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EXPONENTIAL WAITING TIME FOR A BIG GAP IN A
ONE-DIMENSIONAL ZERO-RANGE PROCESS!
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Université de Rouen

The first time that the N sites to the right of the origin become empty
in a one-dimensional zero-range process is shown to converge exponentially
fast, as N — o, to the exponential distribution, when divided by its mean.
The initial distribution of the process is assumed to be one of the extremal
invariant measures v,, p € (0,1), with density p/(1 — p). The proof is
based on the classical Burke theorem.

1. Introduction. The zero-range process can be informally described as
follows. Particles are distributed on the integers. Associated with each site is
an exponential clock independent of the others. When it rings, a particle,
chosen at random among the ones sitting in the site if the site is occupied
jumps to the next site to the left.

We consider this process starting from an equilibrium measure with fixed
density. Define Ty, as the first time that the sites {1, ..., N} become empty. We
prove here that T, /ET, converges in law to an exponential random time with
mean 1, exponentially fast in N. Furthermore, we compute both the scaling
factor ET) as well as the rate of convergence.

The main tool is the classical Burke theorem. The process can be repre-
sented as an infinite system of queues, which enables us to give an explicit
representation of T, as a geometric sum of independent random times.
Indeed, T, has the same distribution as the first time that a customer in a
series of queues finds a line with more than N customers.

This kind of result has not been obtained up to now for conservative
systems like the zero-range process. A number of results in this direction have
been obtained for dissipative systems. The main difference between these two
classes of processes is that dissipative systems lose memory much faster than
conservative ones. On the other hand, this kind of result has been obtained for
Harris recurrent chains. But the zero-range process is not Harris recurrent
even on the set of configurations with fixed asymptotic density. (We thank
Tom Liggett for showing us this fact.) As a matter of fact, this is believed to be
the typical situation in the infinitely many particle systems context.

The ergodic properties of the zero-range process have been studied by
Andjel (1982). The hydrodynamical limit was obtained by Andjel and Kipnis
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(1984). The equivalence with a system of queues was studied by Wick (1985)
and Kipnis (1986).

The convergence to exponential for occurrence times of rare events seems to
have been studied first by Bellman and Harris (1951) and Harris (1953). In the
context of applied probability, the question was studied by Aldous (1982, 1989)
and Aldous and Brown (1991a, b) for a finite state chain and by Korolyuk and
Sil’vestrov (1984) and Cogburn (1985) for Harris recurrent chains. In statisti-
cal physics the question was considered in the so-called ‘‘pathwise approach to
metastability”’ and studied for interacting spin flip systems and dynamical
systems with or without random noise. [See the review paper of Schonmann
(1992).] In the intermittency context the question was studied by Collet,
Galves and Schmitt (1992). Occurrence times for large density fluctuations for
equilibrium dissipative systems have been studied by Lebowitz and Schon-
mann (1987) and Galves, Martinelli and Olivieri (1989).

2. Results. The zero-range process under study is a particle system ¢,
with state space X = N“. The generator of the process is given by

Lf(¢) = ¥ 1{&(x) > O} F(£2=7Y) = f(&)],

xeZ
where
&(y), ify+x,x—1,
9l (y) ={é(x) - 1, ify=x,
E(x—1)+1, ify=x-1.

Let P* and E¢ be the probability and expectation with respect to the process
starting with the configuration £. Let v be a probability measure on X. Define
E*f(¢) = [v(dOE!f(£). We consider the product measure v, on X with
marginals

v(£:E(x) = k) =p*(1 - p), k>0.

These measures are extremal invariant for the process [Andjel (1982)]. From
now on we fix p > 0 and write P and E instead of P> and E’», respectively.
Let Ty = inf{t: (£(x)=0,x=1,..., N}

THEOREM. The following holds:

sup|P(p(1 = p) Ty > t) — | < (N + 3)(1 - p)"2

t>0

Proor. First define the exit times from the box {1,..., N}. Let S, = 0 and
for n > 1,

S, =inf{t > S, _: &-(1) = £(1) + 1}.
For n > 0, define Y, = min{x > 1: {5 (x) > 0}, the length of the gap to the
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right of the origin by time S,,. Calling
J(N) =min{n >0:Y, >N + 1},
we have

TN = SJ(N)'

" Interpreting each site as a cashier and each particle as a customer, we may
represent the zero-range process as a system of queues in series. For a more
detailed description see Kipnis (1986) and Wick (1985). Then Burke’s theorem
says that for n > 0, {S,} is a Poisson point process with rate p, that is,
{S,.1 — S,} are independent exponential times with mean 1/p. Note that
S,.1— 8, =232 W, ., where W, ; is the time it takes for the first particle to
the right of the origin at time S, to perform its ith jump toward the origin.
Burke’s theorem and the fact that {W, ,} are independent mean-one exponen-
tial random variables implies that {Y,} are independent geometric random
variables with parameter p, that is P(Y, = k) =p(1 — p)*~!, k> 1, and
EY, = 1/p. Hence, denoting By = (1 — p)¥, .

P(J(N) =k) =By(1 - By)*, k=0,

where E(J(N)) = (1 — By)/Bn-

With these ingredients a straightforward computation shows that the law of
BnTy converges to an exponential distribution. To obtain the rate of conver-
gence stated in the theorem, we compare, through a coupling, T, with an
exponential random time. The comparison is based on the following remark.
The random time Ty is a double sum of exponential random variables. The
number of terms of the sums is roughly geometrically distributed. This would
give us an exponential random time if these numbers were independent. But
since this is not the case, we couple Ty with another random time T
constructed in the same way, but considering independent random numbers of
terms. We have that

J(N)-1 Y,
TN = Z Z Wn,i
n=0 i=1

with the usual convention that T, = 0 if J(IN) = 0. On the other hand, with
the same convention, let

where Y, are defined in the following way. First consider an independent copy
Z, of Y,. Then for each index n < J(N), define

if Z, <N,
if Z, > N.

g _ | %
n o\ Z

no
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Now it is easy to see the following results.

1. Given that J(N) =%, Y,,...,Y,_, have independent geometric distri-
butions with parameter p; indeed

P[J(N) =k, ¥ =a;,0<i<k—1] =P[J(N) = k] 1‘[ P[Y—a]
O<i<k-—
Therefore, the random time Ty is a mixture of two random variables: the
constant 0 with probability 8, = (1 — p)" and a geometric sum of exponential
random times—which is itself an exponential random time—with probability
1- By
2. Since EJ(N) = (1 — By)/By, result 1 implies that

3. Let M = #{n < J(N): Y’n # Y,}. Then a direct computation shows that
P(M=Fk)=vy3(1-vn), k=0,

where yy = (1 — By)/(2 — By). Therefore, E(M) = 1 — By.

4. By definition, Ty > Ty and E(Ty — Ty) = E(M)E(Y Y,|Y, # Y).
Since by direct computation E(Y, — Y,|Y, # Y,) <N + (1/p), it follows from
result 3 that

E(TN - TN) <N+ (1/p).
Now we can conclude the proof. By construction we have
e”(1 - By) = P(pBxTN > t)

> P(pByTy > t)

>P(pByTy>t, Ty — Ty < Ay).
This last probability is greater than

P(pByTy >t + pByAy) — P(Ty — Tn > Ay)
E(Ty - Ty)
Ay ’

> (1 - By)exp(—t — pByAn) —

where in the last line we used the definition of T and the Markov inequality.
Now, applying result 4 and fixing Ay = 1/py/By, we get the bound of the
theorem. O

The zero-range process under study is isomorphic to the asymmetric simple
exclusion process as seen from a tagged particle [see Kipnis (1985) and Ferrari
(1986), for instance]. With this isomorphism our theorem implies that the first
time that the tagged particle sees a block of N particles to its right approaches
an exponential random variable, when normalized by its mean.
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