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ON A DOMINATION OF SUMS OF RANDOM VARIABLES BY
SUMS OF CONDITIONALLY INDEPENDENT ONES*

By Pawet. HiTcZENKO

North Carolina State University

It is known that if (X,) and (Y,) are two (%,)-adapted sequences of
random variables such that for each & > 1 the conditional distributions of
X, and Y, given #,_,, coincide a.s., then the following is true:

T, <B W], 12p<w

for some constant B, depending only on p. The aim of this paper is to
show that if a sequence (Y,,) is conditionally independent, then the constant
B, may actually be chosen to be independent of p. This significantly
improves all hitherto known estimates on B, and extends an earlier result
of Klass on randomly stopped sums of independent random variables as
well as our recent result dealing with martingale transforms of Rademacher
sequences.

1. Introduction and statement of the result. In this paper we study
the L, -norm inequalities for sums of arbitrarily dependent random variables.
In order to describe our results in detail, let us recall some definitions and
notation.

Let (,) be an increasing sequence of o-algebras on some probability space
(Q, &, P). We shall assume that %, = {J, Q}. A sequence (X,) of random
variables is called (#,)-adapted [resp., (%, )-predictable] if X, is %, -measura-
ble (resp., 7, _;-measurable) for each n = 1,... . In the sequel we shall simply
write adapted (resp., predictable) if there is no risk of confusion. All equalities
and inequalities between random variables are assumed to hold almost surely.
For any sequence (X,) of random variables we shall write X* = sup,,|X,| and
X, =max;_;_,|IX,|. The L,-norm, 1 <p <, of a random variable X is
denoted by || X||,, and I(A) or I, will denote the indicator function of a set A.
Given a o-algebra &/C % and an integrable random variable X we shall
denote the conditional expectation of X, given &7, by E_X. If &/= %, then
we shall simply write E, X for E X. The conditional distribution of a random
variable X, given &7, is denoted by -Z(X|%/). Thus A(X|&) = _A(Y|/)
means that for each real number ¢ we have

P(X < tlZ) = P(Y < /).
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454 P. HITCZENKO

The following definition was introduced by Kwapiefi and Woyczyriski (1986):

DerFINITION.  Let (%) be an increasing sequence of o-algebras on (2, &, P).

(a) Two adapted sequences (X,) and (Y,,) of random variables are tangent
if, for each n = 1,..., we have

AX NG ) = L1,

(b) An adapted sequence (Y,) of random variables satisfies condition (CI) if
there exists a o-algebra #c % such that, foreach n =1,...,

LY\ ) = L(Y,19)

and such that (Y,) is a sequence of #conditionally independent random
variables.

A sequence (X)) is conditionally symmetric if (X,) and (—X,) are tangent
sequences of random variables. With a slight abuse of terminology, a martin-
gale will be called conditionally symmetric if its difference sequence is condi-
tionally symmetric. A class of all conditionally symmetric martingales will be
denoted by .#.”.

Every sequence of random variables (X, ) admits (possibly on an enlarged
probability space) a tangent sequence that satisfies condition (CI) [cf., e.g.,
Kwapiefh and Woyczyfiski (1986) or Hitczenko (1990a), Lemma 2.3]. Through-
out this paper such a sequence will be denoted by (X,) and will be called a
decoupled version of (X,). It is useful to note that the o-algebra « can be
chosen so that the random variables X,, £ = 1,..., are “measurable. As an
example consider the following situation: Let (27,) be an increasing sequence
of o-algebras, and let (£,) be a sequence of independent random variables,
such that £, is &7,-measurable and independent of &7, ;, n=1,.... Let
(v,) be an (&,)-predictable sequence and suppose that (¢,) is a copy
of the sequence (¢,) and is independent of (U &7,). If we let Z, = 0(&7,, &;
l1<k<n)and X, =v,¢{,, n=1,..., then the decoupled version of (X,) is
given by (v, ¢,,), where & can be taken to be o(U &7,). Particular choices of
the form of the sequence (v,) lead to different situations considered by various
authors. If we take, for example, v, = Z*Z]a ;,¢,, then we obtain a bilinear
form in (&,) [cf. Kwapiehi (1987) and references therein], while the choice
v, = I(r > k) deals with the case of randomly stopped sums of independent
random variables [cf. Klass (1988, 1990)].

The notion of tangent sequences proved to be a very useful tool in studying
sequences of arbitrarily dependent random variables since it allows one to
relate the properties of such sequences (X,) to the corresponding properties
(X,,). The latter, being sequences of conditionally independent random vari-
ables, are typically much easier to investigate and better understood. From
that point of view, a fundamental question to be asked is: How do two tangent
sequences of random variables compare? There is by now a rather rich
literature on various aspects of such comparison, and a recent book by
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Kwapieri and Woyczyfiski (1992) is an excellent source of information on
tangent sequences.

In the present paper we shall be interested in one particular aspect of
comparison, namely, in the domination of the L ,-norm of a sum of arbitrary
random variables by the L ,-norm of its decoupled version. We begin our
discussion by recalling the following inequality for martingales: For 1 < p < o,
there exist constants A, and B, depending only on p, such that for every

p
martingale f with difference sequence d one has

A Zdi, <171, < B, 2]

Several different proofs of this inequality are available [cf. Zinn (1985), Kwapiefi
and Woyczynski (1989), McConnell (1990) and Hitczenko (1988, 1993a)]. The
proofs given in McConnell (1990) and Hitczenko (1993a) contain additional
information on the size of the constants, namely, that both A, and B, are
bounded above by O(p). It is not hard to see that this bound on A, is optimal,
that is, A_ = O(p) [Hitczenko (1993b)]. From the point of view of apphcatlons
however, the right-hand side inequality is more interesting, as one usually
wants to dominate a sequence of random variables by its decoupled version.
The main purpose of this paper is to address the question about the asymp-
totic behavior of the constant B,,. First of all, let us note that, using a result of
Hitczenko (1990a), one can show that B, < O(p/In p). Thus, the behavior of
Bp is certainly different than that of A,. Since all hitherto known proofs are

“symmetric” [in the sense that they rely only on the fact that (d,) and (d,)
are tangent and do not take advantage of the conditional 1ndependence of the
latter sequence], they cannot possibly be used to provide any additional
information on B,. On the other hand, in certain particular cases, the
question about the size of that constant has been answered satisfactorily. All
of those cases deal with martingale difference sequences of the form d, =
v,é,, n=1,..., where (¢,) are independent random variables and (v,) is a
predictable sequence. Klass [(1988), Theorem 3.1] studied the case of an
arbitrary sequence (¢,) and (v,) of the form v, = I(t > n), where 7 is a
stopping time. The situation of v, = L} 1a,,£{, was considered by Kwapien
(1987). Finally, Hitczenko (1993b) deals with martingale transforms of either
Rademacher or i.i.d. standard Gaussian random variables. In each of those
cases the constant B, turns out to be independent of p. Our aim here is to
generalize these results to arbitrary sequences of random variables. We shall
prove the following.

THEOREM 1.1. There exists an absolute constant K such that for every p,
1 < p < », and for every adapted sequence (X,) of random variables one has

|| ZXi ”p =

Similarly to the special case treated in Hitczenko (1993b), our proof will be
based on martingale methods. Let f be a martingale with difference sequence
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d. Given two stopping times v and w such that v > u, for n =1,..., we let

n
“fr= ¥ I(p <k <v)d,.
k=1

Then the sequence “f” = (*f7) is also a martingale (referred to as f started at
w and stopped at v). In particular, f" = (fo,..., fu—1> fus [ns---). Assume
that .# is a collection of martingales relative to (%,) which is closed under
starting and stopping (i.e., f € .# implies “f” € .# for all stopping times v
and u satisfying v > w). We shall consider an operator T defined on a
collection .#” with values in the class of all nonnegative random variables. We
will assume that T satisfies the following conditions [cf. Burkholder and
Gundy (1970)]:

(B1) T is quasilinear, that is, T(f + g) < y(T'(f) + T(g)), for some y > 0
and all martingales f, g € /"

(B2) T is local, that is, T(f) = 0 on the set {s(f) = 0}, where
s(f) = (ZE(dNF1) "

is the conditional square function of f.
(B3) T is symmetric, that is, T(f) = T(—f), for all martingales f € .%".

If y =1 then T is sublinear. An operator T is called measurable (resp.,
predictable) if, for n = 1,..., T(f") is an %, -measurable (resp., &, _,-mea-
surable) random variable. For example, the square function S(f) defined by
S(f) = (Xd?)'/? is a measurable operator, while the conditional square func-
tion is a predictable operator on the collection of all martingales relative to
(Z).

It was shown in Hitczenko (1990b) that under some mild assumptions on T'
there is a relationship between the size of the constant C, appearing in the
inequality

11, < CIT(F)llp
and the exponential bounds on the probabilities of the form
P(If,) > dT(F).).
In this paper, for 1 < p < «, we define a sublinear operator T,, such that

x d,
k=1

b

p

17,7 =

thus reducing the problem to investigation of the quantity P(| f,| > cl|T,( f)ll).

The paper is organized as follows. The next section contains some prelimi-
nary materials. In Section 3 we shall define an operator on martingales. A
proof of Theorem 1.1 will be given in Section 5. It will be preceded by Section
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4, where we shall prove two results for sums of independent random variables.
The second of those results will be needed in Section 5. Finally, the last section
contains some comments.

2. Preliminaries. As we mentioned in the introduction, we will be inter-
ested in the size of the constant K appearing in the following domination
inequality for sums of tangent sequences:

| ZXi], < K| EXi ,-

The first lemma allows one to reduce the whole problem to conditionally
symmetric sequences.

LeEmmMmaA 2.1.  Suppose that the inequality

ll sz ”p s K” sz ”p

holds for all conditionally symmetric sequences (Z,). Then, for all sequences
(X,), we have

|ZX%u, = @K+ D|EX.,.

If, in addition, (X,) is assumed to be a martingale difference sequence, then
the constant 2K + 1 can be replaced by 2K.

Proor. We shall use a conditional symmetrization argument which was
introduced in Hitczenko (1990a) [cf. also Kwapiefi and Woyczyfiski (1992),
proof of Proposition 5.7.1]. Let (X},) be any sequence of random variables and
let (X,) be its decoupled version. By definition, there exists a o-algebra &
such that (X,) is a sequence of Zconditionally independent random variables.
Enlarging the probability space [and the filtration (£,)], if necessary, we can
construct another sequence (X,) of #conditionally independent random vari-
ables such that, for each j = 1,..., we have

.,/(lef) 2/()2.]"%_1) :j(}_(jl*?;—l),

X; and X ; are &;_,-conditionally independent and such that the sequences
(X,) and (X,) are “conditionally independent. Note that the sequence
(X, — X,) is conditionally symmetric and that (X, — X,) is its decoupled
version. Moreover, the sequences (X,) and (X,) are equidistributed. There-
fore, by our assumption we conclude that

|Zx, <[ Z(% - %), | Z&],
<K|Z(X - %), L%,
<K{|ZR], +|Z&],} +| T,
= 2K+ | X,
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This proves the first statement. For the second statement we observe that, if
(X,) is a martingale difference sequence, then

E(LX,#) = LE(X#) = LE(X,| %) = 0.

Since we can assume that X,’s are #measurable, by the conditional version of
Jensen’s inequality we infer that

IZ%, <[ £%. - B(ZX,12)],
- E(Z (% - X)),
<[ Z (% - %),

and the rest follows by exactly the same argument as above. This completes
the proof. O

The next lemma was introduced as a tool for proving certain martingale
inequalities [cf. Burkholder (1973), Lemma 7.1]. As was realized later [see, e.g.,
Bafuelos (1988) or Hitczenko (1990a, b)), it could also be used to give quite
precise information on the size of the constants involved in some of those
inequalities.

LeEmMA 2.2. Fix 0 < p < «. Suppose that X and Y are nonnegative random
variables and that there exist positive numbers 6, B > 1+ 86 and ¢ <1/B”
such that for all positive A’s one has

P(X=BAY<6A) <eP(X=2).
Then

6 p
1XI2 < —iﬁ_%),guyng.

The following lemma gives a sufficient condition for a constant appearing in
the inequality || f*|l, < KIIT(f)ll, to be independent of p.

LEmMMA 2.3. Fix p, 1 <p <o, Let # be a class of martingales, closed
under starting and stopping, and suppose that T is a predictable sublinear
operator on 4 satisfying

for some absolute constant C and all f € .#. Assume that there exist constants
A > 0 and € < 1/2 such that, for each p = 1 and all conditionally symmetric
martingales f, we have

P(If,) = AIT(f™) ) < &P, n=1....
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Then the following inequality is true:

”f:”p =< K”T( fn)“p = K”fn”P’
where

+1 4(A+1)
PP — " .
28(0 1)77 < 1 - 2: (c+1

A
K < 2%p
1

Proor (Sketch). Let A and e be as above. Choose 8 and & so that
B-1-6 1-2

—A and =" >
5 an 2:(A + 1)

0.
Then

1 . 1-2:6A+1

B_EE_ * 2¢ A+1

Repeating now the usual stopping time argument given in Hitczenko [(1993b),
proof of Lemma 2.2], which goes back to Burkholder (1973), we get the
following good-A inequality

P(If,|>BAT(f") vdi <or) <e’P(If,I>1), A>0.
This, in view of Lemma 2.2, implies that
(B/8)°
1 — pPe?

as long as BP¢? < 1. In our case

op 1PP 1\ 1
BS‘(%)S‘(E)SE'

This completes the proof of Lemma 2.3. O

—1+(A+1)8>1+6.

£, 015 < {Ircrm 1 + 1dziz),

The final lemma in this section is a particular case of Lemma 1 in Hitczenko
(1988) and is stated here for easy reference.

LemMA 2.4. Let (X,) and (Y,) be two tangent sequences of random vari-
ables. Then, for each t > 0, the following is true:

P(X*>1t) <2P(Y*=>1).
3. An operator on martingales. In this section we introduce a new
operator on martingales which is related to our domination inequality. For a

martingale f = (f,) with difference sequence (d,), we define the operator
T,(f) by the formula
p) 1/p

Tp( fn) = (E&’

L d,
k=1
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Then T, satisfies conditions (B1)-(B3), with y = 1. Note that for any martin-

gale f the random variable T,(f") is ,_,-measurable; thus, T, is a pre-
dictable operator. Let us also remark that if p = 2, then

() = (E,(£d2)”
- (ZEA)”
= (ZE, (@) = (LE,_(d2))"”

so that T, is nothing but the conditional square function. Moreover, for
n =1,..., we have that

n 14 1/p
i, - (s[z| £a)

k=1
= ng .
k=1 p

Therefore, the inequality
17, < K| ¥ d,
k=1 p

is equivalent to
15l < K T,(£7) -

When restricted to a class .#. of all conditionally symmetric martingales,
the operator T, has the following property:

LeEmMA 3.1. For every p, 1 <p < =, and all f € #” we have that
Id*ll, <2 - 27| T,( )|, = 8| T,( /)|,

This follows from Lemma 2.4 and Lévy’s inequality.
4. Inequalities for sums of independent random variables. Through

this section (¢,) will be a sequence of independent random variables which, for
simplicity, will be assumed to be symmetric. We let

k
Si= Y&, k=1,...
j=1

The first inequality follows easily from a result established by Kwapiefi and
Woyczyhski [(1992), proof of Proposition 1.4.2].

PrOPOSITION 4.1. Let p > q = 1 be real numbers. Then there exists an
absolute constant K such that, for every sequence (¢,) C L,, the following
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inequality is true:

b
1S5, < Kg{IISnllq +l&l),  n=1,....

Proor. Our proof is just a repetition of an argument given by Kwapien
and Woyczynski. They showed that for every positive ¢ we have that

P/ (P+D) 4 ||§*||§/(p+1) pti
1 - (2P(1S,| = £))/?*?
Selecting ¢ = 4|S,, ||, and using Chebyshev’s inequality, we infer that

(p+1) nyPTL
(418,11 )?/PHY + ||gx||B/ P+ )}

1 _ (l/z)q/(p+1)

1Sl < {

I1Sxl5 < {

Since
1 1
< )
1-2%" a(l-x)

for0<x<land0<a <1, and

(up/(p+1) + vp/(p+1))(l7+1)/p < 21/p(u + U)y u,v = Oy

we obtain that

}(p+1)/p

1
||S,f||p < 9(+1)/p

(p+1)/p
p+1 (p+1) 1
{(418,11)™ 7" + llgxlp e+

p+1

{418, llg + gE 1)

(p+1)/p
< 2p+2)/p ( )

D,
< K;{IIS,,IIq + g}
This completes the proof. O

Proposition 4.1 easily implies the following inequality, which will be needed
in the next section.

ProrosITION 4.2. Suppose ||¢*|l. < . Then there exist absolute constants
B > 0 and 6 > 0 such that, for every p > 1 and every

A op
< s
max{1S, I, "1}

we have that
E exp{AlS, |} < 5exp{BA(IIS,|l, + ll¢* )}
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Proor. Let r be the largest integer less than or equal to p. Expanding the
exponential function into power series and integrating term by term, we obtain
that

o) AJ .
Eexp{AlS, [} =1+ ¥ —IIS,I7
j=1J"
r Aj . © Aj X
=1+ ¥ IS+ X ISl
j=1 J: Jj=r+1 J:

TN . > A ‘
<1+ ) j—'”Sn”,{; + Y .—'”Sn”f
Jj=1

. j=r+lj'
o Jj )
<exp(AlS,I,) + T SIS, I,
j=r+1J‘

and we need to estimate the second sum. By Proposition 4.1 we infer that, for
Jzp, ‘

(K’ 4 . Ki\’ . .
IS,.1} < (?J) (18,15 + lex17) < (—p}) (18,11 + llg*112).

Since j//j! < e/, we can write

© A . © i KA . .
Y ISl X —(——) IS, M5 + NE*
jera1d! jere1 i\ P ( )

o J
< Y eij(i) (IISHII{; +|I§*lli).
Jj=r+1 p
If A is chosen so that
eKA 1
> max{||S, |, | X*/l.} < 3

then the above sum does not exceed

er+1K'+1(/\/p)r+1||Sn||1r,+l er+1Kr+1(A/p)"+1”5*”;“'1
+
1—eK(A/p)IS, I, 1—eK(A/P)IEF

A p
< 4epr(;) (IS,112 + 1£412).
Since x? < exp{px} for x > 0, the last quantity can be estimated from above
by
4 exp{eKA(I1S, I, + 11£¥]l).
This completes the proof. O
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5. Proof of Theorem 1.1. It follows from the previous discussion that,
in order to complete the proof of Theorem 1.1, it suffices to check the
assumptions of Lemma 2.3. In view of Lemma 3.1 this will be done once we
establish the following result.

THEOREM 5.1. There exist absolute constants A > 0 and 0 <& < 1/2 such
that, for every p > 1 and for all conditionally symmetric martingales f, the
following inequality is true:

P(Ifl = A|T,(f™)].) <&, n=1,....

Proor. We shall show first that it is enough to prove the inequality of the
theorem under the additional assumption that
ld*llo < C|T,( £)].,

for some C > 4. This follows easily from Davis’ decomposition of a martingale
and Lemma 2.4. Indeed, given a conditionally symmetric martingale difference
sequence (d ), let us write

d,=d,+d,=d,I(ld,| <2d%_))+d,I(ld,|>2d}_,).
Since (d,) is conditionally symmetric, both (d’)) and (d,) are martingale
difference sequences. We denote the corresponding martingales by (f,) and

(f}), respectively. It was shown by Davis (1970) [cf. also Burkholder (1973)]
that

ol < Y ldyl < 4d*.
Therefore, for every A > 0,

P(If,l= A|T,(].)
< P(If;l = (A/2)| T,(N).) + P(If21 = (A/2)|T,(£)].)
< P(Ifil = (A/2)|T,(P)].) + P(d* = (A/8)|T,(F)].)-
To estimate the first term let us define a stopping time 7 by
r=inf{n > 1:1d,| > (C/2)| T,( ).}
Then we have that
P(Ifyl = (A/2)||T,(F)].)
< P(If)l = (A/2)|Tp(f)].. 7 = ®) + P( < )

< P(|ZI(r = k)dy| = (A/2)|T,(F)].) + P(d* = (C/2)| T,(F)].)-
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Combining these estimates, we obtain that
P(1£,) 2 A|T(£)].) < P(|ZI(7 = k)d}| = (A/2)| T,( £)].)
+ P(d* = (C/2)|T,()].)
+ P(d* > (A/8)| T,( ..)-

Now, observe that the martingale difference sequence (I(r > k)d’,) has the
required property since

|y |I(7 = k) < 2d}_I(7 = k) < C|T,(f)]..

Thus, in order to complete this part of the proof it suffices to show that, for
y>1

P(d 2| T,()].) < By,

for some absolute constant B. This follows immediately from the estimate

1T, 21T ()

and Lemmas 2.4 and 3.1. This completes the first part of the proof.
Assume now that (d,,) is uniformly bounded. Then, for each positive A and
each k. =1,...,

E exp{Ad,} < =,
so that a sequence (Y,) defined by
_ exp{AL;_,d,)
" Tg-1E,_ exp{Ad,}

is a martingale with EY, = 1. Consequently,

P ki d, > A||Tp(f)||w) =P exp{Aki dk} > exp{AAHT;;(f)HJ)
=1 =1

. exp{AA|T,(1)].)

=Pl|Y, > T1;_,E, ,exp{Ad,)
exp{A)t”Tp( f)”oo}

<P|Y, > |T17_,E,_, exp{Ad,}|..

< exp{—AA|T,( )]} EY,

oo

kljl E,_,exp{Ad,}

= exp{~AA|T,(1)].}

Z E,_, exp{Ad,}
k=1

o
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Since d, and d, have identical conditional distributions, given &, _,, we find
that
E,_ ,exp{Ad,} = E,_, exp{)\Jk} = E_exp{Ad,},

and it follows from the “conditional independence of the sequence (d,,) that

kUIEk—l exp{Ad,} = kUIEk—l eXP{)‘C-l—k}
= k]lef exp{Ad,}

= E,exp{)& i Jk}.
k=1
Since
la*ll < C[T,(£) L.
Lemma 2.4 implies that
18l < C| T, (£

as well. Choose
Kp
NG

with k > 0 to be specified later. Applying Proposition 4.2 to the sequence (d,)
and the conditional measure P(‘|#£), we get

Jk}

Substituting the last quantity into our previous estimate and using our choice
of A, we obtain

P(f, 2 A|T,(1)].) < sexp{-AN|T,( )| Jexp{5BCA|T,( 1) |}
< 5exp{—(A — 2BC)A||T, ().}

< 5exp{—(A — 2BC)«p},

as long as k < 1/(2BC). Repeating the same argument for the sequence
(—d},) and putting together all of the above estimates, we get

P(Ifnl > A||T,( f")||p) <4(2/C)" + 4(8/A)" + 10exp{ — (A — 2BC)«p)}.

Now it is clear that, for C > 16, it is enough to let « =1/(2BC) and
A = nBC, and 7 sufficiently large. This completes our proof. O

E, exp{)t < 5exp{BA(|T,( )]l + CIT,( ).}

_
Tt

< 5exp{2BCA|| T,(f)|.}-
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6. Concluding remarks.

(i) Since all constants appearing in the course of our proof are explicit, a
numerical upper bound on a constant K can be constructed. No attempts were
made to optimize that bound, as methods based on the good-\ inequality are
not believed to produce sharp estimates. As for a lower bound, by considering a
trivial example (X, = X, =1,) and letting P(A) —» 0, we see that K >
2(P=1D/P_ A question about the exact value of that constant is open even in the
special case of randomly stopped sums of independent random variables.

(ii) Consider the following result of Klass: There exists a constant K such
that for every sequence (X,) of independent, Banach space valued random
variables and every stopping time 7, one has

x; )

n

L X,

k=1
Here, (X}) is an independent copy of (X,,), and ® is any increasing continuous
function of moderate growth [i.e., ®(0) = 0 and ®(cx) < ¢*P(x), for all x > 0
and ¢ > 2]. Our method can be used to give an alternative proof in the special
case, namely, ®(x) =|x|”, 1 <p < . For convenience, we shall consider
real-valued random variables; it should be clear, however, that the proof
carries over to Banach spaces with no essential changes. Let (£,) be a sequence
of independent mean-zero random variables, and let 7 be a stopping time with
respect to the natural filtration generated by a sequence (¢,) such that
lI7lle = N. Then,

E max <I>(

l<n<rt

k=1

) < K*E max d)(

l<n<r

17,(F)]. =

N
Y &
k=1

P

Therefore, by a submartingale property, we have that

TAk P

ka L &

=1

7

>t)<tpE

gl

The result follows by Lemma 2.3. One advantage of our approach is that it
gives a better constant then the original proof of Klass. This may be of some
interest in the context of identifying the best value of the constant in domina-
tion inequality for martingales. It may be (as happens with other martingale
inequalities) that the special situation of randomly stopped sums of indepen-
dent random variables, in fact, gives rise to the worst case.

(iii) Theorem 1.1 yields an inequality

Eo(|LX,|) < E®(K|LX,|)

max
k<N

selecting ¢ = c|X)_,&,ll,, we obtain

kAT

Y &

Jj=1

p

max
k<N

=C

) < (1/¢)".
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for more general functions ®: R — R than powers. For example, taking
®(¢) = exp{t} and using Taylor expansion, we get a domination inequality for
the moment generating function

E exp{l Y X, l} <E exp{K| Y X, |>
This is closely related to a recent result of de la Pefia (1992), who showed that

Eexp{l Y X, l} < 2\/Eexp<2| Y X, |> .

We would like to mention at this point that an upper bound for the probability

P( i d, ZA”Tp(f)”oo)
k=1

obtained in the course of the proof of Theorem 5.1 could also be deduced from
de la Pefna’s result. Both arguments are based on essentially the same ideas
and were given independently. For the sake of self-containment of the present
paper we have chosen to present our version of the argument rather than to
refer simply to de la Pefia’s inequality.
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