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A REMARK ON CONVERGENCE IN DISTRIBUTION
OF U-STATISTICS

By EvarisT GINE! AND JOEL ZINN2

University of Connecticut and Texas A & M University

It is proved that, for A measurable and symmetric in its arguments and
X, iid., if the sequence {n =" /%%, imsn iy wigits ek M Xy X Moy
is stochastically bounded, then Eh? < « and Eh(X;, %,...,%,,) = 0 a.s.

1. Introduction. Whereas the limit theory for sums of ii.d. random
variables is well understood in the sense that there are necessary and sufficient
analytic conditions for each of the main limit theorems to hold, the limit
theory for U-statistics is far from complete. There are very sharp sufficient
conditions for, for example, the law of large numbers and the central limit
theorem for U-statistics, but either they are not necessary [e.g., for the law of
large numbers; see Giné and Zinn (1992)] or it is not known whether they are
(e.g., for the clt). In this article we show that the usual sufficient condition for
weak convergence of completely degenerate U-statistics, namely finiteness of
the second moment of the defining function, is also necessary (in fact, we prove
a stronger statement). The same problem for U-statistics which are not
completely degenerate is not considered here and seems to require techniques
different from those used in this article.

Let (S, ., P) be a measure space, let X, X; be i.i.d. (P) S-valued random
variables, let m € N and let A: S™ — R be a measurable function symmetric

in its arguments, that is, h(xy,...,%,,) = h(x,,..., %, ) for any permutation
o of {1,...,m}. We let, as usual,

1

Uu(h) = U™ (h) = — Y k(X X))
n)i1<...<im5 m
m
(n—m)!
= -—’Z—!—————- Izh(Xil’ ceay Xim)’

n

where I, ={(i,,...,i,,): i, <n,i,# i, if r # s}. [The superindex (m), which
indicates the order of the U-statistic, will be omitted whenever no confusion
may arise.] The object of this note is to prove the following theorem.
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118 E. GINE AND J. ZINN

THEOREM 1. If the sequence {n™/?U(h)Y;_, is stochastically bounded,
then ER*(X,,...,X,,) <» and Eh(X,, x5, ...,x,) =0 for almost every
(xg,...,%,,) € S™ ! [and therefore {n™/?U,(h)}:_, converges in distribution].

The case m = 1 of Theorem 1 is just the necessity of EX? < » for the clt
[Feller (1935), Khinchin (1935) and Lévy (1935).] There are several proofs of
this classical result, the most elementary being perhaps one based on sym-
metrization, Lévy’s inequality and the converse Kolmogorov inequality or
Hoffmann-Jgrgensen inequality. This proof does not seem to extend beyond
sums of independent random variables. Our proof of Theorem 1 is based on
randomization and Khinchin’s inequality and, specialized to the case m = 1, it
provides a new, very simple proof of the classical result.

In Section 2 we show that the tails of the original U-statistic dominate the
tails of a decoupled, randomized version of it. This is an elementary but useful
fact. In Section 3 we prove Theorem 1 as follows: Once it is established that
the decoupled, randomized U-statistics are tight, Khinchin’s inequality to-
gether with the Paley-Zygmund inequality allow us to conclude that the
U-statistics based on h? also form a tight sequence. Therefore; by positivity,
the U-statistics based on the truncations h%I(h? < c) are tight uniformly in n
and c; this yields Eh? < © by the law of large numbers for U-statistics with
integrable defining functions [in fact, with the bounded defining functions
h2I(h? < ¢)).

A version of Theorem 1 also holds for Banach space valued functions £, if
the Banach space is of cotype 2 [see, e.g., Araujo and Giné (1980) for the
definition]. This remark is made in Section 4.

The reader who is only interested in Theorem 1 for m = 2 may skip Section
2 and read instead Remark 1 in Section 4.

Let us now briefly consider the general case. By Hoeffding’s decomp-
osition, as soon as h is integrable, the U-statistic with kernel 4 de-
composes into a sum of completely degenerate U-statistics with kernels
()i Xy, ., 2,) = (7)., = P)...(5,, — PYP™"*h, 0 < k < m, and our
result applies to each of these terms. However, the general problem should be
formulated along the following lines: Is it true that if, for some 1 < r < m, the
sequence {n"/?U{™(h)): _, is stochastically bounded, then E|h| < «, 7w,k =0
for k < r, E(m, h)? < o and n"/2U®(7r, H) — 0 in probability for r < £ < m?
The present work answers this question in the affirmative for r = m, but our
methods alone do not seem to be adequate to answer it for r < m.

2. A (one-sided) decoupling inequality. Let (S, ., P) and X, X; be
as above, let B be a measurable linear space and let A: S™ — B be a
measurable function, symmetric in its arguments. Denote multiindices

@iy,...,i,) €N™ by i and vectors (x;,...,x; ) by x;. Let I =U%5_,I, =
{Gg,..oyi,) i, # 1, if r# s}. Given a finite set A C N, we let
Sa=8x(m) = Y h(x;)|= r h(xips s 2,) |-

InA™ i, €A, i, #iyif j#k
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Given A,,..., A, CN, digjoint and finite, and (my,...,m,), m; € N U {0},

ioim;=m,wewillet Sy  ,(my...,m,) beLh(x;), iin the intersection
with I of any of the m!/m!... m ! Cartesian products of m, factors equal to
A,,...,m, factors equal to A,. Formally, if #(m;m,..., m,) is the set of
partitions of {1,...,m} into r sets P,,...,P, with |[P|=m; P, =0 if
m; = 0, then

SAI,..‘,Ar(ml""’mr) = > > h(x;)

(Py,...,P)eEP(m;myq,...,m,) i€l i, €A, if jEP,

(for h general, not necessarily symmetric; if A is symmetric the rightmost
sums are all equal). The following identity is obvious: For A c N finite and A,
i=1,...,r, digjoint, with U!_; A, = A,

(1) S, = > SAI,...,A,(m1>~-~ymr)'

(my,...,m): Xm;=m

We can now prove the following elementary lemma.

LEMMA 1. Let A;, i =1,...,m, be finite disjoint subsets of N and let
A=Um",A,. Then

m! Yy h(x;) =SA1 _____ Am(l,...,l)

i€A; X -+ XA,

m
(2) =8, - ZSA\A,
r=1
m
+ > SA\(ArIUArz) -t 2 S,
1<ri<rg<m r=1

Proor. The first identity is a direct consequence of the symmetry of A.
The second, whose proof follows, does not require symmetry. Let us extend,
for convenience, the definition of S, 4 (m...,m,) to subsets C of
M={my...,m,) Elm;=m, m; e NU{0}, as S,  ,(C)=
..... myecSa,. . amy...,my,). Let C.={(my,...,m,)eM: m, =0},
r=1,...,m. Then M={1,...,D}uC, U ---UC,, and therefore (1), to-
gether with the inclusion—exclusion formula, gives

m»

= SAI ..... Am(l?“'?l) + SA1 ..... Am( U Cr)

r=1

1<r;<ry<m
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(note N7T,C; = &). But, again by (1), Sy,

A€, Nn--NnC)=
Sac( AU UAY and the lemma follows. O

.....

Let now { X, i €N}, j <m,be m 1ndependent copies of the sequence {X,,
i €N} [ie., these random vectors are all i.i.d. (P)]. If A J < m, are disjoint
and IA | = n;, we obviously have

3) J( L X)) -

ic€A;x -+ XA,

> (XD, ..., x;;;»)).

(ie[l,nl]x - X[1,n,,]

Because of the simple observation (3), (2) gives a relationship between the
original and the decoupled U-statistics. We will also need to randomize the
decoupled U-statistics; to this end, we let {¢, i € N, j < m} be an indepen-
dent array of Rademacher variables, independent of the variables { X{/)}.

THEOREM 2. Let K be a convex symmetric subset of B.
(@) If D;, j =1,...,m, are subsets of {1,...,n}, then

Pr{ Y h(X®,.. XM)e - 1Kc}
ieD,

X -+ XD, m!
(4)
< (2™ - 1) Jmax Pr{ Y h(X;) e Kc}
iel,
(b)
2m(2™ — 1
Pr{. L e eMh(XP, ..., X™M) e —(’m———)-K}
(5) "

<2m(2™ - 1) max Pr{ Y r(X)) e K}

=nm iel,

PROOF. (a) follows immediately from Lemma 1 taking A, =D, A, = n +
D.,,..., =n(m — 1) + D,, [see (3)]. (b) follows from (a) and Fubini’s theo-
rem because Tierrip<nbiy oo &Mh(XD, ..., X{™) is a linear combination
with coefﬁaents +1 of 2™ ‘terms of the form

L R(X®,.,x),

ieD;x -+ xD,,

with D, ={i <n: e’ =1}or D, ={i <n: e’ = —1}. O

Lemma 1 and Theorem 2 could be stated in more generality; for instance, it
is clear that analogous results can be stated for multiple stochastic integrals.

It would be interesting to have inequalities analogous to those in Theorem
2, but in the opposite direction.
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3. Proof of Theorem 1. The stochastic boundedness of the sequence
{8, =n"""2E;; hX,): n € N} implies, by Theorem 2, that the sequence

{s’ —am Y e mR(XD,. L, X n GN}

is also stochastically bounded. Let

[S,F=n" ¥ R(XP,...,X™), neN

I1,..,ip<n S
The next step consists in showing that the sequence {[S,1?} is also stochasti-
cally bounded. To prove this, we use two well-known inequalities.
Using Khinchin’s inequality [e.g., Kahane (1968)] first in the Banach space
L, spanned by the ej(z) variables and then twice in R, we obtain that for any
{ai’j} CcRand any n €N,

r 271/2

n

2 1
Y a; 6@ |e®
j=1

>

i=1

1.2
Z a; 185 )8()

1 E2
-1

n
2 1
Y a; ;6@ |e®
J

,j<n

i=1

n n 2]1/2
1 1
> o1, 5 Lo et

| j=1\i=1
1/2
C
2
=5 )
i,j<n

where c is the constant in Khinchin’s inequality for L. By iteration, it follows
that there exists a universal constant c,, such that, for any a; , €Rand
neN,

6) E T a0

,,,,,

1/2
= cm( Z a’%l ..... im) .
[T - )
[This inequality also follows from Bonami’s (1970) inequality for Rademacher
polynomials, but the above derivation is more elementary.] This moment
inequality, by an easy argument of Paley and Zygmund [e.g., Kahane (1968)],
yields an inequality for tails, which is what we need. The Paley-Zygmund
argument is as follows: Let ¢ be a real random variable; then we obviously
have by Jensen’s inequality that, for any ¢ > 0, E|¢| <t + (E£2)V2(P{|¢] >
th/2, and this yields

(Elgl — )"

7 Pr|§|>t_——7
(7 =0 = |
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Then, by inequality (6),
E,IS,| = ¢[S,],
so that, by inequality (7), for all ¢ > 0,

(c[S,] - ¢) ] | ([Sn it '

5.0 | =4f

PS,| >t} = [ 2

Integrating, we obtain
5 | c? 2t
i > —
Pr{ISn > t} z 5 Pr{[Sn] p },

showing that the sequence {[S,]*: n € N} is stochastically bounded (since {S}
is).

The law of large numbers for U-statistics [e.g., Serfling (1980)] gives that for
every ¢ < o,

nm Y [RI(R? <o)](XD,..., X™) > ERI(R? <c) as.

[note that a decoupled U-statistic based on 4 is just a regular U-statistic based
on the function H on (S™)™ defined as H(x,,...,x,,) = h(x{,..., )]
This limit (actually in probability), the stochastic boundedness of {[S,]?} and
positivity give

sup I[ ER?I(h% < c) > t]

c>0

IA

sup sup Pr{n—m Z [hZI(h2 < c)](Xi(ll)" R Xz(,:l)) > t}

c>0 n iel,

IA

sup Pr{[Sn]2 > t} -0 ast— o,
n

Hence there is ¢, < « such that sup, . , ER%I(h® < ¢) < t,, that is, Eh? < o
Let us recall Hoeffding’s decomposition [e.g., Serfling (1980)]:

U,(h) = Um(8) = T (7 |Ue(mh),
£=0
where (7,h)(xy,..., %) = (8, — P) X --- X (8, — P) X P *(h). Here m,h
is simply P™h = Eh, and for k > 0, m,h is P-canonical, that is,
E(m,h )Xy, xy,...,x,) = 0 a.s.; note also E(7,h)? < Eh? < ». So, the central
limit theorem for degenerate U-statistics [Rubin and Vitale (1980), Bretagnolle
(1983) or Dynkin and Mandelbaum (1983)] gives convergence in distribution of
{n*2U%(1r,h)}, with a nonzero limit if and only if E(s,k)? # 0. Therefore,
for each & > 0, the kth term in the Hoeffding decomposition above is either
exactly Op(n™*/%) or 7,h = 0 a.s. Since, by hypothesis, U (k) is Op(n""/2), it
follows that w,h = 0 a.s. for £ = 0,1,...,m — 1. For k& = 0 this gives P™h =
Eh = 0; for k = 1, this gives (§, — P) X P™ (k) = 0 a.s. or, since P™h = 0,
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(P™"'h)(x) = 0 a.s., and so forth. That is, (Ph)(x,,...,x,,_,) = 0 for P™"1
almost all (x,...,x,,_,), thus proving that A is P-canonical. Then the
above-mentioned clt for U-statistics gives the convergence in distribution of
{n™/2U (h)}, and this completes the proof of Theorem 1.

4. Remarks.

1. In the case m = 1 the proof of Theorem 1 is easier in the sense that
Section 2 is not needed, inequality (6) is just Khinchin’s inequality in R, and
the last part of the proof uses the law of large numbers and the central limit
theorem for sums of i.i.d. random variables (instead of the limit theorems for
U-statistics). The argument replacing Section 2 is as follows: For ¢; i.i.d. and ¢,
independent Rademacher, independent of {£;},

Pr{ n~Y2 Y &> 2t} <E, Pg{ nTV2 N &> t}
i=1 i<n:g=1
+P§{ n~v2 ¥ gi) >‘t}]
i<n:g;=-1
< 2 sup Pr{ n~2 Y g0 > t}.
n i=1

2. The proof of Theorem 2 in the case m = 2 is somewhat less involved
than the general case, and can be easily read off from Section 2. However, for
m = 2, there is an even simpler argument to control the tails of the distribu-
tion of the randomized (but not decoupled) U-statistic in terms of those of the
original one, as follows: If A, B c N are disjoint, let

i,jelINA (i,j)€eAXBUBXA
Now, if {¢,} is a Rademacher sequence independent of {X,}, define A (¢) =
{i <n:e; =1} and B,(¢) = {i < n: ¢ = —1}, and observe
. Z &;8;h(Xis X;) = Sa,0) + Sp,0) = Sty Buo
i,j<n

=ZSAn(£)+ZSBn(E)_ Z h(Xl7 Xj)'

i#j<n
This gives
Pr{ Y egh(X;, X)) >5t}
i,j<n
sPX{ Y h(X,, X)) >t} +E€PX{|SAn(€)|>t}
i#j<n

+ E,Px{|Sp,| > 1)

Y k(X X))

ks<n ij<k

< 3max Pr{

1)
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This inequality can be used instead of Theorem 2 in the proof of Theorem 1
with only one change: Now the analog of inequality (6) does not follow from
recursive use of Khinchin’s inequality as above, but from Bonami’s (1970)
work.

3. The symmetry condition on A cannot be completely dropped in Theo-
rem 1: If h(x,y) is antisymmetric, that is, A(x,y) = —h(y, x), then
Yisj<nh(X;, X;)=0. If h is not symmetric, it can be symmetrized, for
instance,

n"t ¥ Oh(X,X;)=(2r)"" ¥ (k(X,, X))+ (X, X,)),

i#j<n i%tj<n
and tightness of this sequence does imply, by Theorem 1,
E(h(X,, X,) + h(X,, Xl))2 < ®,

but, as seen in the extreme antisymmetric case, this does not generally imply
Eh? < , .

4. The proof of Theorem 1 (and of its versions for m = 1 and m = 2 just
discussed) is self contained except for Khinchin’s inequality, used in the proof
of (6). In fact, the Paley-Zygmund argument giving the stochastic bounded-
ness of [S,] can also be carried out, with essentially no changes, using the
equivalence between the L, and L, norms of Rademacher chaos instead of
(6), namely

4 2
(6) E( Zgil ceo & QG im) = cm( Z‘ﬁl ..... im) .
I I

(Note that this inequality contains its analogue for decoupled &’s.) Inequality
(6') is more elementary than (6) and can be proved ‘by hand’ (i.e., by tedious
but simple computations).

5. If B is a cotype 2 Banach space, then there is an analog to Theorem 1.
The result of Section 2 is in fact stated for B-valued h. Inequality (6) is also
valid in cotype 2 spaces, in the following form: There exist positive constants
¢, = ¢,(B), depending on m and the space B, such that

1/2
2
Zcm( Sl imll) ,

[T, i,<n

iy,000, i,<n

(6") EN T an D e

because Khinchin’s inequality holds in any Banach space and by the defining
cotype 2 inequality [these two facts allow for the arguments above (6) in the
proof of Theorem 1]. The law of large numbers for B-valued U-statistics
U,(H) holds as long as E||H| < « [Arcones and Giné (1993)]. So the proof of
Theorem 1, with only formal changes, yields that if {|[n™/2U (h)|} is stochasti-
cally bounded, then E| %> < . The final part of the proof of Theorem 1
applied to f(h), f€ B’, shows Eh(Xj, x,...,x,) =0 for almost every
(%5,...,%,) € S™ 1 [B can be assumed to be separable, so that the unit ball
of B’ is separable for the weak-star topology, and this is all that is needed to
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take care of the sets of P™~'-measure zero on which Ef(h(X,, x,,...,%,)) =
0]. We have thus proved the following result.

THEOREM 3. Let B be a cotype 2 Banach space and let h be a B-valued
measurable, symmetric function on S™. If the sequence {|ln™/2U (R)I}:_, is
stochastically bounded, then E|h(X,,..., X,)II? < © and Eh(X,, XogyenvyXp)
=0 for almost every (x,,...,%,) € S™ L

If B is not of cotype 2, then Theorem 3 is not even true for m = 1. The
proof of Theorem 1, only with formal changes that we skip, shows that in a
general Banach space B, if the sequence {[|[n™/2U,(h)I};_, is stochastically
bounded, then

sup  E[f(h(Xy,...,X,))]" <.
feB,|fll<1
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