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DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES
FROM A RANDOM TRANSLATE OF ITSELF

BY YosHIAKI OKAZAKI! AND HIROSHI SATO?

Kyushu Institute of Technology and Kyushu University

Let X = {X;} be an i.i.d. real random sequence, let ¢ = {¢;} be a
Rademacher sequence independent of X and let a = {a;} be a deterministic
real sequence. The aim of this paper is to prove that the mutual absolute
continuity of probability measures induced by {X;} and {X}, + ape;} implies
a € ¢4. This is a generalization of a result of Shepp.

1. Introduction. Let X = {X;} be an i.i.d. real random sequence, let Y =
{Y}} be an independent random sequence which is also independent of X and let
px and px,y be the probability measure on the sequence space RN induced by X
and X+Y = {X}, + Y3}, respectively. Then by Kakutani’s dichotomy theorem [1]
ux+y and ux are either mutually absolutely continuous (denoted by px,y ~ px)
or singular (denoted by ux,y L ux).

Denote the distribution of X; by A and the density of A by f if it exists.
Furthermore, if f(x) is an absolutely continuous function, denote the Radon—
Nikodym derivative of f(x) by f/(x) and define

+00 f/(x)2
o [)

and if f/(x) is an absolutely continuous function, denote the Radon-Nikodym
derivative of f'(x) by f”(x) and define

+00 f”(x)2

When Y is a deterministic sequence y = {y; }, Shepp [6] proved the following
theorem, which has many applications.

Ii() = dx,

THEOREM 1.

() px4y ~ px implies'y € L.
(i) if I1(f) < +oo, then y € £y implies pix.y ~ px.
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DISTINGUISHING FROM A RANDOM TRANSLATE 1093
(iii) If px+y ~ px for every y € £, then I;(f) < +oo.
Sato and Watari [5] proved the following theorem.

THEOREM 2. If Iy(f) < +oo and Y is symmetric, then Y € {4 a.s. implies
HX+Y ~ HX.

In this paper we investigate the case Y = ac = {az¢;}, where a = {q;} is a
real sequence and ¢ = {¢;} is a Rademacher sequence. Okazaki [3] proved the
following theorem.

THEOREM 3. If pxiac ~ ux for every a € £y, then Io(f) < +oc.

The aim of this paper is to prove the following theorem, which was proved
by Sato [4] under the additional assumption that a twice continuously differ-
entiable f exists.

THEOREM 4. pxiac ~ ux implies a € 4.

The proof, based on [2], is given in Section 2. These Theorems 2, 3 and 4
complete a generalization of Theorem 1 to the case Y = ac and then a natural
question arises. If Yis symmetric and lim;, Y; = O a.s., then does ux,y ~ ux imply
Y € ¢, a.s.? The answer is no, and in Section 3 we shall give a counterexample.

2. Proof of Theorem 4. Assume px,,. ~ px. Then for every £ € N we have
HXy+apes ~ Bx,, Where px, ..., and px, are the distribution of X, + aie;, and X3,
respectively. Without loss of generality, we may assume a;, > 0 for every £ € N.
Define

HXk*‘akek( )
dux,

and set A; = {x € R: p;(x) — 1 < 1}. Then by Theorem 2 of Kitada and Sato [2]
we have

(K.1) Z / (pr(x) — 1) dA(x) < +o0,

prlx) =

(K.2) > / (Pe@) — 1)?dAkx) < +oo.
kA

LEMMA 1. a € {.

PROOF. Assume lim sup,, a; = +oc. Then there exists a subsequence {az,)}
such that

Z (1 - )‘([ - %ak(n), %%(;;)])) < +00;

k
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define I' = {x = {x;} € RN: 2|x3(;)| < @), € N}. Then we have ux(I") > 0, but
Hx+ae(T) = H %{)\([ - Yarm), 3akm)] + ak(n))
n

+ /\([ - Yarem), 30km, | — ak(n))} =0,
which is a contradiction. O
LEMMA 2. limga; =0.

ProOOF. Assume that limsup, a; = b > 0. Then there exists a subsequence
{akrm)} such that b = lim, a,). On the other hand (K.1) and (K.2) imply

+00
lign / |Pk(x) - 1|d/\(x) =0.
Therefore for every ¢ € R we have

0= lil:n / * (pr(x) — l)ei‘xd)\(x)

+00 +00
= liin < / e d iy, e, (6) — / e‘txduxk(x)>
+

00 —00

= lim(cos ta), - DA®),
where \(¢) is the characteristic function of )\, so that
" (costh — DA(t) = lim(costagm — DAXE) =0, t€R,
n
which is a contradiction. O

PrROOF OF THEOREM 4. Inequalities (K.1) and (K.2) imply

> { ( /AC (Pe(x) - 1) dA(x))2 + /A k (Pr@) — 1)2d/\(x)} < +00.

k 3

Therefore we have ), (a; ):B;, < +00, where

2 2
prx) -1 / pr(x) — 1
By, = ————dA\ + ———— ] d\x).
* (/A @) (x)> @7 ©
We shall show lim inf;, By, > 0. Assume that lim inf;, B, = 0. Then there exists
a subsequence {By,} such that lim, By, = 0. Then we have

2 2
. Prn®) — 1 / Prm®) — 1 -
h'I‘n { (/Af(u) (a'k(n))2 d/\(x)) ¥ Akin) ( (a'k(n))2 ) d/\(x)} =0
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so that

1
Dn(x) = W (pk(n)(x) - 1)

converges to 0 in L;(d)). For every infinitely differentiable function ¢ with
compact support we have

3 / (plx + arm)) + ©(x — apm))) dXx)

+00

= / PE)Prr)(x) dA(x)

—00

- / o@)(1 + (@yn)?Da(x)) dAG),

—00

so that

0=lim / ” D) dA)
. oo 1
= lim /_ P (p(x + apey) + P& — apen)) — 2¢0(x)) dA(x)

= / " (x) d\(x).

-—00

Therefore the second derivative in the distribution sense of X vanishes and ) is
a linear function, which is a contradiction. O

3. A counterexample. Let X = {X;} be a standard Gaussian sequence,
and define an independent random sequence Y = {Y; } independent of X by

P(Y = k~V5) = P(¥} = —k71/%) = (k +32)71/%,
PY,=0)=1-2k+32)"Y5  kecN.

Then, obviously, Y is symmetric and lim; Y, =0 a.s., and since

S E[@p? Vil <1]" =23 k75(k +32)7%/% < +oo,
k k

by Theorem 9 of [2] we have ux,y ~ px. However, since

ZE[(Yk)43 V| <1] =2 Zk—4/5(k +32)"1/5 = 400,
k 3

we have, by the Kolmogorov three series theorem,

d (¥t =+0 as.
%
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