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A SHAPE THEOREM FOR EPIDEMICS AND FOREST FIRES
WITH FINITE RANGE INTERACTIONS

By Yu ZuaNG

University of Colorado

Cox and Durrett proved the shape theorem of epidemics and forest fires
with nearest neighbor interactions. They also conjectured that the shape
theorem is still true with finite range interactions. In this paper, we answer
this conjecture affirmatively. The method we develop allows us also to
improve the result of Zhang and Zhang for all dimension.

1. Introduction and statement of results. We consider the model of
the spread of an epidemic or a forest fire with finite range interactions (see [3]).
Each site x € Z2 can be in one of three states 1, 2, or 0 and the state of the
process is represented by a function ¢,: Z2? — {1,2,0}, where £(x) is the
function giving the state of x at time ¢ In the epidemic interpretation,
1 = healthy, 2 = infected, 0 = immune; while for a forest fire, 1 = alive, 2 = on
fire and 0 = burnt. An infected individual emits germs according to a Poisson
process with rate a. A germ emitted from x goes to a point y in

N, ={yeZ?|y - xll. < M}

for some finite number M at rate ag(y — x), where g is a function from
Z? — [0,1) such that

=0, ifz¢&N,,
(1.1) g(z){ > 0, otherwise,
(1.2) g(z) = 8(-2)
and
(1.3) Y g(z)=1.
z€N,

Let T,, x € Z? be independent random variables with distribution F. We
assume that F is concentrated on the nonnegative half line and is not the unit
point mass at zero. Let e(x,y), for all x, y € Z? and |lx — yll. <M, be
independent random variables with

(1.4) P(e(x,y) > t) = exp(~tag(y — x)).

T, is the amount of time x will stay infected and e(x, y) is the time lag from
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1756 Y. ZHANG

the infection of x until the first germ from x is sent to y. We let

(1.5) (x,y) = e(x,7), lfo>.e(x,y),
®, otherwise.

We say the oriented edge {x,y} is 1 (open) if 7(x,y) <o and 0 (closed)
otherwise, that is,

(1.6) P({x,3) = 1) =1~ ["exp(~tag(y ~ %)) dF(1).

Given the definition of T, and e(x, y) it should be clear that edge {x, y} is open
if x tries to infect y during its lifetime and 7(x, y) gives the time lag from the
infection of x until it tries to infect y, with 7(x, y) = = if this never happens.
We also denote by Z%(M) all the oriented edges {x,y} with [lx — yll. < M.
Then {x,y} € Z*(M) is open or closed independently of all other edges in
Z*(M) by our definition of 7(x,y). As sample space, we take I' = {0, 1)Z°*)
points of which are represented as w = {w ,,: {x,y} € Z%(M)} and called
configurations; the value w, ,, = 0 or = 1 corresponds to {x, y} being closed
or open. For fixed g and F, the corresponding probability measure on the
configurations is denoted by P,. Let

Cy = {x: x can be reached from 0 by a path of open edges)
and
a,(g, F) = inf{a: P,(C, is infinite) > 0}.
In percolation language, C, is the open cluster containing the origin 0. It
follows from the argument in [3] that
0<a g, F) <.
We abbreviate «a (g, F) to «, for some fixed g and F. We write

t(x,y) = inf{ Y m(%;_1,%;): Xg,..., %, isapath from x to y with

i=1
(1.7)
lle; — x;,4lle <M fori =0,1,...,m — 1}

for the first passage time from x to y. Cox and Durrett (see [3]) proved the
shape theorem with nearest neighbor interactions (see Theorem 1 below with
M = 1), and they conjectured the shape theorem still holds with finite range
interactions. In this paper we shall prove their conjecture.

THEOREM 1. We define B, as the set of immune sites at time t and @, as the
set of infected sites at time t, that is,

(1.8) B, ={x:£(x) = 0}and Q, = {x: £&(x) = 2}.
We assume that initially the origin is infected and all other sites healthy. We
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also assume that
(1.9) [ x?dF(x) <=
0

and a > a g, F). Then there is a convex set A such that for any ¢ > 0 as
t — o,

(1.10) P(Cont(l—-e)AcB,ct(l+e)A)—1
and
(1.11) P(Q,ct(l+e)A\t(l-¢)A) - 1.

We also consider Z¢ as a graph with edges connecting each pair of points
with [[x — y||= 1. For each edge e, there is an independent nonnegative
random variable X(e) with distribution F. For any vertices u,v, a path y
from u to v is an alternating sequence (u,, e, vy,-..,e,,v,) of vertices and
edges in Z? with u,=u, u, = v. Define the passage time of y as t(y) =

?_,X(e;). The minimum passage time from u to v is defined by
(1.12) T(u,v) = inf{¢(y): y is a path from u to v}.

Let
(113) a,,=T((m,0,...,0),(n,0,...,0)),
(1.14) b,,, = inf{T((m,0,...,0)),(n,ky,..., ky): ko,..., k, € Z}.

It is well known (see [7]) that

(1.15) lim —a,, = lim —b,, =up a.s.andin L'.
n—owo N n—o N

We define, for 6 = a or b,
(1.16) N_? , = inf{the number of edges in r: r is a path with ¢(r) = 6,,,}.
It was shown (see [10)) that if p.(d) < F(0) and d = 2, then

1
(1.17) lim—Nf/ =\ as.andin L,,
n n

where p,(d) is the critical probability for Bernoulli (bond) percolation on Z¢
and A is a nonrandom constant which is independent of a and b. In this paper
we show their result is true for any d.

THEOREM 2. If F(0) > p(d), then

(1.18) lim %Ngn =) a.s.andin L.
n-—o
2. Proof of Theorem 1. We first review the proof of [3]. When M =1
(the nearest neighbor case), Cox and Durrett denoted by «(z) the smallest %
such that: (i) there are infinite open paths to and from the square z + [— %, £ ]?,
and (ii) there is an open circuit around z + [—k, k]?> contained in z +
[—2k,2k]%. Then they can show the existence of radial limits [see (2.16) below
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for M = 1]. The proof is based on the fact that
(2.1) P(k(z) =n) —» 0 exponentially fast as n — 0

and the subadditive argument. After that they can show the shape theorem
based on their main probability estimate

(2.2) P(#(0,2) = Kllzll.) = O(llzll=®) as llz]l. — =

for some constant K.

When M > 1, the difficulty is that the open circuit method [see (ii) above]
does not work since a path and a circuit do not have to be connected even if the
path crosses the circuit. However, the recent percolation techniques (see, e.g.,
[6] and [8]) show that large sponge-crossing and sponge-connecting have a high
probability at the supercritical state. It is natural to renormalize Z?2 into large
sponge blocks to obtain some properties of connectedness. Indeed, partition Z?2
into some blocks {[in,(i + Dn] X [jn,(j + Dn]} for i, j, n € Z. Each block
lin,(i + Dn] X [jn,(j + Dn]is called the renormalized site (i, j). Denote by
V, all the renormalized sites. Therefore, V, and the edges between (i, j) and
(i,j + Dor (i + 1, j) form a standard planar graph.

For each renormalized site (Z, j), let A,(i, j) be the event that all three of
the following hold:

1. Block [in,(i + 1)n] X [jn,(j + 2)n] is connected by bottom-top and top-
bottom open paths.

2. If there exist any bottom-top or top-bottom open paths r; and left-right or
right-left open paths r, of block [ir,(i + 1)n] X [jnr,(j + 2)n], then they
are connected by some open paths from r; to r, and from r, to r; with
edges in the block.

3. If there exist any two bottom-top or two top-bottom open paths r; and r, of
[in, (G + Dn] X [jn,(j + Dn], they they are connected by some open paths
from r; to r, and from r, to r; with the edges in [in,(i + Dn] X [jn,(j +
Dn] (see Fig. 1).

(in,(j+2)n) ((i+1)n,(j+2)n)

(in,(j+1)n) ((i+2)n,(j+1)n)

Ras

(in,jn) ((i+2)n,jn)

(in,jn) ((i+1)n,jn)

Fic. 1. The events A,(i, j) and B,(i, j).
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Fic. 2. The event I'(u,v).

Similarly, let B,(i, j) be the event that all three of the following hold:

1. Block [in,(i + 2)n] X [jn,(j + 1)n]is connected by left-right and right-left
open paths.

2. If there exist any left-right or right-left open paths r; and bottom-top or
top-bottom open paths r, of black [in,(i + 2)n] X [jn,(j + Dn] they are
connected by some open paths from r, to r, and form r, to r; with edges
in the block.

3. If there exist any two left-right or two right-left of open paths r; and r, of
[in,(i + Dn] X [jn,(j + Dn], they are connected by some open paths from
r; to ry and from r, to r; with the edges in [in, (i + D)n] X [jn,(j + Dn]
(see Fig. 1).

After that, renormalized site (i, j) is said to be occupied if A, (i, j) N B, (i, j)
occurs. With this occupied site in mind, next we construct an occupied circuit.
Denote by I'(z,v) the event that there is an occupied circuit of the renormal-
ized sites which surrounds u, separating it from v, for u, v € Z2 (see Fig. 2).
By the definition of renormalized site we can see if I'(x,v) occurs, then (a)
there is an open clockwise circuit C with edges in Z%(M) surrounding u,
separating it from v and (b) each open path in Z2(M) from u to v or from v to
u has to be connected to C by some open paths in both directions (see Fig. 2).
Hence our renormalized circuit does not have the problem of connectedness
described before.

To replace Cox and Durrett’s circuit [see (ii) above] by our renormalized
occupied circuit also requires a probability estimate corresponding to (2.1).
Therefore, we need to show the following lemmas.

Lemma 1. If a > a,, then for some suitably large n there is a positive
constant k = k(a,n) > 0 such that for each pair of sites u, v € Z2,

(2.3) P (T(u,v)) =1 - exp[—«llu — vll].
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~ The principal step in the proof of Lemma 1 is the following proposition,
which is based on the methods of [6] and [8]. We shall first show how Lemma 1
follows from this proposition. Since the proof of the proposition is a little
painful, we would rather put it in the Appendix. If some readers are not
familiar with percolation language, they can skip the Appendix.

PROPOSITION. Given ¢ > 0, there exists N such that
(2.4) P,((0,0) is occupied) = P,(A,(0,0) N B,(0,0)) >1—¢

when n > N.

ProOOF OF LEMMA 1 FROM THE PROPOSITION. We follow the proof of [1]. Let
(2.5) r(a,b) ={(i,j) €V,:0<i<a,0<;<b).

Denote by R(a,b) and I,(b) the events of a left-right occupied.crossing of
r(a, b) and a top-bottom open crossing of r(a + 2b, b) which lies in the left
end or the right end square when i =1 or i = 2 with renormalized sites.
Define

2
C(a,b) =R(a + 2b,b) N { N Ii(b)}
i=1
(see Fig. 3). A standard argument (see, e.g., Lemma 4.12 and (4.61)—(4.65) in
[1D now shows that
(2.6) P(C(L,1)) = 55

will imply (2.3). Therefore, Lemma 1 is implied by the above proposition and
the FKG inequality. O

Let B(1) =[—1,1]%. We denote by d(1)1 [or d(1)|] the event that there is
an open path in Z%(M) from (or to) dB(1) to (or from) » in Z2\ B(l) (see Fig.
4), where dA is the surface of the set A of vertices.

r(a+2b,b)

R(a+2b,b)

b 1,(b) /\/_
1 I,(b)

b a b

Fic. 3. The events of C(a, b).
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B(n)

FiG. 4. The event d(1)1 and d(1)| and the definition of k.

LeEMMA 2. If a > a,, then there is a constant c(a) which only depends on a
such that

(2.7) P(d(l)L) =P(d(I)1) = 1 — exp{ —c(a)l}.

Proor. By the symmetry of g(z), the first equation is obvious. By the
definition of d(I)7,

28) P((d()1))= ¥ 2k? m P(a(k,y)),
(28) ACOLY k}l"ﬂ ¥ BUONBlmas(k M, ) ek, 7))

where

a(m,y) = {There is an open path in Z%(M) from
(2.9) dB(l) to the point y € dB(i) for m — M
<i<m and no open path in Z%(M)

from dB(1) to dB(j) for j > i}.

If a(m,y) occurs, there is no occupied circuit with renormalized sites in V,
which encircles the point y separating some point in dB(l). Then

P(d(l)1) < i (2kl)2Pa(3y€Z2, [l
k>1+1
max(k — M, 1) .
(2.10) S — such that {I'(y, 0)} )
< ¥ (2kl)2exp{-—;<(a)(£nﬁ(kT_M)} (by Lemma 1)
k=l+1

< exp{—c(a)l}

for some constant c(«). This is the proof of Lemma 2. O
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For any z € Z*(M), we denote by k,(z) the smallest 2 > 1 such that there
is an open path in Z%(M) from the boundary of z + [—%, k]2 to « and there is
another open path in Z2(M) from « to the boundary of z + [—k, k2. We also
denote by k,(z) the smallest m > k,(2) such that there exists an occupied
circuit with the renormalized sites of V, in the annulus

{z+ [=m,mPI\ {2 + [~ki(2), kr(2)]?).
(See Fig. 4.) Then we have the following probability estimate:

Lemma 3. If a > a,, there is a constant c,(a) such that
(2.11) P, (ky(0) > 1) < exp(—cy(a)l).

Proor. Clearly,
Pa(kZ(O) > l)

(212) P“(k“’(o) 7 b ka(0) < é) " P(kz(o) > 1, ky(0) = é)

sPa(kz(O) > 1, ky(0) < é) + exp(—c(a)é) (by Lemma 2).

Now by using the same proof of Lemma 2, we can show

there is no occupied circuit with

l the renormalized sites surrounding
(2.13) Pa(kz(O) >1,kq(0) < 5) <P

« 1177, e 1 17?
“gg) RIELIPN =53
< exp(—cy(a)l).
Therefore, Lemma 3 follows from (2.12) and (2.13). O

Lemma 3 prepares us to show the existence of radial limits. Let A(z) be the
set z + [—k(2), k(2)]? and #(x, y) be the minimum passage time from a site of
A(2) to a site of A(y). Let u(z) be the sum of all r{x,y} < o for {x,y} € z +
[—ky(2), ko(2)].

If #(x,y) < o, then

(2.14) i(x,y) <t(x,y) <B(x,y) +u(x) +u(y).
If we let &(x,y) = #(x,y) + u(y), then
§(x,2) <€(x,y) +£(y,2)

by the definition of £(2), k,(2) and (1.7). For any fixed 0 € Z2 let ¢, , =
&(m6,10),0 <m <1 < o,

By Lemma 3, (1.9) and the argument of (3.6) in [4], it can be seen that
Eu*(0) < » and E(#(x,y))* < . Hence ¢, , is subadditive in the sense of
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Kingman. The limit

(2.15) /.L(B,a)=llim% a.s.andin L,
exists. Also
(0,16 ¢(0,16 u(0) + u(lo
(l ) (l )I{loeCO}s (0) : ( )_

Since Eu?(18) = Eu*(0) < «, the Chebyshev and Borel-Cantelli theorems im-
ply that

u(19)
l

—- 0 as.andin L.

Therefore, by (2.15),
1
(2.16) li{n 7t(0, 160) = w(6,) a.s.andin L,.

This is the proof of the existence of radial limits.
Now we begin to show the main probability estimate corresponding to (2.2):

(2.17) P,(8(0,2) = klizll) = O(llzll-%) asz — o

for some k < »if @ > a,. Cox and Durrett [3] used the minimal circuit method
to show (2.17) for the nearest neighbor case. However, this does not work for
the finite range since we even cannot define the minimal circuit in Z2(M).
Fortunately, we can define the minimal circuit with the renormalized sites
since V, is a planar graph. Let c(z) be the minimal occupied circuit surround-
ing (i, j) with renormalized sites and ¢(z) be the union of c(z), where
(i, j) € V, such that z €[in,(i + Dn) X [jn,(j + Dn). Now we use this
renormalized min-circuit instead of the min-circuit in [3]. It follows from the
definition that our renormalized min-circuit also has the following properties
described in [3]. First, if two renormalized min-circuits have a common site
then they form a bigger circuit with the renormalized sites. Thus it corre-
sponds to an open clockwise circuit with edges in Z%(M). In addition, {|c(x)| =
a} and {|c(y)| = b} are independent if |lx — yll >a +b + 4 for x, y € V,.
Therefore, (2.17) holds, when a > a,, by Lemma 3 and the same argument in
[3] (see pages 188-189 in [3] for details). Indeed, it is actually possible to show
that P,(#(0, 2) > kl|zll.) = 0 exponentially. We do not need this shaper result
here.

Proor oF THEOREM 1. We follow the argument of [3] (see pages 189-190 in
[3D. Let A, = {z: #(0, z) < t}. With the main estimate (2.17) one can derive (see
[4]) that A, contains a small ball with radius growing linearly in ¢. With the
existence of radial limits, we can establish (see [4] for more details) for any
fixed € > 0,

(2.18) P((l —g)A ct 'A, c (1 + &) A for sufficiently large t) =1.
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In addition to (2.18) we need:
(2.19) Ife >0, then P(u(z) > ¢lzll.i0.) = P(T, > ¢llzl,i0.) = 0.

This is a consequence of Eu(z)? < » and ET? < . We now wish to prove that
the infected region does not sit far inside A. More precisely, we will prove

(2.20) ife >0, then P(Q,N (1 — ¢)tA = & for all sufficiently large ¢) = 1.

By (2.18) we know that a.s. for all large ¢, if z € (1 — ¢)¢A, then
€
£0,2) < |1 - <z
02 =[1-3 )
Add u(0) + u(z) + T, to both sides of this inequality and use (2.14) to obtain

&
t¢(0,2) + T, < (1 - E)t +u(0) + T, +u(z).
With d = sup, ¢ 4llxll., we have from (2.19) that a.s. for all large ¢,
& &
0 + —Jlzlle < =(1 — &)t
u(0) +u(z) + T, < gollell. < o (1 —¢)
[since z € (1 — &)tA]. Combining this with the previous inequality gives us
€
t(O,Z) + T, < (1 - E)t,

and so z belongs to B,, not @,. This proves (2.19) and
P(t(1 — €)A N C, C B, for all sufficiently large ¢) = 1.

On the other hand, if z € Q, or z € B,, then #(0, z) < ¢ so certainly #(0, 2) < ¢,
and by (2.18) z € (1 + &)tA. That is,

P(Q, c (1 + &)tA for all sufficiently large ¢) = 1

and
P(B, c (1 + &)¢A for all sufficiently large ¢) = 1. a

3. Proof of Theorem 2. Let

1, (closed) if X(e) > 0,
0, (open)if X(e) = 0.

Then W(e) has the Bernoulli distribution with the parameter F(0). We call e
open if W(e) = 0. If every bond on path r is open, r is called an open path.
Since we assume F(0) > p.(d), there exists indeed an infinite open cluster C.
Travel along bonds from C costs no time. The minimum passage time from
©,...,0)to(n,0,...,0)is therefore at most the time from (0, ...,0) to C plus
the time from (n,0...0) to C. If we can show (0, ..., 0) is not far away from
C, the argument of [9] might be applied. Now let us begin to show Theorem 2.
We denote by K,(z) the smallest K > 1 such that there is an open path in Z¢
from the boundary of z + [— K, K¢ to .

(3.1) W(e) =
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rK(z

--2-

Z+B(K1)

Z+B(K2)

F1c. 5. The definition of K; and K,. The solid paths are open paths and the dashed path is the
minimum passage path.

Let r,(2) be one of the minimum passage paths from z to ¥z + [—n,n]%}.
We denote by K,(z) the smallest m > K,(z) which satisfies the following:

(i) Any two open paths from boundary z + [-K,, K;]¢ to boundary z +
[-m,m]? have to be connected by an open paths in z + {[-m,m]¢\
[-K,, K17, and

(ii) there exists a minimum passage path r,(z) such that any open paths
from the boundary of z + [~ K (2), K{(2)1? to the boundary of z + [—-m, m]?
and r,(z) have to be connected by an open path in z+ {{—m,m]%\
[—-K,, K% (see Fig. 5).

We simply denote by B(K,(2)) and B(n) the sets z + [—K,, K;]° and
[—n, n]% By the definition of K; and K, and the uniqueness of the infinite
cluster (see [2]), we can see that there exists an open path from the boundary
of B(K(0,...,0)) to the boundary of B(K(n,0,...,0)) if B(K0,...,0)N
B(K{(n,0,...,0)) = . Let

(3.2) N,,, = min{|r|, r is an open path from dB(K(m,...,0))

to dB(K(n,0,...,0))},
if B(K(m,...,0) N B(K(n,O0,...,0) =, or N,,, = 0 otherwise. Let
(3.3) Enn = N2, + 29K4(n,0,0,...,0).
By the definition of K,(2) and N,, and the same argument as in [9],
(3.4) Eom+n) < €om T €mn-

If we can show that

(3.5) E(N,,) <«
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and

(3.6) EK}%(n,0,0,...,0) = EK2%(0,0,0,...,0) < =,

then {¢,,,} is a subadditive process in the sense of Kingman. Therefore
(3.7 ‘fnﬂ — A as.andin L,.

Also by the definition of N,,, and K,,

(3.8) N§, < 29Kg(0,...,0) + 2¢K¢(n,0,...,0) + N,,,

(3.9) N,, < 2°KZ(0,...,0) + 2¢K¢(n,0,...,0) + N¢,.
Hence, by (3.3), (3.8) and (3.9),

(3.10) £on ;Ngn B 2(29K,(0,0,...,0) +n2ng(n,o,0,...,0)).

By Chebyshev, and Borel-Cantelli arguments and (3.6),
K¢(n,0,0,...,0)

(3.11) — 0a.s.in L%
n

Hence

(3.12) lim —* =) as.andin L

n—o n

from (3.7), (3.10) and (3.11). Now we show (3.5) and (3.6). Equation (3.5) holds
by virtue of (8.32) in [9]. Equation (3.6) holds by the following argument. We
simply denote (0, ...,0) = 0. By F(0) > p,, Theorem 6.126 in [5] and Theorem
A in [6],

(3.13) P(K(0) > n) < L exp(—c(F(0))n)
for some constants ¢(F(0)) and L. In addition,
P(K,(0) > n)

(3.14) = P(Kl(o) > % K5(0) > n) + P((Kl(O) < % Ky(0) > n))

<L exp(—c(F(O))%) + P(KI(O) < % K,(0) > n).

Now we need to estimate the second term of (3.14). We say that the vertex
u € Z? has the property I, ,, if there exist two paths r; and r, from the
boundary {u + B(n,)} to the boundary {u + B(n,)} which are not connected
by an occupied path in {x + B(n,) \ B(n)}. If F(0) > p.(d), it follows from
(3.5) and (3.8) in [8] that

(3.15)  P(0 has the property II, , ) < (6k3)>* exp{—c,( F(0))lky — k,l}
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for some constant c¢,(F(0)). It is also known from [7] that
(3.16) P(#(r,(0)) = Vn) < c,( F(0))exp{—c,( F(0))Vn}

when F(0) > p,, where c,(F(0)) and c,(F(0)) are constants. However, if
{t(r(0)) < Yn}, there exists an open path r cr,(0) from the boundary of
B((i + 1Wn /3 + K,) to the boundary of B(i(Vn /3) + K,) in

Vn Vn
(e 0l )81 k]
for some 2Vn < i < 3Vn . By the definition of K,(0),

P(E(0) < 5, Ko(0) = 1, 1(r,(0) < Vr

<

it

P(O has the property II; ,-+¢;/3)
(3.17) '
+ P(0 has the property I1,, 5 )

vn
< (12n)* exp( —cy(F(0)) ?) :

It follows from (3.14), (3.16) and (3.17) that
(3.18) EK2%(0) < oo,

Hence (3.6) is proved.
Now we discuss
N,
(3.19) lim — =\ a.s.and L.

noo N
Here we only give a sketch of the proof. First we define
Y,,, = inf{T((m,0,...,0),(n,ky,0,...,0)): ky € z}
and
NY_ = inf{the number of edges in r, t(r) = Y, ,}.

Then by using the result of [6] we define renormalized sites in the k-slab
lattice (see definition (4.40) in [1]) for some £ with F(0) > p (%), where p (k)
is the critical point for the k-slab lattice. After renormalization, we can define
the min-circuit with the renormalized sites as we did in last section, and
replace the smallest circuit A(z) in [10] by the min-circuit as we just men-
tioned. Then we follow the exact proof in ([10], pp. 1074-1076) to show

NOY
.20 im — = A a.s.an .
(3.20) li - d L!

n—o N
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After that, we can discuss
Y2, = inf{T((m,O,...,O),(n, ko, k3,0,...,0)): ky, kg € Z},

yd-1 1nf{T((m 0,...,0),(n,ky, ..., kg)): ky,..., kg € Z}.
The argument of (3.20) and a simple induction then show

d—
Ng N, NG, -
(3.21) lim = - = lim— = lim =A as.andin L'. O
n n n n n
APPENDIX

Proof of proposition. To show the proposition we only need to show
that the large sponge-crossing and the large sponge-connection have a high
probability at the supercritical case. By the FKG inequality, we can show them
separately.

Estimation of the large sponge-crossing. We define
C, = {x: x can be reached from z by an open path in Z*(M)},
(A1) C,| = {x: z can be reached from x by an open path in Z*(M)},
0(a) = P(ICol = ).
By the symmetric property of g(z),
(A.2) 8(a) = P(ICy || = ).

Let N be a positive integer. For any configuration w € I' = {0, 1}2°®)_ we
define the sphere (see [1]) with radius N and center at w by

(A.3) S™(w) = {w eT: ¥lwg, , - w,,| < N}.

SN(w) is the collection of configurations which differ from w on at most N
edges. If A C T is an event, we define the interior and the exterior of A by

(A4) I"M={neTl:S8Yn)cA} and EM={neTl:S¥(n)nA=+ @}.
If &' < a, then by (1.6) and the definition of g(z),

(A.5) 0<P,({x,y} =1) <P,({x,y} = 1).

We denote

m(a) = min {(P,({0,5}) = 1)},

lIylle <M
m(a,a) = IIyIIT:ISnM{Pa({O’y} =1) - P,({0,y} = 1)}.

By the definition of F' and (1.6), we can see that m(a) > 0 and m(a, ') > 0 if
a > a > a,. With the definitions above, the following lemma is a straightfor-
ward adaptation of Theorem 2.45 in [5] or Lemma 4.2 in [1].

(A.6)
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LeEmMmA A.1. For any positive event A and o < a,

(A.7) P(A) = m(a,a)"P,(EMA),
(A.8) P(IMA) > 1 %“'(?N)

Next we introduce some sets and events necessary for construction of the
renormalized site lattice. If S, F and T are three sets, we denote by S — T in
F the event that there is an open path from S to T with edges in F and
S o Tin F theeventthat S > T in Fand T — S in F. We also denote by
S » T in F the event that there is no open path from S to T in F. A box in
Z? is defined by

B(nq,ng,ns,n,) =[ng,n,] X [ng,n,l.

The top, bottom, left and right boundary of the above box are defined by
T(B(ny,ng,ng,ny)) =[ny,n,] X {ns},
U(B(ny,ng,ng,ny)) =[ny,n,] X {ng},
L(B(ny,ny,ng,n,)) ={n,} X[ng,n,l,
R(B(ny,ng,ng,ny)) ={ny} X[ng,n,l.

Finally, we define

n,+n,
TL(B(nl,nz,na,n4) = [nl’ ] X {ny},
TE(B(ny,nyng,n,)) = [ nz] X {ny}.
(See Fig. 6).
h(8 TR
(nysng) = D) < (n22ng)
L(B) R(B)
B(nl,nz,n3,n4)
(ngsny u(B) (nyons)

Fi6. 6. The definitions of the box, top, bottom, left and right boundary of box, and T*(B) and
TR(B).
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LEMMA A.2. Assume a > a,. Then given ¢ > 0, there exists N such that for
n>2N+ M,

Al 25 <fofona 5

(49) in B(O,n,O,n_N))

2
>1-—e.

Proor. Let @, < @; < a. Since 6(a;) > 0, by a standard ergodic theorem,
we can take N large enough that

[23

N
P ([O’E] « ®in ZZ(M)) >1-e.

Then it follows from the square root trick (see [3] for details), and the
symmetry and the translation invariance of Z%(M) that (see Fig. 7)

n—-N n+N
2 7 2

Pal(B(O,n,O,M) - [

(A.10)

n—-N
X{ 3 }in B(O,n,O,n—N)) >1-e.

Consequently,

n—N n—N
Pa(B(O,n,O,M) —>B(0,n, 3 - M, 7 )

(A.11)
n—N
in B(O,n,O, T))Zl — E.

(0,n-N) (n,n-N)
(0,n-N-M) {
v(O,(n-N)/Z) N I\
A\
(0,M) Y
(0’0) (o’n)

Fic. 7. The event B(0,n,0,M) — [(n — N)/2,(n — N)/2] in B(0,n,0,n — N) and the event
[n/2,(n + N)/2] x{(n —N)/2} > B(n/2,n,n — N —M,n — N)inB0,n,n — N — M,n — N).
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Then by Lemma A.1, for some large number £,

1-P,(B(0,n,0,M) > B(0,n,(n—N)/2-M,(n—-N)/2)
in B(0,n,0,(n —N)/2))

1_
m*(a, a;)
n—-—N n—N
<P, Ik{B(O,n,O,M)—>B(O,n, g M —; )
i B(O 0,2
in
(A.12) 1, U, 2 )})
< Pa(EI k disjoint open paths from B(0,n,0, M)
n—N n—-M
wfon 2% a0,
2
< X P(H=i),

0<i<M

where H is the largest j, 0 <j < M, such that there exist at least £/M open
paths from B(0,n,0,M) to [0,n] X {(n — N)/2 —j} in [0,n] X [0,(n —
N)/2) — jl. Since each such path can be connected to T(B(0, n,0,(n — N)/2)
by a single edge and H =i only depends on the edges in [0,7] X [0,((n —
N)/2) — i], we can pick %k large such that at least one of these /M open
paths can be connected to [0,n] X {(n — N)/2} by a single open edge with a
high probability. Note also that H =i and H = are disjoint events if i # j.
Combining this with (A.11) and (A.12) gives us that P,(B(0,n,0, M) —
T(B(0,n,0,(n — N)/2)) - 1 by taking k, ¢ and N, respectively. Using this
argument to connect some vertices, which belong to the open paths from
B(0,n,0, M) to T(B(0,n,0,(n — N)/2)) in B(0,n,0, M), to U(B(,n,0, M)
by a single open edge, we can see that Lemma A.2 holds. O

LemMma A.3. Suppose that a > a, and 2N + M <n, and let S C
B(0,(3/2)n,0,n — N) be a set with

n—N
sore{sfo.n0,25Y)

For given € > 0 and integer l, if k < n is big enough, then

> k.

Pa(EI at least I disjoint open paths from S to
(A.13)

n 3 3
T(B(E,ER,O,TL _N)) lnB(O’ En’o’n _N)\S) = 1-e.

Note that a path in B(0,(3/2)n,0,n — N)\ S means that each edge of the
path is in B(0,(3/2)n,0,n — N)\ S, but some vertices of the path may still
belong to S.



1772 Y. ZHANG

Proor oF LEMMA A.3. By a standard ergodic theorem, the square root
trick, the symmetry and the translation invariance of Z?(M), we can take N
large such that (see Fig. 7)

n n+N
pal(_

W [PENY L (2 N-M,n-N
2, 9 { 9 }_) (E’n’n_ - yno— )
(A.14)

1
in B(0,n,0,n — N)) >1- Esml(al,a)

for some a > @; > a,. Then in turn there exists A~ = h(a, M) such that

h 1
i=1
where E,,..., E, are independent events in some probability space, each

having u-probability given by
n n+N
2’ 2

w(E;) = Pal(V edge with vertices in [

n—N):
X{ 3 }1sopen.

(1 - m(a)MN)h < zem!(ay, a),

but we do not require the precise condition. Now we can partition [n/2,n] X
{(n — N)/2} into disjoint n/N segments {A,} with length N/2. Then by
(A.14) and (A.15), & > Nh implies

(A.16) 1-m(ay,a)e <P, (A),

where A is the event that there is an open path from A; to B(n/2,(3/2)n,
n—N —M,n — N) for some i, every edge in A; is open, and A; N S # J (see
Fig. 8). It can be seen that there exists an open path from S to

In fact it is sufficient that

n-N
n-N-M

(n-N)/2

(0,0) (0,n) (0,3n/2)

Fic. 8. The event A. The shaded area is the set S and the bold path is an open path.
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B(n/2,(3/2n,n — N — M,n — N) if A occurs. By using the argument of
Lemma A.2 to extend a single open edge in these open paths,

(A.17) 1 - m(ay, a)'e < P,(A)

for large N, where A is the event that there exists an open path from S to
[n/2,(8/2)n] X {n — N}. Then, by Lemma A.1,

1-P( A)

1—-e<1-
° m!(ay, @)

< P,(I(A))

3
< Pa(EI at least ! disjoint paths in B(O, En, 0,n — N)

2

tTBn 5 0 N
(0] (E’En’ ,n — )

3
< Pa(El { disjoint paths in B(O, —n;0,n — N) \ S from S

n—N
fromSmTR(B(O,n,O, ))
(A.18)

2
tTBn 5 0 N)
0 (2,§n, , n .

With these lemmas in mind, we begin to estimate the probability of the
large sponge-crossing.

Lemma A.3 is proved. O

LEMMA A.4. Given € > 0 and integer i, there exists N such that, when
a>a,andn>2N+ M,

(A.19) P(U(B(-n,2n,0,in)) > T(B(-n,2n,0,in))) =1 —¢.

Proor. By Lemma A.2 and the symmetry property,
n—N n—N
U(B(O,n,O, 3 ) —>TR(B(O,n,0, 2 )) >1-—¢

for & > a; > @, and some large N. We write C,(n) for the open cluster
containing z in B(0,n,0,(n — N)/2) for some

n—N
LS U(B(O,n,O, —2‘—))

We denote by V the unit of all clusters C,(n) in B(0,n,0,(n — N)/2). Let W
be the edge set of the boundary of these clusters in B(0,r,0,(n — N)/2 + M),
and let (V,, W,) be a possible pair of clusters for the random pair (V, W) (see
Fig. 9). Note that each edge in W N B(0,n,0,(n — N)/2) has to be closed. We

(A.20) P,
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(0,n-N)
(0,n-N-M)
L
(0,(n-N)/2)
(0,0)
(n,0) (3n/2,0)

F16. 9. A configuration of (V,W). The dot lines are the set W, and the solid lines are open
clusters and open paths. The solid small boxes are the edges b with X(b) = 1.
R n—-N
Q(k) = { |V T#|B|0,n,0,——

> k}
Then by Lemma A.1,
1 1-P,(U(B(0,n,0,(n~N)/2)) - TE(B(0,n,0,(n — N)/2)))

k
m(ay, ay)

(A2 Paz(Ik(U(B(O,n,O, #))) - TR(B(O’”’O’ 5 N)))

2
<P, (Q(k)).
Then if we take N large, by (A.20),
(A.22) 1-e<P,(Q(k))
for some a; < a, < a. Then by the definition of (V,, W),
1-¢<P(Q(k))

(4.23) = L P (VW) = (Vo, Wo) N Q(k)),

VOvWO
where the summation is taken over all possible of pairs (V,, W) such that
Vo " TE(B(0,n,0,(n — N)/2))| > k. For a fixed pair (V,, W,) and any integer
1, let (see Fig. 9)

also define event Q(%) by

J() = {EI at least [ disjoint open paths from W, to

(A.24) T(B(%,gn,O,(n—N)))

3n

in B(O, 5 ,0,(n—N))\(V0,WO)}.
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It can be seen that {J(1)} is independent of {(V, W) = (V,,, W)} since J(I) only
depends on the edges outside of (V,, W;). Since

n—-N
VoN TR(B(O,n,O, 5 ))

if Q(k) occurs, we can take k large and use Lemma A.3 to obtain
Y P((V,W) = (Vo, W) N Q(k))

>k,

Vo, Wo
= T P(V,W) = (Vo, W) N Q(k) NI (1))
VOrWO
+ TPV, W) = (Vo Wo) 0 Q(R) 0 {(J(D)°)
(425) = L PV, W) = (Vo Wo) 0 Q(R) J(1))
+ T P(V.W) = (Vo Wo)) Po({7 (D))
< L P(V.W) = (Vo, Wo) 0 Q(R) 0 J(1))
VOr 0

+ ¢ (by Lemma A.3 and taking % big and then N big).

Let S ¢ W, be the set such that, for each edge b € S, there is an open path
from one site of b to T(B(n/2,(3/2)n,0,(n — N)) in B(0,3n/2,0,(n — N)\
{W, U V,). Then |S| > [ if J(1) occurs. We also define another random variable
X(b) for each edge b in Z%(M) as follows: If b is open, then X()is 1. If b is
closed, then X(b) = 1 with probability 6/P,(b is closed) or X(b) = 0 with
probability (P, (b is closed) — 8)/P, (b is closed). We say that b is X(b) open
(closed) if X(b) = 1 (X(b) = 0). The determinations are made independently
over the edges. It can be seen that the distribution of X(b) is Bernoulli with
parameter P, (b is open) + 5. We say a path is an X(b) open path if all edges
in the path are X(b) open. Then, by (A.25),

T P ((V,W) = (Vo, Wo) N Q(E) NI(1))

VOYWO
= Y YP((V,W)=(V,,W,) NQ(k) NJ(I),S = So)
VO’WO SO
= ¥ YLP((V,W)=(V,,Wy) NQ(k) NJ(L), S =35,
(A.26) Vo, Wo So

3be S, with X(b) = 1)

+ ¥ LP[(V,W) = (Vo, Wy) N Q(k) NJ(1), S =5y,
VorWO SO

{3be s, with X(b) = 1}°)
I+,
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where the second summation is taken over all S, in W, such that, for each
b € S,, there is an open path from one site of b to T(B(n/2,(3/2)n,0,(n —
N))in B(0,3n/2,0,(n — N)\ {W, U V,}. Clearly,

I< Paz(El an X(b) open path from U(B(0,n,0,n — N))

2’2
Next we estimate II. If b € W, N B(0,n,0,(n — N)/2), it has to be closed.
Then b is X(b) closed with probability 1 — (5/P,(b is closed)). If b € W, \
{W, N B(0,n,0,(n — N)/2)}, X(b) is closed with probability 1 — P, (b is open)
— 8. Then we can pick 8 small enough that

P, (none of the bonds in S, is X(b) open|S = S,)

(A.27) S 1Sl
<1 )

n 3 3n
to T(B(— —n,0,n —N)in B(O,—Z—,O,n —N)))‘

1-m(ay)
Then given ¢ > 0, by taking [ big, we have
I< ), ZPQZ((V,W) = (Vo,Wy) NI(k) NJ(1), S =8,)
Vo, Wo So
X P, (none of the bonds in S, is X(b) open|S = S)
<e&.

By (A.23), (A.25), (A.26), (A.28), and choosing & such that P,(X(b) =1) <
P, (b is open) for each bond in Z*(M) and some a, < az < @, then

(A.28)

1-3e< PaZ(EI an X(b) open path from U(B(0,n,0,n — N))

toT|B n 3 0 N]in B|0 on 0 N
(0] (E,En, ,h — )m (,'—2'", ,h — )
(A.29)

n 3
T S

3n
in B(O,—Q—,O,n —N)))

(see Fig. 9). By the same argument and the symmetry property, we show that

Pa4(U(B(O,n,O,(n -N))) - T(B(O,n,O, g(n - N))
(A.30) ,
in B(—g,2n,0,§(n —N)))) >1- 6¢

for some a3 < a, <@ and some large N and n > 2N + M. If we continue
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doing these steps 4i + 1 times with large n depending on i, and use the
argument of extending a single open edge in these open paths from
U(B(—n,2n,0,in)) to B(—n,2n,in — M,in) (see Lemma A.2), then Lemma
A4 holds. O

Next we use Lemma A.4 to extend an open circuit in an annular region with
positive probability. More precisely, let

Cs(n) =B(-(1+8)n,(1 +6)n,—(1+8)n,(1+8)n)\B(-n,n,—n,n)
and (see Fig. 10)
C;s(n) = {there exists an open circuit in C5(n)}

for some 0 < § < 1 and integer n.

LemMa A5. If a > a, and 6 > 0, there exists N depending on & and a
constant ¢ > 0 such that

(A.31) P,(Cs(n))>c
foralln > N.

Proor. By Lemma A.4 and the FKG inequality, we can take n large such
that the event A; N A, N A; N A, has probability larger than 1/2 for some
a, < a; < a, where A, is the event of a left-right open crossing of [—n(1 +
8),n(1 + 8] X [-n( + 8),— n], A, is the event of a bottom-top open crossing
of [n,n(1 + &)] X [—n(1 + 8),n(1 + 8)], A, is the event of a right-left open
crossing of [—n(1 + 8),n(1 + 8)] X [n,n(1 + §)] and A, is the event of a

&n

Cg("

FiG. 10. The event of Cs(n).
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top-bottom open crossing of [-n(1 + 8), —n] X [—n(1 + &), n(1 + )] (see Fig.
10). By Lemma A.1,

P,(Cs(n)) = m*(ay, @) P, (E*(Cy(n)))
(A.32)

m4(a1,a)

=m*(a;,a)P,(A;NA, NAGNA,) > 2

for some a, < a; < a. Hence Lemma A.5 is proved. O

Estimation of the probability of large sponge-connection. We begin to
estimate the connectedness of two open paths in a large box. Before giving
some results, we need some definitions. Let Z*={0,1,2,...,}. Define the
following:

Co(H) = {x: x can be reached from 0 by an open path
in the half space Z*x Z},

Ou(a) = P(|Co(H)| = =),

a,(H) = inf{a: P,(|Co(H)| = w) > 0}.

(A.33)

Now we need to show that a,(H) = «,. In [6], Grimmett and Marstrand have
obtained a similar result for a general Z¢ percolation. The key proof of their
argument is called the sprinkling method. That is to add a small density of
extra open vertices to create an open path which connects two large square
boxes with a high probability (see Lemma 6 in [6]). However, this work in our
case is done by our Lemma A.4. Therefore, by adapting the same argument in
[6] (see the details of the proof of Theorem A in [6]), we have:

CoroLLARY A.6. a(H) = a,.
Now we start to estimate the probability of the large sponge connectedness.
LEmMMA A.7. Define (see Fig. 11) the following:

D, ={3 two open paths vy, and vy, such that

(A.34) U(B(0, 21,0, 1)) :—; T(B(0, 21,0, ),
L(B(0,2n,0,n)) > R(B(0,2n,0, n)), but
Y1 (74 ’Yz)}-

Then given & > 0, there exists N such that

(4.85) P(D,) <e

when n > N and a > a,.
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(=

=

Fi1G. 11. The left figure is the event D, and the right one is the events C,(z).

(0,0) (2n,0)

Proor. For any 0 < § < 1, m and any vertex z € B(0,2n,0, n), we define
the annulus surrounding z as follows (see Fig. 11):

Co(2) = {z + [—m,m]z},
Cz) ={z+[-m(1+8),m(1+d)]}\{z+[-m,m]},

Cu(2) = {z+ [-mA+8)", m1+8) ]\ {z + m(1 +8)* ", m(1+ )"},

where £ is the smallest number such that

1+k

[0,n) cz+ [—m(l + )

,m(1+8)" "],

if ze[0,n]? or

[n,2n] X [0,n] Ccz+ [—m(l + S)Hk
if z € B(n,2n, 0, n). By the definition of k, k£ > (log n — (log2m))/log(1 + 3).
Also we denote by 9°C;(z) and 9°C;(k) the inside boundary and outside
boundary of C,(z). Define

,m(1+8)""*]

C,(2) = {there is an open circuit in C,(2)}.

Now we first show that there is a constant ¢; > 0 such that, by taking m
large,

(A.36) P (v, ©» vyin C,(2)) > ¢,

for any v,, v, € 3'C,(2). We follow the proof of Lemma 4.3 in [1]. For any
8> 0and a, < a; < a, we choose m such that

P,(T}) = c8F(ay)
by Lemma A.5, Corollary A.6 and the FKG inequality, where

I', = {there are two open paths r; and r, from v,
and v, to 3°C,(2) N C,(2)}.

If T, occurs, there are four single edges (not necessary open) in C,(z) from r;
and r, to the open circuit and from the open circuit to r; and r,. Specifically,
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r; © ry occurs if these four edges are open. Define the event
G, = {I, N {these four edges are open}}.
Then by Lemma A.1,
P, (v, © vy in Cy(2)) = P(G,)

> m4(a1, a)Pal(E4(Gk))
(A.37)
> m*(ay, @) P, (T})

> em(ay, @) 0 (ay).

Hence, (A.36) is proved. Now we estimate P,(D,) by the method of Proposition
1 in [8]. Partition B(0,2n, 0, n) into equally likely squares with side length m
(2m > M). Since y, and vy, are bottom-top and a left-right open crossings of
B(0,2n,0,n), they have to come to one of these squares. We denote by z the
center vertex of this square. Then )

n\2 P (3 two open paths vy, y, from x,
(A.38) P/(D,) < 32m(—) max and x, of dCy(2) to 3°C,(2), vy, ¢
m

x4, x5 €0CH(2) ,),2)'

Let C(x,) and C(x,) be the open clusters in z + [—m(1 + 8)* 1, m(1 + §)*~1].
Then C(x,) and C(x,) only depend on the edges in z + [-m(1 + §)*~ 1, m(1 +
8)*~1] denoted by E. Indeed, once the configuration in E is fixed, we merely
pick any x € C(x,) and y € C(xy) in z + [-m(1 + 8)* 1, m(1 + )* 1]\ {z +
[-m@ +8)* 1+ M, m1 + 8¢ ! — M]}, which are connected by two open
edges (not in E) to C,(z) and apply (A.36). Then we have a conditional
probability at least cm?(a)m*(a;, @)8%(a;) of connecting x and y in C,(2).
Iteration of (A.38) by using this argument on z + [-m(1l + 8)* ", m(1 +
1 ...,z +[-m@A + 8), m(1 + 8)] shows

2

32n
(A.39) P(D,) =<

(1 _ cmz(a) m4(a1, a)ofl(al))(logn—log(2m))/log(1+6).

Then simply take 8 small, and m and r large to see that
P(D,) >0 asn — o.

Then Lemma A.7 is proved. O

Define

K, ={3 two open paths y, and 7y, such that
(A.40) U(B(0, n,0,n)) > T(B(0, n,0,n)),

U(B(0,n,0,n)) 3 T(B(, n,0, n)), but
Y1 + 72)}-



SHAPE THEOREM FOR EPIDEMICS AND FOREST FIRES 1781

If some vertices of y, and vy, are not far apart, then we can use the argument
of Lemma A.7 to show the following corollary. If each two vertices on vy, v,,
respectively, are far apart, then we can add a left-right open crossing of
B(0,7n,0,n) and use the same argument of Lemma A.7 and Lemma A.4 to
show the following corollary.

COROLLARY A.8. Given & > 0, there exists N such that
(A41) P(k,) <e
when n > N and a > a,.

Also by the argument of Lemma A.7, we have the following:
COROLLARY A.9. If a > a,, then the infinite cluster in Z*(M) is unique.

PROOF OF THE PROPOSITION. By the FKG inequality, Lemma A.4, Lemma
A.7 and Corollary A.8, there exists N such that

(A.42) P,(A,(0,0)NnB,(0,0))>=1-¢
when a > a,and n > N. O
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