DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A RANDOM TRANSLATE OF ITSELF

By Yoshiaki Okazaki¹ and Hiroshi Sato²

Kyushu Institute of Technology and Kyushu University

Let $\mathbf{X}=\{X_k\}$ be an i.i.d. real random sequence, let $\varepsilon=\{\varepsilon_k\}$ be a Rademacher sequence independent of \mathbf{X} and let $\mathbf{a}=\{a_k\}$ be a deterministic real sequence. The aim of this paper is to prove that the mutual absolute continuity of probability measures induced by $\{X_k\}$ and $\{X_k+a_k\varepsilon_k\}$ implies $\mathbf{a}\in\ell_4$. This is a generalization of a result of Shepp.

1. Introduction. Let $\mathbf{X} = \{X_k\}$ be an i.i.d. real random sequence, let $\mathbf{Y} = \{Y_k\}$ be an independent random sequence which is also independent of \mathbf{X} and let $\mu_{\mathbf{X}}$ and $\mu_{\mathbf{X}+\mathbf{Y}}$ be the probability measure on the sequence space $\mathbf{R}^{\mathbf{N}}$ induced by \mathbf{X} and $\mathbf{X} + \mathbf{Y} = \{X_k + Y_k\}$, respectively. Then by Kakutani's dichotomy theorem [1] $\mu_{\mathbf{X}+\mathbf{Y}}$ and $\mu_{\mathbf{X}}$ are either mutually absolutely continuous (denoted by $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$) or singular (denoted by $\mu_{\mathbf{X}+\mathbf{Y}} \perp \mu_{\mathbf{X}}$).

Denote the distribution of X_1 by λ and the density of λ by f if it exists. Furthermore, if f(x) is an absolutely continuous function, denote the Radon–Nikodym derivative of f(x) by f'(x) and define

$$\mathbf{I}_1(f) = \int_{-\infty}^{+\infty} \frac{f'(x)^2}{f(x)} dx,$$

and if f'(x) is an absolutely continuous function, denote the Radon–Nikodym derivative of f'(x) by f''(x) and define

$$\mathbf{I}_{2}(f) = \int_{-\infty}^{+\infty} \frac{f''(x)^{2}}{f(x)} dx.$$

When **Y** is a deterministic sequence $\mathbf{y} = \{y_k\}$, Shepp [6] proved the following theorem, which has many applications.

THEOREM 1.

- (i) $\mu_{\mathbf{X}+\mathbf{y}} \sim \mu_{\mathbf{X}} \text{ implies } \mathbf{y} \in \ell_2.$
- (ii) if $\mathbf{I}_1(f) < +\infty$, then $\mathbf{y} \in \ell_2$ implies $\mu_{\mathbf{X}+\mathbf{y}} \sim \mu_{\mathbf{X}}$.

Received January 1993.

¹Research supported in part by Grant-in-Aid for General Scientific Research from the Ministry of Education, Science and Culture. No. 05640274.

²Research supported in part by Grant-in-Aid for General Scientific Research from the Ministry of Education, Science and Culture No. 04640169.

AMS 1991 subject classifications. Primary 60G30; secondary 28C20.

 $[\]it Key\ words\ and\ phrases.$ Absolute continuity of infinite product measures, random translation, Rademacher sequence.

(iii) If $\mu_{\mathbf{X}+\mathbf{y}} \sim \mu_{\mathbf{X}}$ for every $\mathbf{y} \in \ell_2$, then $\mathbf{I}_1(f) < +\infty$.

Sato and Watari [5] proved the following theorem.

THEOREM 2. If $\mathbf{I}_2(f) < +\infty$ and \mathbf{Y} is symmetric, then $\mathbf{Y} \in \ell_4$ a.s. implies $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$.

In this paper we investigate the case $\mathbf{Y} = \mathbf{a}\varepsilon = \{a_k\varepsilon_k\}$, where $\mathbf{a} = \{a_k\}$ is a real sequence and $\varepsilon = \{\varepsilon_k\}$ is a Rademacher sequence. Okazaki [3] proved the following theorem.

THEOREM 3. If $\mu_{\mathbf{X}+\mathbf{a}\varepsilon} \sim \mu_{\mathbf{X}}$ for every $\mathbf{a} \in \ell_4$, then $\mathbf{I}_2(f) < +\infty$.

The aim of this paper is to prove the following theorem, which was proved by Sato [4] under the additional assumption that a twice continuously differentiable f exists.

Theorem 4. $\mu_{\mathbf{X}+\mathbf{a}\varepsilon} \sim \mu_{\mathbf{X}} \text{ implies } \mathbf{a} \in \ell_4$.

The proof, based on [2], is given in Section 2. These Theorems 2, 3 and 4 complete a generalization of Theorem 1 to the case $\mathbf{Y} = \mathbf{a}\varepsilon$ and then a natural question arises. If \mathbf{Y} is symmetric and $\lim_k \mathbf{Y}_k = 0$ a.s., then does $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ imply $\mathbf{Y} \in \ell_4$ a.s.? The answer is no, and in Section 3 we shall give a counterexample.

2. Proof of Theorem 4. Assume $\mu_{\mathbf{X}+\mathbf{a}_{\varepsilon}} \sim \mu_{\mathbf{X}}$. Then for every $k \in \mathbf{N}$ we have $\mu_{X_k+a_k\varepsilon_k} \sim \mu_{X_k}$, where $\mu_{X_k+a_k\varepsilon_k}$ and μ_{X_k} are the distribution of $X_k+a_k\varepsilon_k$ and X_k , respectively. Without loss of generality, we may assume $a_k \geq 0$ for every $k \in \mathbf{N}$. Define

$$p_k(x) = \frac{d\mu_{X_k + a_k \varepsilon_k}}{d\mu_{X_k}}(x)$$

and set $A_k = \{x \in \mathbf{R}: p_k(x) - 1 < 1\}$. Then by Theorem 2 of Kitada and Sato [2] we have

$$(\mathrm{K}.1) \qquad \qquad \sum_{k} \int_{A_{k}^{C}} \left(p_{k}(x) - 1 \right) d\lambda(x) < +\infty,$$

$$(\mathrm{K}.2) \qquad \qquad \sum_{k} \int_{A_{k}} \left(p_{k}(x) - 1 \right)^{2} d\lambda(x) < +\infty.$$

Lemma 1. $\mathbf{a} \in \ell_{\infty}$.

PROOF. Assume $\limsup_k a_k = +\infty$. Then there exists a subsequence $\{a_{k(n)}\}$ such that

$$\sum_{k} \left(1 - \lambda \Big(\big[-rac{1}{2} a_{k(n)}, rac{1}{2} a_{k(n)} ig] \Big)
ight) < +\infty;$$

define $\Gamma = \{\mathbf{x} = \{x_k\} \in \mathbf{R}^{\mathbf{N}} : 2|x_{k(n)}| \leq a_{k(n)}, n \in \mathbf{N}\}$. Then we have $\mu_{\mathbf{X}}(\Gamma) > 0$, but

$$\begin{split} \mu_{\mathbf{X}+\mathbf{a}\varepsilon}(\Gamma) &= \prod_n \tfrac{1}{2} \Big\{ \lambda \Big(\big[-\tfrac{1}{2} a_{k(n)}, \tfrac{1}{2} a_{k(n)} \big] + a_{k(n)} \Big) \\ &+ \lambda \Big(\big[-\tfrac{1}{2} a_{k(n)}, \, \tfrac{1}{2} a_{k(n)}, \, \big] - a_{k(n)} \Big) \Big\} = 0, \end{split}$$

which is a contradiction. \Box

LEMMA 2. $\lim_k a_k = 0$.

PROOF. Assume that $\limsup_k a_k = b > 0$. Then there exists a subsequence $\{a_{k(n)}\}$ such that $b = \lim_n a_{k(n)}$. On the other hand (K.1) and (K.2) imply

$$\lim_{k} \int_{-\infty}^{+\infty} |p_{k}(x) - 1| d\lambda(x) = 0.$$

Therefore for every $t \in \mathbf{R}$ we have

$$\begin{split} 0 &= \lim_k \int_{-\infty}^{+\infty} \left(p_k(x) - 1 \right) e^{itx} d\lambda(x) \\ &= \lim_k \left(\int_{+\infty}^{+\infty} e^{itx} d\mu_{X_k + a_k \varepsilon_k}(x) - \int_{-\infty}^{+\infty} e^{itx} d\mu_{X_k}(x) \right) \\ &= \lim_k (\cos t a_k - 1) \widetilde{\lambda}(t), \end{split}$$

where $\widetilde{\lambda}(t)$ is the characteristic function of λ , so that

$$(\cos tb - 1)\widetilde{\lambda}(t) = \lim_{n} (\cos ta_{k(n)} - 1)\widetilde{\lambda}(t) = 0, \qquad t \in \mathbf{R}$$

which is a contradiction. \Box

PROOF OF THEOREM 4. Inequalities (K.1) and (K.2) imply

$$\sum_{k} \left\{ \left(\int_{A_{k}^{C}} \left(p_{k}(x) - 1 \right) d\lambda(x) \right)^{2} + \int_{A_{k}} \left(p_{k}(x) - 1 \right)^{2} d\lambda(x) \right\} < +\infty.$$

Therefore we have $\sum_k (a_k)^4 B_k < +\infty$, where

$$B_k = \left(\int_{A_k^C} \frac{p_k(x) - 1}{(a_k)^2} \, d\lambda(x) \right)^2 + \int_{A_k} \left(\frac{p_k(x) - 1}{(a_k)^2} \right)^2 d\lambda(x).$$

We shall show $\liminf_k B_k > 0$. Assume that $\liminf_k B_k = 0$. Then there exists a subsequence $\{B_{k(n)}\}$ such that $\lim_n B_{k(n)} = 0$. Then we have

$$\lim_{n} \left\{ \left(\int_{A_{k(n)}^{C}} \frac{p_{k(n)}(x) - 1}{(a_{k(n)})^{2}} d\lambda(x) \right)^{2} + \int_{A_{k(n)}} \left(\frac{p_{k(n)}(x) - 1}{(a_{k(n)})^{2}} \right)^{2} d\lambda(x) \right\} = 0,$$

so that

$$D_n(x) = \frac{1}{a_{k(n)})^2} (p_{k(n)}(x) - 1)$$

converges to 0 in $\mathbf{L}_1(d\lambda)$. For every infinitely differentiable function φ with compact support we have

$$\begin{split} &\frac{1}{2} \int_{-\infty}^{+\infty} \left(\varphi(x + a_{k(n)}) + \varphi(x - a_{k(n)}) \right) d\lambda(x) \\ &= \int_{-\infty}^{+\infty} \varphi(x) p_{k(n)}(x) d\lambda(x) \\ &= \int_{-\infty}^{+\infty} \varphi(x) \left(1 + (a_{k(n)})^2 D_n(x) \right) d\lambda(x), \end{split}$$

so that

$$\begin{split} 0 &= \lim_n \int_{-\infty}^{+\infty} \varphi(x) D_n(x) \, d\lambda(x) \\ &= \lim_n \int_{-\infty}^{+\infty} \frac{1}{2(a_{k(n)})^2} \left(\varphi(x + a_{k(n)}) + \varphi(x - a_{k(n)}) - 2\varphi(x) \right) d\lambda(x) \\ &= \int_{-\infty}^{+\infty} \varphi''(x) \, d\lambda(x). \end{split}$$

Therefore the second derivative in the distribution sense of λ vanishes and λ is a linear function, which is a contradiction. \Box

3. A counterexample. Let $X = \{X_k\}$ be a standard Gaussian sequence, and define an independent random sequence $Y = \{Y_k\}$ independent of X by

$$\begin{split} \mathbf{P}\big(Y_k = k^{-1/5}\big) &= \mathbf{P}\big(Y_k = -k^{-1/5}\big) = (k+32)^{-1/5}, \\ \mathbf{P}(Y_k = 0) &= 1 - 2(k+32)^{-1/5}, \qquad k \in \mathbf{N}. \end{split}$$

Then, obviously, Y is symmetric and $\lim_k Y_k = 0$ a.s., and since

$$\sum_k \mathbf{E} \big[(Y_k)^2 \colon |Y_k| \le 1 \big]^2 = 2 \sum_k k^{-1/5} (k+32)^{-3/5} < +\infty,$$

by Theorem 9 of [2] we have $\mu_{X+Y} \sim \mu_X$. However, since

$$\sum_k \mathbf{E} \big[(Y_k)^4 : |Y_k| \le 1 \big] = 2 \sum_k k^{-4/5} (k+32)^{-1/5} = +\infty,$$

we have, by the Kolmogorov three series theorem,

$$\sum_{k} (Y_k)^4 = +\infty \quad \text{a.s.}$$

REFERENCES

- [1] KAKUTANI, S. (1948). On equivalence of infinite product measures. Ann. of Math. 49 214-224.
- [2] KITADA, K. and SATO, H. (1989). On the absolute continuity of infinite product measure and its convolution. Probab. Theory Related Fields 81 609-627.
- [3] OKAZAKI, Y. (1993). On equivalence of product meaure by symmetric random ℓ_4 -translation. J. Funct. Anal. 115 100–103.
- [4] SATO, H. (1992). Absolute continuity of random translations. In Probability Theory and Mathematical Statistics. Proc. Sixth USSR-Japan Symp. Probab. Theory (A.N. Shiryaev, ed.) 279-291. World Scientific, Singapore.
- [5] SATO, H. and WATARI, C. (1993). Some integral inequalities and absolute continuity of a symmetric random translation. J. Funct. Anal. 114 257-266.
- [6] SHEPP, L. A. (1965). Distinguishing a sequence of random variables from a translate of itself. Ann. Math. Statist. 36 1107–1112.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE KYUSHU INSTITUTE OF TECHNOLOGY KAWAZU IIZUKA 820 JAPAN DEPARTMENT OF MATHEMATICS KYUSHU UNIVERSITY—33 HAKOZAKI, FUKUOKA 812 JAPAN