® /r(s), which is the bound we wanted.

Finding such an r is easy. Since G is connected there is for each i <% a
path of some length /; from (0, i) to (e, ). These can be extended to paths of
any greater length by including some self-edges, so r can be chosen as the
maximum over i of /. All that remains is to show that the only time Q(a) has
an eigenvalue of 1 is when a = 0. This is essentially the same argument.
Picking r’ > max, r(s), the row sums of the moduli of the entries of Q(a)”
are strictly less than 1 and the Perron-Frobenius argument shows that no
eigenvalue has modulus 1 or greater. O

Proor oF THEOREM 2.2. First we establish when the integrands in (1) and
(2) are integrable. For each a the vectors v(a, i) form a unitary basis, hence
the coefficients c*(«, i) are bounded in magnitude by |u|. Since v(«, i), £* and
1 — e 27 all have unit modulus, integrability of [(1 — A(e,i))"!| is certainly
sufficient to imply integrability of (1) and (2). For d > 3, this now follows
immediately from |(1 - Ma, )7 < Kla™2|.

For d = 2, |la|™? is not integrable, so we will find another factor in the
integrands that is O(|a|). By aperiodicity of SRW on G, we also have that the
projected SRW on S is aperiodic, and therefore that the eigenvalue of 1 when
a = 0 is simple with eigenvector v(0,1) = D~1/2(1,...,1). [Here we assume
without loss of generality that the eigenvectors have been numbered so that
for a in a neighborhood of zero, v(a, 1) is an eigenvector whose eigenvalue
has maximum modulus.] The assumption ¥,u; = 0 in (1) then implies that
¢*(0,1) = 0. By analyticity of the eigenbasis with respect to the entries of the
matrix (at least away from multiple eigenvalues) [Kato (1976)] c*(a, 1) = O(|al).
Thus |c*(e, iX1 — Ma,i)) "] < K'lal~" which implies integrability of (1) when
d = 2. Similarly, (1 — e?>™**) = O(|a|), which implies integrability of (2) when
d=2.

When d = 1, we will show that the real parts of

(3) [e“(a,)v(a,1) ® £%](x,1)
for X,u; = 0 and
(4) [e“(a, Dv(a, 1)(1 — e72") ® £*](x, i)

for any u are both O(|a|?) as a — 0 for fixed (x, i) € G. Clearly, this is enough
to imply integrability of (1) and (2). Observe that (3) and (4) are both zero
when a = 0. By analyticity of v(a, 1) at zero, it suffices to show that deriva-
tives of (3) and (4) with respect to a at zero are purely imaginary. Taking (4)
first, we have

d )
%(c“(a, Du(a,1)(1 — e ?™) ® £%(x,i)) -

= 2mic*(0,1)v(0,1) ® £%(x,i) = 2mi{{u,v(0,1)))v(0,1); € V- 1R,

since the factor of 1 — e ~27'* kills all the other terms in the derivative when
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a = 0. For (3), we get

d
= [p(0,1) @ ¢°](x,8) —e(a1)

= u(0, 1)i<<u, (%) a=ov(a, 1)>>

so it suffices to show that v(a, 1) has imaginary derivative at zero.

Observe first that @(«) has imaginary derivative at a = 0 since the entries
of Q(a) are all sums of e27'** for various x € Z. Call this imaginary derivative
R. Second, observe that the derivative of A(a, 1) vanishes at o = 0 since
AMa, 1) is real and attains its maximum at « = 0. Then letting w denote the
derivative of v(a,1) at a = 0,

[@ + eR + O(e?)] (v + ew + O(£2)) = (1 + O(e2))(v + ew + O(&?))
from which it follows that
Rv=(I-Q)w+ O(e).

Letting ¢ — 0 gives Rv = (I — @)w. Since R is imaginary and I, @ and v are
real, it follows that w is imaginary. This shows that the real part of (3) is
O(la|?) and completes the proof of (i).

The preceding argument actually also establishes boundedness of g“ and
g“’ when d > 2, but we give a different probabilistic argument since it is
necessary to do so anyway for the case d = 1. Let s €(0,1) be a real
parameter and consider the functions g* and g’ gotten by replacing A(a, i)
by sA(a,i) in (1) and (2). The integrands are a fortiori absolutely integrable,
being bounded in magnitude by |1 — s| ™' times a possible factor of 2 for the
1 — e 2™, Thus in fact g € [*(G). Now taking the real part is no longer
necessary, since the imaginary part is an odd function of a and must integrate
to zero. We have then

d
——(c"(a, v(a,1) ® £(x, 1))

a= a=

k ©
gl = [ X ¥ s"\(a,i)"c"(a,i)v(a,i) ® ¢ da
i=1n=0
®© k

Y s"[ L A(e,i) e (a,i)v(a,i) ® £ da
n=0 i=1

®© k
(5) gos"[ ;lc“(a,i)A"(v(a,i) ® ¢*) da

o

k
Y s"A"(f Y c(a,i)(v(a,i) ® )| da
n=0 i=1

o

Y s"A(u ® 8,).

n=0

The reason A may be commuted with the sum and integral is that Af(x)is a
finite linear combination of terms f(y) for y € G, and each of these terms is
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integrable. In a similar manner, we get
(6) gl = ¥ sA"(u e (8, -0,)).
n=0
Since A" gives the transition probabilities for an n-step simple random walk
on G, this means that

g/ (x) = X Eu®5y(X,),
n=0

where X, is a SRWS killed with probability 1 — s at each step. Similarly,
g49(x) = L Eu® (8,-3,)(X,).
n=0

It follows from this that g% g’ —» 0 as x > » for fixed s, u,j. From the
forward equation for the random walk [or by direct calculation from (5) and
(6), gt =sAgt+u®38, and g’ =sAgl’ +u ® (8§, — 8, ), whence it fol-
lows that g [resp., g%7) cannot have a maximum or minimum except on the
support of u ® §, [resp., u ® (§, — 4, )] Since u ® 8, [resp., u ® (6, — & ,)]
has finite support, say W c G, this 1mp11es that for all yG,

(7 gélgvgs(x) <g’(y) < inea‘;ggs(x)

and similarly for gl The proof of integrability of (1) and (2) shows that
g% —> g* and g’ — g*’ as s —» 1. Taking the limit of (7) gives

3 u < u < u
ming (x) <g*(y) < max g (x)

and similarly for g*/, establishing (iii).
Finally to show (ii), we have from (6) that

(I -sA)gl=u®34,.

Since g} — g“ pointwise as s — 1 and since Ag¥(x) is a finite sum of values
&:'(y), the limit of the LHS as s — 1 exists and is equal to (I — A)g“. A similar
argument for g*7/ completes the proof of (ii) and of the theorem. O

3. Simple random walk on G. Define the cube B, of size n in G to be
those vertices (x,i) for which |x;| < n 1<j<d. For x € B,, define the
hitting distribution on the boundary, vB~ to be the law of SRW (T »). Thus
for example, if x € 4B, then vB» = §_. For x & B,, define the h1tt1ng distri-
bution on the boundary to be the same, but conditioned on the SRW hitting
the boundary; thus »2~(C) = P(SRW,(r2») € C)/P(r2» < ). For n < m and
x € d(BE), let pB-Br be the hitting distribution on 3B, of a SRW, conditioned
never to return to B¢; for m <n and x €4B,,, let pB-B» be the hitting
distribution on dB, of SRW, conditioned not to return to B,,. The following
lemma is an adaptation of the discrete Harnack inequalities on Z¢ for general
periodic lattices. The proof is merely an adaptation of the proof for Z¢ and will
be sketched in the Appendix.
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LemMa 3.1 (Harnack principles). Let G be a periodic graph satisfying the
assumptions of the first section. Fix a positive integer n. Then as m — o,

(i) pyemax  vin({2))/vn({(2) > 1,
(ii) pyemax e P({2)) e ((2) - 1,
(i) o™ B () /(2] - 1,
(iv) zeaBn’n:?fea(B;)pf"B"'({z})/pf"B'"({z}) -1,

(v) (i)-(iv) hold when G is replaced by a finite contraction of G-

CoroLLARY 3.2. Bounded harmonic functions on finite contractions of
periodic graphs are constant.

Proor. For any vertex x, let X, X;,... be a simple random walk starting
from x. If g is harmonic, then {g(X,)} is a martingale, and if g is bounded and
x € B,,, then optional stopping gives g(x) = Eg(X(72)) = [g(2) dvE(2). By
(i) of the previous lemma, vB~(z) = (1 + 0(1))VyB”‘(Z) as m — «, hence g(x) =
g(y) and g is constant. O

CoroLLARY 3.3. Let G be a finite contraction of a periodic graph. Then for
f € 7 thereis, up to an additive constant, at most one bounded solution g to

(I-Ag-=F

Proor. If g, and g, are two solutions, then g, — g, is a bounded har-
monic function. O

CoroLLARY 3.4. Let G be a finite contraction of a periodic graph and
let G, be the induced subgraph on B,. For x,y,z € G with x ~y define
h(x,y,z,n) = P(SRW,S~(r? — 1) = x) to be the probability that SRWC~ first
hits y by coming from x [with h(x,y,y,n) =4 0). Then lim, __ h(x,y, z,n)
exists for all x,y, .

Proor. Fix L such that x,y € B,. For w € B define
¢:(x,y, w) = P(r}, < @ and SRW, (7} — 1) = x)
and
¢o(x,y,w) = P(7}, < @ and SRW, (7} — 1) # x).

For i = 1,2, let ¢/(x,y, w, n) be ¢,(x, y, w) with the clause 72 < = replaced by
73 < 7B» and observe that ¢,(x,y, w,n) — ¢, (x,y,w) as n - . From the
Harnack lemma we know that p25~ approaches a limiting measure p on 4B,
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as m — . We claim that
h(x,y,z,n) > P(7} <oand SRW,(7) — 1) = x)

+ P(12 = @) [$y(w) /($(w) + py(w)) dp(w).

To see this, write h(x,y,z,n) as P(SRWSE(7? — 1) =x and 7 <7%) +
P(r) > 78 )P(SRWE(7? — 1) = x|r? > 78»). The first of these terms is clearly
converging to the first term in (8), while the first factor of the second is
converging to P(7) = »); the second factor is a mixture over u € dB, of
P(SRWS-(r? — 1) = x), so it suffices to show that this is converging to the
integral in (8) uniformly in u and n — «. Consider the sequence of times
T1, 01, Tg, Oy, ..., Where 7, is the first time that SRW, hits B, o, is the next
time it hits dB,, 7, is the next time it hits B;, and so forth. The first hitting
time 1) of y must satisfy 7, < 7} < o; for some i. Now write

= P(SRWSn(r) = 1) =257, <1 < 7;)
i [P(SRWS (1) — 1) #a;m <) <o)
+P(SRWan(~rg -1 =x;7,<71)< O'i)]

(8)

P(SRWSCn (7} — 1) = x) =

The sum in the denominator is of course 1, but the point of writing it
this way is to illustrate that for each i the ratio is approximately the inte-
gral in (8). More precisely, for fixed i the Markov property gives that
P(SRWS(7) — 1) = x; 7, < 77 < ;) is equal to P(r) > o;_,) times a mixture
over v € dB, (corresponding to the last exit from 0B, before 7,) of
Jo(x,y,w,n) dpBrBr. Similarly, PSRWS (7Y — 1) # x; 7, < 72 < 0;) is equal
to P(7) > o;_,) times a mixture over v € 4B, of [p(x,y, w,n)dpBrB. Since
d.(x,y,w,n) > ¢,(x,y,w) and pBrB» = (1 + 0(1))p as n — =, this shows that
the ratio of the numerator to the denominator in the sum is (1 + 0(1)) times

the integral in (8) and proves the corollary. O

4. Transfer impedance. Before going into the definition of transfer
impedance, it is worth pausing to remark that the functions g* constructed in
Theorem 2.2 really are versions of the Green’s function. This is not essential
to any of the arguments below, so the proofs are relegated to the Appendix.
Define the usual Green’s function H(-, ) on pairs of vertices of a periodic
graph G by

H(x,y) = Y. P(SRW,(n) =y)
n=0

when d > 3, and

H(x,y) = Y [P(SRW,(n) - y) - P(SRW,() - x)]
n=0
when d = 1 or 2. It is easy to see that the sums are finite and that H(x,y) is
harmonic in y except at y = x; it will also be shown that H is symmetric.
(Later, we will use the preceding definition of H for finite graphs as well; see
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the Appendix.) Now let 7, C 7, be the subspace of all functions with finite
support. Think of the vertices of G as embedded in 7, by x — 8, and the
oriented edges xy as embedded in 7; by xy — 3, — 3,. Now extend H to a
bilinear map on 7y X 7. Similarly, thmk of the functlons g" from Theorem
2.2, or in general the solution g’ to (I — A)g =f from Corollary 2.3 as
deﬁmng a bilinear form g on 7, X 7 (or when d < 2, on part of 7, X 7;,) by
letting g(f,38,) = g/(x) and extendlng linearly. We then have the followmg
theorem.

THEOREM 4.1. g = H whenever g is defined. Consequently, g is symmetric.

Define the transfer impedance of two oriented edges e and f to be g(e, f).
For any finite set ey, ..., e, of edges, define their transfer impedance matrix
M = MC(e,,...,e,)to be the k by k matrix with M(i, j) = D" 'g(e;, e;), where
D is the degree of the graph G. Observe that the determinant of the transfer
impedance matrix is independent of the orientation of the edges, since chang-
ing the orientation of e; has the effect of multiplying both the ith row and the
ith column of M by —1.

THEOREM 4.2. Let G be any periodic graph satisfying the assumptions of
the first section. For ey, ..., e, edges of G, pick an orientation for each edge
and let M denote their transfer zmpedance matrzx so DM, j) = g(e;, e;) =

2:7%(z) — g% %(w), where e, = xy and e; = zw. (Here g may be deﬁned by
Corollary 2. 3 or by extendlng H linearly, lf H is already known.) If T is a
uniform essential spanning forest for G, then

P(el,...,ek GT) =det(M).

Here is an outline of why Theorem 4.2 is true. For an oriented edge e = 3?3)/,
the function (1/D)g(e, - ) gives the voltages at vertices of G when each edge is
a 1-Q resistor and one amp of current is run from x to y. A straightforward
application of Cramer’s rule then produces a function A(z) that is a linear
combination of g(e;, - ) for i = 1,..., k and which computes the voltage for a
unit current across e, in the graph Z9/e,,...,e,_;. By the equivalences
between electrical networks, random walks and uniform spanning trees
[Pemantle (1991)], A(x) — h(y) computes the probability

P(e, € Tle,,...,e,_; €T).

The conditional probability turns out to be det(M(e,, ..., e,))/
det(M(e, ..., e,_,)) and multiplying these together gives P(e,, .. e, €T =
det(M).

LEmMMA 4.3. Let G be a periodic graph and for edges e, . .., e, forming no
loop let G' = G/ey,...,e,_,. Let e, = xy in G. Let ¢ be a bounded function
on the vertices of G' harmonic everywhere except at x and y, with excess 1,/D at
xand —1/Daty. If T is the uniform random essential spanning forest of G
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and T’ is the uniform random essential spanning forest of G, then

P(e, €T)=P(e, €Tley,...,e,_, €T) = p(x) — d(y).

Proor. The first equality is standard [Pemantle (1991)]. For the other one,
recall from [Pemantle (1991)] that P(e, € T') is defined as the hmlt of P(e, €
T,) where T, is the uniform random spanning tree on G, = G, /e,,..., e, _;.
Th1s probablhty is just the probability that SRW.S" first hlts y by moving from
x. Now Corollary 3.4 shows that the probablhty h(x,y, - ,n) of SRW% first
hitting y from x converges as n — % to some function h(x,y,z). Since
h(x,y,2,n) is harmonic in z except at x and y, so is the limit. [In this
notation, the probability we are after is h(x,y, x).] Also, it is easy to see
that the excess of h(x,y,-,n) at x is 1/D (use the forward equation).
Thus the excess of h(x,y,-,n) at y must be —1 and the limit satisfies
(I—-Ah(x,x,-)=(5,-8 ,)/D. By Corollary 3.3, there is only one such
function up to an additive constant so ¢ must equal h(x,y, - ), thus ¢(x) —
#(y) = h(x,y,%) — h(x,y,y) = h(x,y,x). O

ProOF oF THEOREM 4 2 Proceed by induction on k. When £ =1,det M =
M@1,1) = [g% %(x) — g% %(y)]/D, where e, = xy. Denote this by (1/D)g*.
According to Theorem 2 3, (1/D)g°* is bounded and solves (I — A)g =[5, —
3,1/D, so by the previous lemma, M(1, 1) calculates the probability of e, € T.

Now assume for induction that the theorem is true for 2 — 1. The easy case
to dispose of is when M’ =4, M(e,,...,e,_;) has zero determinant. Then by
induction P(e,,...,e,_; € T) = 0 and it follows [e.g., from the random walk
construction of T in [Aldous (1990), Broder (1988) and Pemantle (1991)]
that the edges e, ..., e,_, form some loop. Suppose without loss of generality
that the loop is given by e;,...,e, and that all edges are oriented forward
along the loop. Then YJ_,g% =0, hence M is singular and det(M) =
Pe,,...,e, €T =0

In the case where det(M’) # 0, the inductive hypothesis says that
P(ey,...,e,_; € T) = det(M’) and it therefore suffices to show

(9) P(e, € Tley,...,e,_, € T) = det(M)/det(M').

To show (9) we construct the function ¢ of Lemma 4.3. Write x,y, for e,.
Electrically, what we will be doing is starting with the function (1/D)g®,
which is the voltage function for one unit of current put in at x, and taken out
at y,, and adjusting it by adding a linear combination of functions g% for
J <k in order to exactly cancel the current through each e;, j <k. This is

then the voltage function for G/e,, ..., e,_, when one unit of current is run
across m(e,), and thus its difference across e, computes P(e, € T").
To do thls formally, let a, for i = 1,...,k — 1 be real numbers for which

M, + Xt la, M;;=0for 1 <j<k-1 These equations uniquely define the
a; because the columns of M’ are linearly independent and hence there is a
unique linear combination of them summing to v, where v; = —M;,. Let N be
the & by k matrix for which N,; = M, for j <k and N;, = M, + Zk a; M, ;
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in other words, the first £ — 1 columns are used to zero the nondiagonal
elements of the last column of M and N is the resulting matrix. Then
det M = det N = N, det(N,;: i,j <k — 1) = N}, det M', whence N, =
det M /det M'. Now define a bounded element J of 7; by

k
J=D'}) a;8%,
i=1
with a, =4 1. We verify that:

() For j <k, J(x;) —J(y;) =0
(i) J(x,) — J(y,) = det(M)/det(M ).

Indeed, J(x;) — J(y;) = D7'EF ;8% (x;) — g%(y;) = D™'Lf_,a;DM;; so
(i) follows from the definition of «; and (ii) follows from the determination of
N,, above.

Now we have just shown that J is constant on the preimage of any vertex
under the contraction map 7, and hence there is a well-defined funetion ¢ on
the vertices of G for which J = ¢ o 7. The excess of ¢ at a point z is just the
sum over edges 2w in G of ¢(2) — ¢(w). This is just the sum of J(u) — J(v)
over edges uv for which m(uv) = zw, which is just the sum of excess of
J at u over u € 7 Yz). The excess of J at u, (I — A)J(u), is just
L,a(I — A)D™'g%(u) which is just D™'L,a,(8,(u) — 6,(u)). This must be
summed over 7~ 1(z), which for i < £ contains x; "if and only if it contains y;,.
Then the only possible nonzero contribution to the sum is (8, (w) — 8, (w))
and summing this over v € 7~ (2) gives 1 if z = 7w(x,), —1if z = w(y,) and 0
otherwise. Thus ¢ satisfies the conditions of Lemma 4.3 and hence P(e, €
Tley,...,e,_1 €T) = ¢(w(x,) — ¢(w(y,) = J(x,) — J(y,) = det(M)/det(M’)
by property (ii) above. This finishes the induction and the proof of the
theorem. O

For ease of calculation, we derive a corollary to Theorem 4.2.

CoroLLARY 4.4. With T, M and eq,...,e, as in Theorem 4.2, pick an
integer r with 0 < r < k. Define a k by k matrix M by M, j) = MG, j) if
i>rand 8;— MG, j) ifi <r. Then Ple,,...,e, ¢ T, e.,1,...,, €T) =
det(M ™).

Proor. The assertion for r = 0 is just the previous theorem; now assume
for induction it is true for r — 1. By linearity of the determinant in each
row of a matrix, we have det M + det M"~D = det P, where P(i,j) =
M@, j) =MV, j) if i #r and P(,j) =4, if i =r. Expanding by
minors along the rth row of P gives det P =det M e, ..., e,_,,
€,.1---,e,) which is equal to P(e,...,e,_; €T, e,.q,..., e, € T) by induc-
tion. Also by induction, det M"~D =Ple,,...,e,_; ¢ T, e,,...,e, €T,
whence by subtraction, det M = P(e,,...,e, ¢ T, e,,1,...,¢, €T), as de-
sired. O
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We end this section with a discussion of the case d = 0, or in other words,
finite graphs. Let G be a connected aperiodic (i.e., nonbipartite) graph on the
vertices S = (1,..., k}, where as usual self-edges have been added to make the
graph D-regular. The transition matrix A has a simple eigenvalue of 1, so it is
immediate that for any u such that ¥;u; = 0 there is a solution g* € 75 to
(I —A)g“=u and it is unique up to an additive constant. Defining the
transfer impedance matrix by M(xy , zw) = g% ®(z) — g% %(w) as before,
Lemma 4.3 shows again that M(1,1) calculates P(e; € T) and the induction is
completed as before, showing that P(e,,...,e, € T) = det M(ey,...,e,). Now
add another self-edge to each vertex so the degrees are all D + 1. If A’ is the
new transition matrix, then I — A = (1 — (D + 1)')(I — A) and hence the
solution g* to (I — A)g" =u is just (1 + D™ Yg“ Thus the new transfer
impedance matrix is the same as the old one, and hence the transfer impedance
matrix is independent of the degree D at which we choose to equalize the
loops. The electrical explanation for this is that M(e, f) is the induced voltage
across f for a unit current with source x and sink y, where e = x_g)/ and every
edge of G is a 1-Q resistor. (To prove this just add self-edges to regularize the
degree; this leaves M and the electrical properties unchanged and they now
solve the same boundary value problem.) The random walk interpretation
[Doyle and Snell (1984)] is that M(e, f) is the expected number of signed
transits across f of SRW, stopped when it hits y.

In particular, suppose G is a finite, connected graph but not necessarily
having vertices of the same degree. We have seen that the transfer impedances
for G may be unambiguously defined as the transfer impedances for any graph
that extends G to a D-regular graph for some D by addition of self-edges.
Write deg ,(x) for the number edges incident to v that are not self-edges. Then
deg . is invariant under degree equalization. The relevance of deg . to transfer
impedances is that for many graphs M(e, f) is approximately equal to
Lecen s deg,(x)~ ' In other words, M( Xy, xy) is approximately deg,(x)! +
deg.(y)~1, M(e, f) is approximately deg.(x)~! if e and f intersect at x, and
M(e, f) is approximately zero in other cases.

To see why this should be true, consider the condition

deg,(x) > 2¢71,

deg.(x)
deg.(x) + deg.(y)

(1-¢) < P(SRW, hits x before y)

(10)

deg.(x)
deg(x) + deg.(y)

for all distinct x, y, z in some subset W of G. This says that a SRW from any
point other than x or y in W will get “lost” with high probability before
hitting x or y and will in fact end up choosing which to hit first in proportion
to the stationary measures at the two vertices. There are many families of
graphs G, for which (10) holds with W = G for a sequence ¢, converging to

<(1l+eg)
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zero as k — oo; examples include the complete graph on % vertices and the
k-cube.

Assume condition (10) for some ¢ > 0. For some vertex x, all of whose
neighbors are in W, enumerate its neighbors Yi- > Vaeg, ) (allow repeated
neighbors if there are parallel edges). Let e; = 35)/ ; for i < deg . (x). Use the
interpretation of M(e;, e ;) as the expected number of signed transits across e 7
for a random walk started at x and stopped at y,. Reversibility implies that the
expected number of signed transits is zero over all times before the last visit to
x, so conditioning on the first step of SRW, and using the “craps” principle
shows that for fixed i and varying j, M(e,, e;) is proportional to P(SRWyJ hits
y; before x). Applying condition (10) together with the fact that P(SRW,; hits
y; before x) = 1 shows that, when j # i,

(1 - e)deg.(y;)/(deg.(x) + deg.(y;))
1+ (deg.(x) — 1)(1 + e)deg.(y;)/(deg.(x) + deg.(y;))
<M(e;,e;)

B (1 + e)deg(y;)/(deg.(x) + deg.(y;))

T 1+ (degu(x) — 1)(1 — &)deg.(y;)/(deg.(x) + deg.(y;))
Since deg.(x), deg,(y) = 27", deg,(x)deg,(y)/(deg.(x) + deg,(y)) > &}
and the addition of 1 in the denominator of the first term in the above

inequality loses no more than a factor of 1 — ¢, and we may rewrite the
inequalities as

(1-2)°deg,(x) " <M(e;,e;) < (1 — &) 2deg(x) "

Similarly,
(1~ &)*(deg(x) ™" + deg(y;) ")
<M(e;,e;) < (1~ &) *(degy(x) " + deg.(y,) V).

Finally, for e = 373)/ and f= zw such that x,y, 2, w and all the neighbors of x
are in W, we have M(e, f) = M(e, e)]P(SRW, hits x before y) — P(SRW,, hits
x before y)] < 2e(1 — &) *(deg,(x)"* + deg,(y)~!). This follows from the
electrical interpretation of M(e, f), since a unit current flow puts a voltage
difference of M(e, e) across e, after which the voltages elsewhere are M(e, e)
times the probability from there of SRW hitting x before y. Thus the mixing
condition (10) does indeed imply that

(11) M(e,f)= X degy(x) '+ 0(e) ¥ deg,(x) "

x€ Nf
e

e
for x,y,2,w € W with all neighbors of x inside W.

5. An example and a high dimensional limit. The case where G is
the nearest neighbor graph for 72 is special because the Green’s function can
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4-8/x
)

4/ 1 4/

4-8/x 1 lo 1 4-8/x
e )

4/ 1 4/r

FiG. 1.

be explicitly evaluated as a polynomial in 7~!. Following Spitzer (1964), we
have that the Green’s function is given by

1 —cos(x - a) p
(1/2) cos(ay) — (1/2) cos(ag)

and for x = (n,n) a change of variables from (a;, @,) to (a; + ay, a; — ay)
yields

H(0,%) = (2m) " [ 1=

1 1 1
+ =+ 4+ .
3 2n — 1

H((0,0),(n,n)) =4nr!

These values, along with the symmetries of the lattice and the fact that H is
harmonic, allow H to be determined recursively, the first few values being as
shown in Figure 1. Let w,, w,y, wg, w, denote, respectively, the edges connect-
ing the origin to (1,0), (0,1), (—1,0), (0, —1). The above values for H then
yield the following circulant for M:

1/2 1/2-7"1 2771-1/2 1/2-771

1/2 — 771 1/2 1/2 -7t 2771-1/2

M(wl,...,w4) = -1 -1 -1
2r 1-1/2 1/2-m 1/2 1/2 -7
1/2-771 2771-1/2 1/2-771 1/2

Theorem 4.2 and Corollary 4.4 assert for example, that P(w,, w,, w;, w, €
T) and P(w,,w,, wy € T, w, €T) are given, respectively, by det M and
det M®, respectively, where

1/2 -1/2+7 ' -277'4+1/2 -1/2+ 771
MO — -1/2 + 771 1/2 -1/2+7 Y -2771+1/2
277 +1/2 -1/2+ 771 1/2 -1/2 + 771

1/2-7' 27 '-1/2 1/2-n7"! 1/2
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The determinants of M and M® are, respectively, (47~ — 1)27~! — 1)? and
272 — 47773, so the probability of all four edges incident to 0 being in T is
@7m~1 - 1X27 ! - 1)? = 0.0361, while the probability that the origin is a leaf
of T (i.e., has degree 1 in T) is 87~ 2 — 1672 = 0.2945.

The remainder of this section corrects, proves and generalizes some conjec-
tures of Aldous about spanning trees for graphs as the graphs tend to infinity
locally, in the sense that the minimum number of neighbors of a vertex all
grow without bound. We first quote Conjecture 11 from Aldous (1990). To do
this, let G, denote a sequence of finite graphs, each with a distinguished
vertex v,. Let r, = deg(v,), let A, be the set of neighbors of v, in G, and for
w € A,, let ¢,(w) = P(SRWS* hits A, \ {w} before v,). Aldous then conjec-
tures the following.

ConJECTURE [Aldous (1990), Conjecture 11]. Let 1 + D, denote the ran-
dom degree of v, in the uniform random spanning tree on G,. Suppose that

r, — o suplrk(l - l/’k(w)) - ll - 0.
w
Then D, converges in distribution to a Poisson variable with mean 1.

Here is a counterexample to the conjecture. Let the vertices of G, other
than v, be {x;,y;,2;;: 1 <i <k; 1 <j < 4k}, with edges connecting v, to each
x; and y; and for every i, an edge connecting x; to each z,; and an edge
connecting y; to each z;;. Then r, = 2k. By symmetry, we have ¢, (w) = ,(x,)
for any w € A,. This is equal to P(SRW, hits y, before v,) = 2k/(1 + 2k),
hence r,(1 — ¢,(w)) = 2k /(2k + 1) — 1 and the hypothesis in the conjecture
is satisfied. But for each i, any spanning tree contains either an edge connect-
ing v, to x; or an edge connecting v, to y;, so the degree of v, is at least k.

Evidently, a condition different from r,(1 — ,(w)) converging uniformly to
1 is required for the conjecture to be true. Aldous’ condition is trying to
capture two aspects of the graph: Some sort of mixing (SRW from any
neighbor of v, returns to v, before A with the same probability) and the
correct total probabilities (these probabilities should all be about r; ! so they
can sum to 1). The mixing part of the condition as stated in the conjecture is
too weak, as illustrated by the counterexample, and needs to be replaced by a
condition that equalizes the individual return probabilities of SRW,, hitting v,
before z for any neighbors w, z of v,. The most natural such condition from
our viewpoint is (10) with x = v, and ¢ = ¢, for some {¢,} going to zero. On
the other hand, there is no need to require all the neighbors of v, to have the
same degree. Once a sufficient amount of independence has been achieved, it
suffices for the expected number of such edges in the tree to be converging to a
constant, 1 + A. The conjecture may thus be revised to yield the following
theorem.

THEOREM 5.1. Let G, be a sequence of finite graphs. Let ¢, » 0 be a
sequence of positive numbers and let v,, A,, D, and r, be as above. Assume
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that (11) holds with W = A, and ¢ = g,; this is implied for example by (10). If
in addition, L, c o 1/deg (w) > 1 + X as k — « for some positive A, then D,
converges to a Poisson variable with mean A.

REMARK. Since the theorem gives local behavior at v, it can easily be
extended to the case where G, are infinite graphs on which there is a Harnack
principle: Simply take G}, to be a large enough finite piece of G, so that the
hypotheses of the theorem are true (this is possible by the Harnack principle).

The following lemma will be necessary when calculating determinants of
transfer impedance matrices.

LeEmMMA 5.2. Letay,...,a,,, be positive real constants and let ey, ..., e, be
the edges of a spanning tree whose vertices are {1,...,k + 1}. Define a k by k
matrix M by letting M(i, j) be a, + a, if i = j and e; connects r to s; a, if e,
and e; are distinct edges meeting at r; and zero otherwise. Then det M =
(IMa)Za;h.

Proor. If &k =1, then M = (a, + a,) and the lemma is clearly true. Now
assume for induction that the lemma is true for 2 — 1. Assume by renumber-
ing, if necessary, that the vertex 1 is a leaf of the tree, there being a single edge

e; connecting 1 to 2. Also assume that 2 is connected to 1,3,4,...,r by
ey, ...,e,_q, respectively, for some r <k + 1. Row reduce M by subtracting
ay/(a; + ay) times the first row from rows 2,..., r. Since edges 2,...,r were

the only edges incident to e;, this clears the first column. The remaining
entries of m are unchanged except that all appearances of a, get replaced by
a,a,/(a; + a,). Expanding along the new first column gives det M = (a; + a,)
times the determinant of the 2 — 1 by 2 — 1 matrix gotten by taking all but
the first row and column of M and replacing a, by a;a,/(a; + ay). By
induction, the latter determinant is (a,/(a; + a )XI1; . .a;)X(a; + ay)/aa, +
Li-sa;h), so det M = ([Te,)(a; + ay)/aa, + L;.3a; ) =Tla;Za;? as de-
sired. O

Proor oF THEOREM 5.1. Let X be a random variable for which X — 1 is
Poisson with mean A. Set

#(z) = Y P(X=n)z" =z D,

Then the sth factorial moment E(X), = EX(X - 1)--- (X —-s+ 1 of X is
the sth derivative of ¢ at 1, which is equal to A° + sA*~!. The factorial
moments determine this distribution uniquely, since its moment generating
function exists in a neighborhood of zero, from which it follows that conver-
gence of the factorial moments of a sequence of random variables to the
factorial moments of X implies convergence in distribution to X [see, e.g.,
Theorem 3.10 of Durrett (1990)]. It suffices therefore to prove that
EQ + D), » »* + sA* ! as k — o for each s.
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Write E(1 + D)), as LP(ey,...,e, € T) where the sum is over all ordered
collections (e, ..., e,) of s distinct edges incident to v,. Fixing such a collec-
tion, we have P(ey,...,e, € T) = det M(e,,...,e,). From (11) we have that
MG, j) = (1 + O(ep)Ndeg, (x)~* + 8,; deg,(y,)™") where e; = 3-63)’1.. With s
staying fixed, this and Lemma 5.2 give

(12) detM=(1+ 0(1))( 12[1 deg*(wi)_l)(l +r;t i deg*(wi)).
i= i=1

Summing over all ordered collections gives

detM=(1+o(1))[ Y li[def-r*(wi)_1

Cppenny =1
e e

s—1
+ X s(n—s)rt l_I1 deg*(wi)_l],
Ciyeeny s=1) =

e e
since each ordered collection of size s — 1 appears s(r, — s) times in the

second term of (12) and each ordered collection of size s appears once in the
first term of (12). As s remains fixed with the minimum degree among x and
its neighbors converging to infinity, the above expression for det M converges
to (Z; deg,(w;)™1)* + s(T; deg, (w;)"1)*~1 > A° + sA°~%, proving the conver-
gence of factorial moments and the theorem. O

Suppose now that we are interested not only in the degree of v, but in the
local structure of the essential spanning forest near v,. For any locally finite
rooted tree T, let T A r denote the random finite subtree of T consisting of
vertices connected to the root by paths of length at most r in T. We say that a
sequence of tree-valued random variables converges in distribution (written
T, >4 Dif T, Ar -, T A r for every r, where the latter is defined to hold
when P(T, Ar=1t) - P(T Ar =1t) for every t of height at most r. Under
suitable conditions on the graphs G, it will turn out that the component T, of
the uniform essential spanning forest on G, rooted at v, will converge in
distribution to a particular tree &, which we now define. Let &, be a singly
infinite path, x,, x;,..., to which has been added at each x; the tree of an
independent Poisson (1) branching process (which is critical hence finite with
probability 1). Another way of describing T is as the tree of a Poisson (1)
branching process rooted at x, and conditioned to survive forever. Aldous has
conjectured [personal communication, though the conjecture is implicit in
Aldous (1991b)] that T, converges in distribution to &, whenever G, grows
locally in a sufficiently regular manner. In the terminology of Aldous (1991a),
T, should converge to a sin-tree with the fringe distribution of a Poisson (1)
branching process. This is known in the special case where G, = K,, the
complete graph on £ vertices [Aldous (1991b) and Grimmett (1980)].

We are now in a position to prove this. A consequence is that the probability
of there existing two disjoint paths of length L, in T, from v, goes to zero as
k — o, provided that L, — «. A question left open in Pemantle (1991) is
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whether the components of the uniform essential spanning forest have one or
two ends [the possibility of more than two is ruled out by an argument in
Burton and Keane (1989)]. We believe the answer to be that all components
have one end, and convergence to zero of the probability of there being two
disjoint infinite paths from v, can be viewed as a heuristic argument in favor
of all components having one end.

THEOREM 5.3. Let G, be a sequence of finite graphs with distinguished
vertices v,. Assume, by renumbering if necessary, that

(1+0(1)) max deg,(x) =k = (1 + o(1)) min deg.(x)

as k — ». Also assume the following version of (11) uniformly in edges
e, feq:

M(e, f) =k '(lenfl +0(1)).
Then T, »4 ;.

ReEMARK. For r=1, T Ar is a star centered at v, with 1 + D, edges,
while &, A r is a star centered at x, with 1 + X edges, where X is Poisson
with mean 1. Thus the case r = 1 is essentially the previous theorem. Notice
also that the usual families of graphs G, (e.g., complete graph on % vertices,
k-cube, k /2-dimensional torus of arbitrary length) all satisfy the hypotheses of
the theorem.

Proor. For a finite rooted tree ¢ and finite rooted graph u, say that a map
f from the vertices of ¢ to the vertices of u is a tree map if f is injective, maps
the root of ¢ to the root of u and f(x) ~ f(y) for each x ~y. Let N(u;t)
denote the number of distinct tree maps from ¢ to u. For example, if ¢ and u
are stars of respective sizes s and r about their roots, then N(u;¢) = (r),. The
proof of this theorem generalizes the proof of the preceding theorem, in the
sense that EN(T,; ¢) is a sort of generalized th moment of T,. In the appendix,
the usual tightness criteria for convergence of probability measures are ex-
tended in an obvious way to tree-valued random variables, showing in particu-
lar (Theorem 8.7) that if EN(T,;¢) — EN(T;¢) for each ¢ and the values of
EN(T; ¢) uniquely determine the distribution of T, then T, —, T. Also proved
there is the somewhat less trivial fact (Theorem 8.8) that the values of
EN(T; t) uniquely determine the distribution of T under the growth condition:
EN(T;¢) < el for some c. (A sharper growth condition such as an analogue
to Carleman’s condition could be obtained but is not needed here.) What
remains then, is to show that EN(T,; ) » EN(Z;¢) for each finite ¢ and to
verify the growth condition on EN(&;; t).

Begin by establishing

(13) For any finite rooted tree ¢, EN(U;t) = 1,

where U is the tree of a Poisson (1) branching process rooted at some vertex
¥o- Let z, be the root of ¢. Use induction on the height of ¢. If ¢ is just z,, then
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N(u;t) = 1 for any u, so the equation is trivially true. Now suppose z, has s
descendants z,, ..., 2, for some s > 0 and assume for induction that (13) holds
for each of the subtrees ¢;,, 1 <i < s, rooted at z;. Let » > 0 be the random
number of descendants y,,...,y, of y,. Conditional upon r, each of the
subtrees u; rooted at y; is the tree of an independent Poisson (1) branching
process. Now any tree map from ¢ to U maps each ¢; to a distinct u ;. Thus
N(U;t) = IT15.,N(u, ; ¢;), where the sum is over all ordered sequences of
distinct %,..., %k, chosen from among 1,...,r. Then by independence condi-
tional on r,

EN(U,t) = Y (e '/r)) ) jli[lEN(ukj;tj).

By the induction hypothesis each expectation is one, so the sum is just the
number of ways of choosing the &,’s. Thus EN(U; ) = L (e~ !/r!)(r), = E(X),
where X is Poisson of mean 1. This is equal to 1, establishing (13).

Now we compute EN(Z; t). Recall that &, is a path x;: i > 0 to which has
been added an independent Poisson (1) branching process, say U, at each x,. If
f is a tree map from ¢ into &, there is a greatest { for which x; is in the
range of f. Let w(f) denote the vertex of ¢ that maps to x; for this greatest i.
For each vertex z of ¢, we will show that the expected number of tree-maps f:
t > &, for which w(f) = z is 1. Indeed, if x, = 2, 2,...,2;, = z is the path
from the root of ¢ to z, then the tree-maps f for which w(f) = z are in one to
one correspondence with the collections of maps f,..., f;, where f; maps the
subtree ¢; of ¢ rooted at z; to the subtree #,(i) of &, rooted at X;. Thus the
number of f for which w(f) =z is [T¥_,N(Z(i);t,). But each (i) is an
independent Poisson (1) branching process, so by (13), the product is 1.
Finally, summing over the vertices z of ¢ gives that EN(Z,;t) is equal to |¢,
the number of vertices of ¢. This verifies the growth condition on EN(Z;¢)
with miles to spare.

To calculate EN(T};¢), observe that any tree-map f: ¢t — T is also a tree
map from ¢ to G, where G,, is considered to be rooted at v,. If u(f) denotes
the image of f as a subtree of G, then we may write

(14) EN(Ty;t) = XP(u(f) cT),

where the sum is over all tree-maps f: ¢ = G,. Fix f. Then P(u(f) c T,) =
det M, where M is the transfer impedance matrix for u(f) as a subgraph of
G. By hypothesis M(e,e’) = k~(le N €'| + o(1)). Since f is injective, £~ is
defined on u(f) so lene'| = |f~%e) N f~1(e')l, thus for any f the transfer
impedance matrix for u(f) in G, may be written as 2~ 'P, where P is a
matrix indexed by the edges of ¢ for which P(e,e') = (le ne'| + o(1))
as k — o, Since the size of P remains fixed as & — «, Lemma 5.2 with a; =
1 for all i gives that det P is equal to [¢/(1 + o(1)), and thus det M =
E1~18t(1 + 0(1)). Then the probabilities in (14) are all equal and the identity
becomes

EN(T,;t) = N(G,, )R 1e(1 + o(1)).



1352 R. BURTON AND R. PEMANTLE

But N(G,,t) = k"1 + 0(1)). An easy way to see this is to consider building
atree-map f:t — G, starting at the root and working outwards, not worrying
about injectivity. If f is defined on 2z, then by hypothesis there are k(1 + o(1))
neighbors of f(z) and each descendant of z may be mapped to any neighbor of
f(2). The fraction of all maps built this way that are injective goes to 1 as ¢
remains fixed and & — o, so the total number of maps is £"~1(1 + o(1)). Now
(14) becomes EN(T,;t) = [¢/(1 + 0o(1)), hence EN(T,;t) - EN(Z,;t) as
claimed. Since the growth condition on EN(Z;¢) has been verified, this
shows T, -, &,. O

6. Entropy. In this section we consider the entropy of the essential
spanning forest process.

The set of essential spanning forests is a closed shift-invariant subset of
{0, 1} where E(G) is the edge set of G. The topological entropy (per vertex)
of the essential spanning forest is defined to be

1
1

im —
n—ow |Bn|

Hy

op — log( NBn)’

where B, is an increasing sequence of rectangular boxes (i.e., of the form
C X S where C is a rectangular box in Z¢ together with the induced edges)
and Ny is the number of essential spanning forests of the induced graph B,
where a forest is essential if every component of the graph is required to touch
the boundary of B. We may also consider boxes with boundary conditions,
meaning a box B together with an equivalence relation = on the vertices of
B that neighbor B¢. An essential spanning forest on a box with boundary
conditions is one that becomes a tree under the contraction map consisting of
B — B/= (think of the boundary conditions as telling which vertices are
connected by unseen edges in B°).

Notice that if B is the union of two boxes C and D, then any essential
spanning forest of B restricts to essential spanning forests in both C and D.
This means that Nz < N, N, so that log(NNp) is subadditive and the entropy is
independent of the sequence of boxes chosen. There is a variational principle
for the topological entropy of the essential spanning forest:

H,,, = sup{ H(u)|u is an invariant probability measure},

where H(u) is the Kolmogorov-Sinai entropy of u per vertex with respect to
the group of translations by Z?. See Misiurewicz (1975) for a short proof of
this fact.

Now let u; be the probability measure of uniform essential spanning
forests on G. Using arguments described in Pemantle (1991) it is seen that if
B, is any increasing sequence of rectangular boxes with arbitrary boundary
conditions and if u, is the measure that gives equal weight to each forest in
B,, in which each component of the forest meets the boundary of B,, then u,
converges weakly to the translation invariant probability measure u,; more-
over this convergence is uniform in the boundary conditions. By uniform
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convergence we mean the following. Suppose that we are given a cylinder set
and an ¢ > 0. Then there is a box B, containing the cylinder, so that for any
box C containing B and any boundary conditions on C we have that the
uniform probability measure on essential spanning forests of C takes a value
on the cylinder set that agrees with that of u; to within e.

The principle content of this section is the following theorem.

THEOREM 6.1. (a) The measure p of the uniform essential spanning forest
process is the unique translation-invariant measure on the set of essential
spanning forests whose Komogorov—-Sinai entropy is H top*

1
(b) Hyp = 3 [ Jog(D'x(Q(2)(1))) da,

where x(Q(a)) is the characteristic polynomial of @(a) and the integral is over
the d-torus with respect to Haar measure.

Before proving the theorem we give some examples of (b) in which the
entropy can essentially be read off. The case when S = {1}, that is, £ = 1, is
especially easy to analyze because @(«) is a 1 X 1 matrix. In these cases the
entropies are the same as entropies calculated by Lind, Schmidt and Ward
(1990) of some seemingly unrelated dynamical systems that can be represented
as Bernoulli shifts on certain subgroups of (Z¢)®/? defined by periodic linear
relations. We are at a loss to explain this apparent coincidence.

Suppose the origin is connected to M pairs of opposite vertices in G = 7Z<.
Say the number of self-edges per vertex is /, though clearly this must drop out
of the calculation. Suppose we denote representatives of these pairs by
{x,:1<m <M} Then D=2M + [ and

Q(a) =D‘1(l + % 2cos(2ma ~xm)).

m=1

Then x(Q(X1) =1-@Q(a) =D Z¥_,2 — 2cos(2ma - x,,)) and the en-
tropy is

M
f log|2M — ) 2cos(27a-x,,)]|da.
T¢ m=1

One such example is Z? itself with nearest neighbor edge relation. The en-
tropy is

flfllog(4 — 2co0s(2ma;) — 2cos(2may)) da; da, = 1.166.
)

Another is the triangle lattice. This has a representation as the nearest
neighbor lattice on Z? with added edges placed in the “southwest—northeast”
diagonal of each square. See Figure 2. In this case, ignoring self-edges,
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A \ V2

R

Fic. 2.

Q(a) = (1/6)2 cos(2ma,) + 2cos(2may) + 2 cos(2m(a; + @) and the en-
tropy is

/lfllog(G — 2cos(2ma;) — 2cos(2may) — 2cos(2m(a; + ay))) da; day
0’0

~ 1.61.

These are the same as the entropies given in Lind, Schmidt and Ward (1990),
for Haar measure on the subgroups of (R/Z)?* consisting, respectively, of
those configurations ¢ for which 4¢(x) — ¢(x + (0,1)) — ¢(x + (0, —1)) —
o(x + (1,0)) — ¢(x + ((—1,0)) = 0 and those configurations ¢ for which

66(x) = d(x +(0,1)) = ¢(x + (0, 1)) = ¢(x + (1,0)) — ¢(x + (~1,0))
—¢(x+(1,1)) —p(x+ (—-1,-1)) = 0.

The proof of Theorem 6.1 uses the following lemma on the stability of
entropy under changes in a small percentage of the output of the process.

LemMA 6.2. Let (Q,u) be a Lebesgue probability space. Suppose that
X=(X,X,,...,Xy) and Y = (Y, Y,,...,Yy) are binary random variables
such that for all o € Q, #{ilX; # Y;} < K. Then

K log(N)

1 1

FHX) = FH(Y)| < —
Proor. Let Z; =1y .y, Then H(X)<H(X,Z)=H(Y,Z)<H(Y)+

H(Z). By symmetry we see that |H(X) — H(Y)| < H(Z). But by counting,

H(Z) < log(N¥), proving the lemma. 0O

Proor oF THEOREM 6.1. Let En have arbitrary boundary conditions and
let B, have the same vertex set but with unconnected boundary conditions,
that is, the equivalence relation consists of singletons. If &, gives equal
probability to each spanning forest of B, in which each component touches
the boundary, then let 7, be the measure concentrated on spanning trees of G
obtained as follows. First partition the vertex set of G with translates of B,
and put independent copies of i, on each of these translates of B,. Then add
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[at most O(n?~1)] edges in each translate of B, to make a tree that spans this
translate. Then connect each of these trees in the translates by a translation-
invariant path similar to those constructed in Burton and Keane (1991). This
random procedure produces a random spanning tree on G with two ends
whose measure is denoted 7,. It may be made translation-invariant by averag-
ing the distribution over all shifts by Z¢ shifts in B,. By the preceding lemma
we see that for each n,

H_+0

top

1 ~ 5 ~
IBan(”’n’Bn)SH(Vn) +0 nd d

n?llog(n) )
— | <
n

n?~llog(n) )

Likewise it is seen that

1
lim —H B,) =H
m |Bn| (/'Ln’ n) t

op?

where u, is the uniform measure on spanning forests of B, in which every
component touches the boundary. A similar argument together with the
subadditivity of entropy gives us that H(ug) = Hy,,.

Further, if u is any ergodic translation-invariant probability with H(u) =
H,,, then we can show that u = us. Fix a rectangular box B. Consider a
much larger C around B. Condition on the u-outside of C and record the
boundary condition x = y if and only if x and y are connected by a path in C*.
Since u has maximal entropy, the conditional distribution of u on B is the
same as the distribution of uniform essential spanning forests with these
boundary conditions. (Were this not true we would be able to modify u within
such boundaries and force the entropy to be strictly larger.) If the outside box
is large enough, then we see [again using the arguments in Pemantle (1991)]
that the conditional distribution of u on B is very close to the distribution of
e on B uniformly in the boundary conditions. Integrating this u-conditional
distribution with respect to the u-outside of the large box gives us that the
u-distribution on B is very close to the ug-distribution on B. Taking limits
gives u = ug. This proves part (a) of the theorem and leaves only the
computation in (b).

Now we consider finite subgraphs with periodic boundary conditions. Con-
sider the total graph (Z,)? =1{1,2,...,n}? with nearest neighbor relation
taken modulo n. Our vertex set will be (Z,)? X S with incidence matrix

M,((%,1),(y,J)) = R"7*(i, ),

where the y — x is taken mod n and n is assumed to be large enough that
lx| > n implies R* = 0.

Let Ny = the number of spanning trees on this graph. We have shown
above that H,,, = lim(1/n%k)log(Np ).

To complete the proof of the theorem we use the matrix tree theorem to
compute Np . This theorem [Cvetcovic, Doob and Sachs (1980), page 38] says
that if we have a D-regular connected graph with L vertices and if the
eigenvalues of the incidence matrix are A, Ag,...,A;_q,A; = D, then the
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number of spanning trees of the graph is
1 L-1
— D - /\i .
£ L@ -)

So it is enough to compute the eigenvalues of the matrix M,. Given
a=(a,/n,...,ay/n) for a, € Z, (which we may view as an element of T'%¢)
suppose that A(a) is an eigenvalue of @(a) with eigenvector v(a). Then DA(a)
is an eigenvalue of M, with eigenvector v(a) ® ¢*.

This is checked analogously with Lemma 2.1:

LM, ((%,8), (3, 7)) v(a); exp(2mic - y)
= ZRy‘x(i,j) exp(2mia - (y — x))v(a), exp(2mia - x)
J»y

= ZDQ(a)i,jv(a)j exp(21-ria . x)

Now since D - Q(«) is Hermitian, in particular its eigenvectors span C* and

the characters exp(2mia - x) span ng; and we see that we have found a
complete contingent of eigenvalues:

~

1
Ny, = 3 [1(D = DA(a)

= d( ]_[Dkl_[(l — Ma))D*~ 1>)(}:[1(1 - /\(0)))

a#0

- W(al:[oDkXQ(“)(l))Dk_l().131(1 - A(0)) ).
Continuing and ignoring some logarithmically insignificant terms we get

H

top = hm

kld log (N

1
hm— Y. log(D* XQ(a)(l))_d

n a#0

1
7 | Jog(Dhxau(D) de.

The last equality follows from approximating the integral by Riemann
sums. Because of the estimate of the eigenvalues from Lemma 2.4 we see that
I,\/Q(a)(l)l < Kla|~?* so that the Lebesgue integral is finite. On |a| > ¢ all the
terms in the sum for all n are bounded, so by bounded convergence, the
summations (qua integrals of step functions) converge to the integral. On
0 < |al < &, all sums and the integral go to zero as ¢ — 0, implying the desired
convergence. O
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7. Dominoes. A domino tiling for a graph G, otherwise known as a
perfect matching or a one-factor, is a collection of edges of G the disjoint
union of whose vertices is V(G), the vertex set of G. There is a correspondence
between spanning trees of a planar graph and domino tilings of a related graph
which we now describe. Let G be a nice planar graph with vertex set V; and
edge set Eg, “nice” meaning here that every vertex has finite degree and
every face including the exterior face is bounded by finitely many edges. Since
G is planar there is a dual graph G* with vertices V;« and edges Eg«. In
rough terms, G* is obtained from G by putting a vertex at each face of G and
joining two such vertices by an edge if their corresponding faces in G meet at
an edge. The set Vg« is identified with the faces of G, and the edge sets Eg
and Eg« are also identified. We construct a new bipartite graph G whose
vertex set is the union of Vg, Vg« and Eg;. There is an edge of G joining
v €V, and e € E; if and only if e is incident to v. Likewise v € Vg« and
e € E, are joined by an edge if v is a vertex of the edge in G* identified with
e Both G and G* sit inside of G in the sense that G = G/E; — Vg« and

= G/Eg — Vg (recall this notation from Section 2 for contraction and
deletion of a graph). Here is an illustration of this where G is the triangular
lattice (vertices are filled circles), G* is its hexagonal dual (open circles) and
the extra vertices of G are the crossing points. See Figure 3.

There is a natural correspondence between subgraphs of G and subgraphs
of G*. If T is any subgraph of G, let T* be the subgraph of G* obtained by
declaring an edge e* in T* if and only if the corresponding edge e is not in 7'.
Clearly this is also a dual operation so T** = T. We record an easy lemma on
dual trees.

LemMa 7.1. (a) Let G be a finite planar graph. Then T* is a spanning tree
of G* if and only if T is a spanning tree of G.

(b) Let G be an infinite planar graph all of whose faces are bounded
regions. Then T is a one-ended spanning tree if and only if T* is a one-ended

Fic. 3.
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spanning tree. Also T is an essential spanning forest if and only if T* is an
essential spanning forest.

ReEmMARk. This lemma and its soon to be described connection with domino
tilings were noticed independently by Jim Propp, who suggests the name
“Temperleyan” for graphs that are isomorphic to G for some G. Temperley
(1974) first used this trick in the case that G was Z2 We also learned of this
independently from Piet Kastelyn (personal communication).

Define a directed essential spanning forest to be a spanning forest together
with a choice of an end for each component. Think of edges of a directed
spanning forest being oriented toward this end. If T and T* are dual essential
spanning forests of a nice infinite planar graph, say the pair (T, T*) is directed
if an end has been chosen of each component of T and of T*. For any nice
infinite planar graph G, we now describe a bijection between domino tilings of
G and directed pairs of essential spanning forests of G and G*.

If (T, T*) is such a pair, then let W(T, T*) be the domino tiling. A ¢ E(G)
such that:

(i) The edge from v € V(G) to e € E(G) is in A if and only if e € T and is
oriented away from v, and

(ii) the edge from v* € V(G*) to e € E(G*) = E(G) is in A if and only if
e € T* and is oriented away from v*.

It is easy to verify that A is a domino tiling: Each vertex v € V(G) is in
precisely one edge of A, corresponding to the unique edge in T out of v;
similarly each v* € V(G*) is in a unique edge of A; and each e € E(G)isin a
unique edge of A since e is in precisely one of T, T*. Conversely, if A c E(G)
is a domino tiling, then each edge f < A connects some e € E(G) either to
some v € V(G) or some v* € G*. Let ®(f) be the edge e in either G or G*
accordingly and orient it away from v or v*. Then the collection of all {®( f):
f € A} is the union of a subgraph G’ of G and the corresponding dual
subgraph G'* of G*. If G’ has a loop, then inside the loop is a component of
G'*. Starting anywhere in this component of G"* and following the orientation
creates a loop since the component is finite. This loop encloses a loop of G’
inside the original loop. But this cannot continue forever, whence G’ (and G'*)
has no loop. Thus G’ and G'* are essential spanning forests with each
component directed toward an end.

Write II for the map that takes a directed pair of ESF’s (T, T*), and forgets
about T* and about the arrows producing the undirected ESF T. Then we
have established a correspondence

DOMINO TILINGS % DIRECTED ESF’s > ESF’s.

Now the projection IT from directed dual pairs of essential spanning forests
to essential spanning forests that forgets the orientation and T* is not in
general one to one, but by Lemma 7.1, if T is a one-ended essential spanning
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tree of a nice planar graph, then so is T*, so there is no choice to be made in
orienting the components of T' and T'*. Now fix a Z2-periodic planar graph G,
so the vertex set is Z? X S, where S = {1, ..., k}. There is then a well defined
map ¥oII~! from one-ended spanning trees of G to domino tilings of G
(which is also Z?2 periodic). The uniform spanning forest measure » on G is
supported on the set of one-ended trees [Pemantle (1991)] so the preceding
correspondence gives a transported measure # on domino tilings of G.

THEOREM 7.2. The measure v defined above is the unique measure of
maximal entropy among all shift invariant probability measures on domino
tilings and its entropy per vertex is kH(v)/2e, where H(v) is the entropy of v
and e is the number of edges per fundamental domain.

ReEMARK. This theorem works because boundary conditions are, as we have
seen in the previous section, irrelevant for trees. Since different boundary
conditions for domino tilings give different entropies [Elkies, Kuperberg,
Larson and Propp (1992), Kasteleyn (1961) and Temperley and Fisher (1961)],
the excursion through trees is the only soft method we know to get uniqueness
of the maximal entropy measure for domino tilings of Temperleyan graphs.
Schmidt [(1989), page 58] cites an argument by Kuperberg that is supposed to
prove this for 72.

Proor oF THEOREM 7.2. We have seen that 7 is well defined and it is
evidently 72 invariant, so it remains to prove the assertions about its entropy.
suppose that [ is a translation invariant probability measure on domino
tilings of G. This may be transported to a measure u on essential spanning
forests of G by u(B) = G[VY[II"'{B]ll. We show that the entropy per funda-
mental domain is preserved. First, note that u is translation invariant so with
probability 1 the components of the essential spanning forest have one or two
ends [Burton and Keane (1991)]. There is only one way that a one-ended tree
may be paved with dominoes and there are two ways a two-ended trees may be
paved. Thus the ambiguity in determining the domino tiling is one bit for a
component two-ended tree in the forest in G plus one bit for each two-ended
component in the dual spanning forest of G*. Since there are O(n) such
components in every box of side length n which has on the order of n?
vertices, we see that the entropy of 1 and i are the same.

Now H(j) per fundamental domain = H(u) < H(v) = H(#) per fundamen-
tal domain with equality only when u = v. But v is concentrated on one-ended
spanning trees [Pemantle (1991)] and hence # is the only measure which
transports to », which establishes that 7 is the unique measure of maximal
entropy on domino tilings.

Finally, recall that % is the number of vertices of G in each fundamental
domain. Let e be the number of edges and f the number of faces, in the sense
that a box {1,...,n}¢ X {1,..., k} will have approximately (1 + o(1)) fn? faces
completely contained in it as n — «. Euler’s formula applied asymptotically
says that £ + f = e. The entropy of the domino process on G is the same as
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the entropy of the spanning tree process on G (and as the spanning tree
process on G*) when measured per fundamental domain. We have given the
entropy formula for the spanning tree process per vertex. To convert this to
the entropy of the domino process on G per vertex we must multiply by
k/(k+e+f)=Fk/(2e). O

CoOROLLARY 7.3. There is a unique measure of maximal entropy on domino
tilings of the two-lattice Z?, and its entropy is 1/4 the entropy of the spanning
tree process on Z2.

ReEMARK. This entropy number was first calculated by Kastelyn (1961) as
the exponential growth rate of the number of tilings of large rectangle or
torus. Since these are atypical boundary conditions this does not necessarily
prove that this is the largest entropy possible.

ProoF oF COROLLARY 7.3. In the theorem take G = Z? so that G* is
isomorphic to Z* and G is also isomorphic to Z?. The uniform spanning tree
measure v on G induces a measure 7 on domino tilings of G that has a
fundamental domain of four vertices. The measure on G is invariant under the
induced Z? action; since there are four vertices of G in a fundamental domain
of G, this is a subgroup of index 4 in the usual group of translations of G.
Actually, though it must be invariant under all graph automorphisms o
including 90° rotations, since otherwise 7 o o would be a measure on domino
tilings distinct from 7 but with the same entropy, violating the uniqueness
shown in Theorem 7.2. O

The fact that II is not in general continuous leads to a problem in trying to
compute f.dm.s of 7. If €={T: e, ...,e, € T} is a cylinder event in the
space of essential spanning forests, then W[II"{¢]] is a finite union of
cylinder events in the space of domino configurations. On the other hand, if
¢={A: e,...,e, € A} is a cylinder event in the space of domino configura-
tions, then ¢ is not necessarily W[I1~[¢]] for some elementary cylinder event
€ on essential spanning forests. Thus knowledge of the f.d.m.’s of # would
yield the f.d.m.’s of v quite directly, but unfortunately not vice versa. To
illustrate this, let € be the event of finding a square of two vertical dominos
with the origin at the lower left corner as shown in Figure 4. Then ®[<] is the

Fic. 4. The vertices of G are open circles and the vertices of G* are filled circles.
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FiG. 5.

event that there is an oriented edge upward from the origin in T and a dual
edge in T* oriented downward on the right of the origin. See Figure 5. The
corresponding event on trees is that the edge upward from the origin be in T,
that the path from the origin to infinity be through that edge, that the edge
leading right from the origin not be in 7' and that the path connecting the
origin and the point to the right go over the top, rather than around the
bottom (speaking homotopically in the plane minus the edge leading right from
the origin). We do not know how to compute this probability. There are,
however, some cylinder domino events corresponding to events whose proba-
bilities we do know how to compute. Here is one example.

Consider the following contour which can be broken down into dominos in
the four ways as shown in Figure 6. We may calculate the probability of
finding this contour with the origin at the bottom left. Since 7 is uniform on
the interior of any box given the boundary, each of the four configurations
inside then has 1/4 this probability. To carry this out, map by ® so as to get
the following four configurations of directed edges. See Figure 7. Here, A, is
the event of there being oriented edges in T' leading up out of the origin, right,
and back down, and there also being a downwardly directed edge in T'* on the
right of the origin. Since this dual edge is implied by the other three, it is not
shown. A similar thing happens with A,, A; and A,. Now A, UA, U
A;UA, is the event of T containing three out of the four edges of
the square with the origin at its lower left, and having the path from this
square to infinity exit the square at the lower right. Then P(A) = P(A) =
P(A, UA, UA; U A, which is by symmetry just 1/4 times the probability of

b
E:.
b
~N
b
w
>
»

Fic. 6.
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T containing three of these four edges, with no specified orientation as shown
in Figure 8, which is just 1/4 the probability of the vertex in the center of the
square being a leaf of T*, which is 272 — 472 = 0.0736 from Section 5.

The examples which work out this nicely are a small finite class. There is
another class of examples of f.d.m.’s we can calculate. We give just one
illustration, since the taxonomy is still being worked out. Consider the follow-
ing pair of dominos and corresponding set of oriented edges of T. See Figure 9.
The probability of these two oriented edges is the probability of T' containing
the two unoriented edges times the conditional probability given that of the
path to infinity leaving through the point at the upper right. The first
probability is computed by transfer impedances to be

1/2 1/2 - 1/m| |
1/2 - 1/m 12 |T7 7

-2

The conditional probability may be seen to be the probability that a random
walk coming in from infinity hits the set of three vertices first at the upper
right. The hitting distribution from infinity on a set of vertices x,...,x, is

..........

Fic. 9.
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proportional to the % entries of (1,...,1)M ™!, where M is the Green’s matrix,
that is, M;; = H(x;, x;) (proof: use a last exit decomposition from {x, ..., x,}
and then invert the linear relations). Then the conditional probability
in question is /(67 — 8), which gives a total probability of (1 — 7~ 1)/
(67 — 8) = 0.0628.

APPENDIX

A.1. The classical Green’s function. Let H(x,y) be the classical Green’s
function for G defined by

(15) H(x,y) = iOP(SRWx(n) =y)

when d = 3, and

(16) H(x,y) = io [P(SRWx(n) =y) — P(SRW,(n) = x)]

when d =1 or 2.

THEOREM A.1. The sums in (15) and (16) converge. Furthermore, H has
the following properties:

(1) (H) is symmetric;

(ii) H(x, - ) is harmonic except at x, where its excess is 1,
(iii) H is bounded if d > 3,
(iv) H(x,-) — H(y, - ) is bounded for fixed x,y if d < 2.

REMARK. Theorem 4.1 follows immediately from this and Corollary 3.3.

ProoF. Begin with the observation that SRW? is transient if d > 8 and
recurrent if d < 2; there are many ways, to see this, one being to watch SRW ¢
only at the times when it hits Z¢ X {1} which is then a symmetric random
walk on Z¢ with P(x, y) having exponential tails. When d > 3, the theorem is
now easy to prove. The sum converges by definition of transience. Writing
P(SRW,(n) = y) as the sum of D~" over paths of length n from x to y shows
by path reversal that this is equal to P(SRW,(n) = x) for each n, hence H is
symmetric. Boundedness follows from the fact that H(x,y) = P(SRW, hits
y)H(y,y) < H(y, y), and from the fact that H(y, y) takes on only % different
values.

Assume now that d < 2. Since SRWY is recurrent there is a o-finite
stationary distribution w, unique up to a constant multiple [Isaacson and
Madsen (1976)]. It is easy to see that this is uniform. Furthermore, it is well
known [Isaacson and Madsen (1976)] that for any x,y,z € G, the ratio of
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Cesaro averages converges:
1 N 1 N
(1) 5 L P(SRW,(n) = 1) / 5 L P(SRW,(n) =) = w(x) /u(y) = 1
n=1 n=1

as N — «. Now fix x, y, z and consider the Markov chain {Z(n): n > 1} on the
space {x, y} gotten by looking at SRW, only when it is at x or y. In other
words, Z(n) = x if the nth visit of SRW, to {x,y} is at x and Z(n) =y

otherwise. The transition matrix for Z is |, 1;“ , where a = P(SRW,
hits x before y) and b = P(SRW, hits y before x). It follows easily from (17)
that the stationary distribution for Z must be half at x and half at y, from
which it follows that @ = b in the transition matrix.

It is easy to calculate

ay LR =0 - () =)

= [P(Z(N) =x) - P(Z(N) =y)]/(2 - 2a).

Now for any positive integers L < M, we have

M
; [P(Z(n) = x) - P(Z(n) =y)]
L
= ;O [P(SRW,(n) = x) — P(SRW,(n) = y)]

+ E

)

E( v I(SRW,(n) = x) — I(SRW,(n) = y)ISRW,(L + 1))

n=L+1

where 7 is the time of the Mth visit to {x, ¥}, and letting M — « while using
(18) gives

L
{:O [P(SRW,(n) = x) — P(SRW,(n) = y)]

= [2P(SRW, hits x before y) — 1) /(2 — 2a)
—[P(SRW,(7,) = x) = P(SRW,(r;) = )] /(2 - 2a),

where 7, is the first time after L that SRW, hits {x,y}. The last term is
converging to zero as L — o, hence letting z = x, the sum in (16) converges.
Moreover, when z = x the sum converges to 1/(2 — 2a), and having shown
that a = b in the transition matrix, we see that this is symmetric in x and y,
proving (i). Along with the relation P(SRW,(n) = y) = P(SRW,(n) = x), this
also establishes that 17, _[P(SRW,(n) = x) — P(SRW,(n) = y)] = 0. From the
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fact that P(SRW,(n) = w) — 0 for any w and from the relation

N
[P(SRW,(n) =y) — P(SRW,(n) = x)]
n=0
N-1
=6,(y) +D7 1 ), Y [P(SRW,(n) =z) — P(SRW,(n) =x)],
z~y n=0
it now follows that H(x, - ) is harmonic except at x and has excess 1 at x.
Finally, to check that H(x, ) — H(y, - ) is bounded for fixed x and y, use
X, _o[P(SRW,(n) = x) — P(SRW,(n) = y)] = 0 to conclude that H(x,2) —
H(y,z) = 2% _[PSRW,(n) = x) — P(SRW,(n) = y)]. This is just (2P(SRW,
hits x before y) — 1)/(2 — 2a), and the numerator is bounded between —1
and 1, which proves that H(x, - ) — H(y, - ) is bounded. O

A.2. Harnack lemmas. Lemma 3.1 is developed in Lawler (1991) through
a series of theorems beginning with a local central limit theorem for SRW on
7°. We first remark that [Lawler (1991), Theorem 1.2.1] actually holds for the
following more general random walk. Let {X,: n > 0} be an irreducible aperi-
odic random walk on Z¢ with symmetric transition probabilities [i.e., P(x, x +
a) = P(x, x — a)] that decay exponentially [i.e., P(x, x + a) = O(e °!%))]. Then
the characteristic function for X, is still given by ¢(8)" where ¢(8) is real and
equal to 1 — (6,0) + 08, 6)%) near 0 for some positive definite form ( , ).
Then the proof of [Lawler (1991), Theorem 1.2.1] gives the following theorem.

THEOREM A.2 (Local CLT). Under the above assumptions on X, there
exists a C >0 and a positive definite form { , ) for which P/x,y) =
Cn=4/2e==%2=9/22(1 + O(min(n =% (x — y,x — y))).

Now let {Y,: n > 0} be a SRWE started at the point (0,1). Write Y, =
(X,,Z,), where X, € 7¢ and Z, is the projected RW on S. It can be shown
that X, and Z, are exponentially asymptotically independent in the sense
that the joint distribution of X,, and Z, is within e™°" in total variation of the
product distribution with the correct marginals. Applying Theorem A.2 to a
time change of X,,, it can be shown that X, obeys the same local central limit
theorem, the correction for the time change being smaller than the error
bounds in the CLT. This gives the following theorem.

THEOREM A.3 (Local CLT for G). Let Y, be a SRWEC. Then there exists a
C > 0 and a positive definite form < , ) for which

P,((x,1),(y,J)) = Cn~%/2e~ %= 0/22(1 + O(min(n~',{x — y,x — ¥)))).

This is sufficient to establish part (i) of Lemma 3.1 along the following lines,
as pointed out to us by Maury Bramson (personal communication). For x € B,
and z € dB,,, v2~(2) is the sum of probabilities of paths starting from x and

hitting dB,, for the first time at z. Reversing the paths, shows that this is the
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expected occupation of x by a SRW starting from z and killed when it hits
dB,, again.

First suppose d > 3 and fix ¢ > 0. Then the local CLT for G allows us to
pick L > n large enough so that for w € B, the occupation measures at x
and y for SRW, will be within a factor of 1 + ¢ of each other for any
x,y €B,. If m is chosen large enough, then the occupation measure for
SRW,, at any point in B, will be at most 1 + ¢ times the occupation measure
for SRW,, killed upon hitting dB,,. Now use the Markov property to write the
occupation measure at x for SRW, killed upon hitting dB,, as a linear
combination over w of the occupation measure at x of SRW, killed upon
hitting dB,,. This shows the measures at x and y to be within a factor of
(1 + £)?, and since ¢ was arbitrary this establishes the Harnack principle (i).

On the other hand, if d < 2 then SRW;; is recurrent, then for any ¢ > 0 and
n there is an m large enough so that P(SRW, hits y before 4B,,) > 1 — ¢ for
all x,y € B,,. Then v2» > (1 — e)vP~ for all x,y € B, establishing ().

The remaining parts of the theorem are derived as follows. To get (ii) from
(1), pick x € dB,, and write )

vBn = P(SRW, does not return to B, )p2~B» + P(SRW, returns to B,)v’,

where v’ is a mixture over y € 4B, of vyB'", the mixing measure being given by
the return hitting distribution of SRW, on dB,. Since B, is held fixed,
v'({2))/vB({2}) is converging to 1 uniformly in z as m — «. Since P(SRW,
returns to B,) is bounded away from one (for fixed B,), solving for pB~ gives
that sup, p2»/vB» - 1 as m — ». To get (iv) from (ii), restate (ii) as saying
that the sum, call it w(x,z2,n,m), of D™!"! over paths y from x € B, to
z € B,, that avoid 4B, and dB,, except at the endpoints is equal to (1 +
0(1)) f(x)g(z, m) and functions f,g as m — . The restatement of (iv) is
easily seen to be identical by time reversal. To get (iii) from (iv), just note that
v2» is a mixture over y € d(B¢,) of pBrBnm,

Finally, to get (v) choose L > n so that B, contains all the contracted
edges. For (i) and (ii), write 2~ and pB~B» as a mixture over y € 9B, of
pymBL and observe that p~P. for the contracted graph is equal to p2~5z for
the uncontracted graph, so that all the measures being mixed are identical up
to a factor of (1 + o(1)). For (iii) and (iv), write v2» and pZ»B» as a mixture
over y € dB; of vyB" and observe that this time it is the mixing measures,
which are just pB:B~, that are all within a factor of (1 + 0(1)) as x varies with
m — o, O

A.3. Convergence of probability measures on trees via moments. Proposi-
tions A.4-A.7 are adaptations of classical tightness criteria to the setting of
tree-valued random variables. The development is brief and essentially copied
from Durrett (1990). Theorem A.8 is less trivial and the proof is given in full
detail.

Fix a positive integer r until further notice and restrict attention to trees of
height at most r. Recall the definitions of |¢|, # A r and N(u;¢) from Section 5.
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We say a family of probability distributions {P,} on such trees is tree-tight if
for all £ > 0 there is a K for which limsup, P,(IT| > K) <e.

ProrosiTiON A4. If {P,} is tree-tight then every sequence of measures from
{P,} has a subsequence that converges in distribution to a probability measure.

Proor. Since the P, laws of |T| are tight in the usual sense, every
sequence has a subsequence P, for which the laws of |T| converge in distribu-
tion to some probability measure. For each k, the conditional distribution
(P, | IT| = k) is finitely supported, hence has a subsequence converging to a
probability measure, and diagonalizing over k gives the desired subsequence.

O

PropPoSITION A.5. Let g, h be functions from trees of height at most r to the
reals. Suppose that g > 0 and that h(t)/g(t) > 0 as |t| » ». Let P, be
probability measures on these trees with P, —», P, and limsup, E,g < o,
where E,, is expectation with respect to P,. Then E, h - E_h.

Proor. |E,y — E k| < |E RI(IT| > K) — E_,RI(|T| > K)| + |[E, RI(IT| <
K)| + |[E_hI(T| < K)|. The last two of these can be made small uniformly in
n by using |k| /g — 0 and choosing K large enough. The first goes to zero for
any fixed K. O

ProposiTION A.6. Suppose P, -, P, and for each tree t, E, N(T;¢) con-
verges to a finite limit m(¢). Then E_N(T;t) = m(¢) for all ¢.

Proor. For any tree ¢ of height at most r, let €(¢) be the set of all ¢ of
height at most r that extend ¢ by adding to some vertex in ¢ a single finite
chain of descendants. Let

g(u)= Y N(u;t).
t'e€(t)

Notice that g,(u) > (lu| — [t))N(u;t) since each tree-map ¢: ¢ - u can be
extended to a tree map of some ' € €(¢) into u in at least as many ways as
there are vertices in u \ Image(¢). Then

hmsupEngl(T) < Y limsupE,N(T;¢) < Y, m(¢) <.
red(t) n ted(t)

Applying the previous proposition with g =g, and h = N(-;¢) finishes the
proof. O

ProposiTiON A.7. Suppose E, N(T;t) » E,N(T;¢t) < © for all t and that
P, is uniquely determined by the values of E,N(T;t). Then P, —, P..
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Proor. First notice that {P,} is tree-tight: Letting ¢ ; be a single chain of
J + 1 vertices, |T| = £7_,N(T;¢,), so

limsupE,|T| = limsup ), EN(T;¢;) <
n n j=0
by hypothesis, and using P(|T| > k) < ¢ 'E|T| establishes tightness. Now
each sequence in {P,} has a subsequence converging to a probability measure
G and the previous proposition shows that E, N(T; ¢) — E; N(T; ¢) for each ¢.
Then G = P_ by the uniqueness assumption. O

For a positive integer-valued random variable X, the moments of X deter-
mine its distribution at least under a condition on the rate of growth of these
moments. The remainder of the development of the method of moments for
trees is to prove the following analogous fact for tree-valued random variables.
Let U be a random variable taking values in the space of locally finite rooted
trees of height at most r.

THEOREM A.8. Suppose EN(U;t) is bounded by e**! for some k. Then the
law of U is uniquely determined by the values of EN(U;t) as t varies over
finite rooted trees of height at most r.

The proof is based on the following version of the integer-valued case. Let
(A), =A(A —1)---(A — s + 1) denote the sth lower factorial of A.

LEMMA A9. Suppose Y € Z* and X are random variables and for some
fixed s > O suppose the values c; = EX(Y),,; exist for j = 0 and are bounded

above by e*/ for some k. Then EXI(Y = s) is uniquely determined by the
values of the c;’s.

Proor. Let Z = X(Y),, so that ¢; = EZ(Y —s)--- (Y —s —j + 1). Then
the values d; = 3, EZ(Y — s)/ are determined from the values of c;, 1 <j by
linear comblnatlon The coefficients are bounded by some exponential e*/, so
the d; are all bounded by some exponential e Let

h(t)= X (it)j d/j!= EZeitY—9
Jj=0

The power series converges for all ¢, uniformly for ¢ € [0, 27] and hence
EZI(Y — s = 0) = (1/277)/02’%(1:) dt,
which yields
EXI(Y = s) = (1/2ws!)]02”h(t) dt. =

Proor oF THEOREM A.8. The proof is by induction on r. The induction will
in fact show that for any random variable f and any r, if U has height at
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most r, then the values of EN(U;¢) f as ¢ varies over trees of height at most r
determine the values of EI(U = t) f, provided that EN(U;#) f is bounded by
e®l for some k; using f= 1 will then prove the theorem. The initial step
r = 0 is trivial, since then U A r is always a single vertex.

Assume then for induction that the theorem is true for some r. For any tree
t let b(¢) be the number of children of the root of ¢ Define a random vector

=(z%,.. Zb(U)) whose length is always b(U) and whose distribution condi-
tlonal upon b(U) is uniform over all (U )! permutations of the b(U) subtrees
below the children of the root of U. In other words, Z is this multiset of
subtrees presented in uniform random order.

For any i and s with s > > 0 and any ¢,,...,¢, of height at most r, let
= gl(tl’ ceay tS)
= I(ZIU =t) " I(ZU =t )N(Zz+1’ tiyq) * N(ZsU;ts)I(b(U) =s).
We set up a second induction on i to show that for any ¢;,..., ¢, of height at
most » and any random variable f, the value of Eg,(¢,,...,¢,)f is uniquely
determined by the values of EN(U; #)f.
For the initial step i = 0, choose any ¢,,...,¢, and f and write ¢, for the
tree whose root has s children with subtrees tl, ...,t,. Write ¢, ; for a copy of

t4 to which has been added j leaves that are chlldren of the root Observe that
a map from ¢, ; into U is given by choosing s ordered distinct subtrees
Uy,...,u, from children of the root of u, mapping each ¢, into u;, and then
choosmg an ordered j-tuple of vertices from the remaining b(U) — s children
of the root of U. Thus

N(U;t. ;)= X N(uyty) o N(ugt)(0(U) =),

sUs

where the sum is over ordered s-tuples of subtrees from distinct children of
the root of U. For each (u,,...,u,),P(Z,...,Z) = (uy,...,u;) = 1/(b(U)),.
Consequently,

EN(Z;;t,) -+ N(Z,,t)(b(U))s+if

_r Y Nlu.: _(OU)swi
“B gy, T, N Nt () =)
1 (B(U)).sy
~EGoy. NVt ) Gy — ),

-~ EN(U;t, ;)f.

As j varies, |t, ;| increases linearly with j. By the hypothesis of the theo-
rem this 1mp11es that EN(U;t, ;)f is bounded by e®/ for some k. Then we
may apply Lemma A.9 with V= b(U) and X=EN(Z;¢t,) - N(Z,t, )f
to get that these expectations uniquely determine Eg, = N(Z;;t)) --
N(Z;t)I(b(U) = s)f.

f
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Now assume for induction that for any ¢,,...,¢,, Eg, f is determined by the
values of EN(U; ¢) f and write

Eg,.. =EI(Z,,, = ti+1)[I(Z1 =t) - I(Z;=¢)
XN(Z; 5tie2) ~* N(Zg5t ) I(b(U) =s) f].

We may apply Lemma A.9 with Y = N(Z,, ;;¢,,,) and X being the rest of the
RHS, provided EX(Y),,; is bounded by e*/ for some k. But EX(Y), <
EN(U;T)f, where T is a tree whose root has children with subtrees: j copies
of t;., and one copy of ¢;,...,¢, and ¢, ,,...,t,. Since we have assumed that
EN(U;¢)f is bounded by some e*!l, EN(U,T)f must be bounded by some
e*J, whence the lemma applies and Eg;, , is indeed determined, completing
the induction on i.
Setting i =s and f=1 now shows that for any s and any ¢,,...,¢

POBWU)=s, ZV=t,...,ZV = t,) is determined by the values of EN(U;¢).
But this probability is just C(¢,)/s! times P(U = ¢t,), where C(¢,) is the
number of permutations of {1,...,s} for which ¢, =¢_, for all i. Thus
P(U = t,) is determined for an arbitrary ¢, of height r + 1, so the induction

on r is completed and the theorem is proved. O
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