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A NOTE ON INHOMOGENEOUS PERCOLATION

By YU ZHANG
University of Colorado

Consider a special independent bond percolation model on Z2, in which
all bonds with vertices in the X axis are open with probability § and closed
with probability 1 — &, and all other bonds are open with probability p and
closed with probability 1 — p. In this paper we show that no percolation
occurs at p. for any § < 1. The method allows us also to show no percolation
at p. in a more general inhomogeneous case.

1. Introduction and statement of results. Consider a general bond per-
colation model on Z¢. In the case of bond percolation each pair of neighboring
sites in Z<¢ is thought of as defining a bond. Each bond {x,y} is open with prob-
ability p(, y; and closed with probability 1 — py, ,; independently from bond
to bond. An open (closed) path is a nearest-neighbor path on Z¢, all of whose
bonds are open (closed). Write C for the set of vertices connected to the origin
by open paths. For any collection A of vertices, | A| denotes the cardinality of
A. We shall say that percolation occurs if |C| = co with a positive probability.
If p{s,y} is identical to a unique parameter p for all x and y, the corresponding
percolation model is called the homogeneous percolation model and the corre-
sponding probability measure on the configurations of open and closed bonds
is denoted by P,. Denote by

6(p) = Py(|C| = )

the percolation probability. It is well known that there exists a critical point
0 < p. < 1 satisfying

6(p) =0 if p <p,,

1.1)
( 6(p) >0 if p > p..

Later, Chayes, Chayes and Durrett [3] considered an inhomogeneous site per-
colation model. They use the inhomogeneous density p. + f(x) instead of p for
each site x € Z% and showed that whether or not percolation can occur de-
pends on the function f(x). After that, Campanino and Klein [2] and Madras,
Schinazi and Schonmann [9] considered another kind of inhomogeneous model.
For a fixed x € Z%~1, one can think of a percolation model (in dimension d) for
which py, .3 = py if y = (v,x) and 2z = (v + 1,x), where v € Z, and P{yz} =P
when y and z are neighbors but not of the preceding form. The corresponding
probability measure on the configurations of open and closed bonds is denoted
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804 Y. ZHANG

by Py, ,. Clearly, P, ,, = P, if and only if p, = p. For simplicity of exposition,
we shall assume that x = 0. Clearly, if pg = 1, percolation occurs for all p. Also,
when py < 1, it was proved in [9] and [1] that percolation cannot occur when
P < p. and that percolation occurs when p > p.. The question asked in [9] now is
whether or not percolation occurs at p, for p, < pg < 1. A similar question was
also asked in [9] for the contact process. When 2 < d < 47, we even do not know
whether percolation occurs or not in the homogeneous model at p.. Hence it is
likely to be more difficult to find some results in inhomogeneous models at the
critical point when d > 2. When d = 2, by using some remarkable techniques
in considering the dual lattice on Z2, Harris [4] showed that no percolation
occurs at p < % for homogeneous percolation. Later, Kesten [5] showed that
Pe = % based on the work of Russo [10] and Seymour and Welsh [11]. Indeed,
Russo, Seymour and Welsh (RSW) provided a principal tool for planar graphs.
Define a left-right (respectively, top—bottom) open crossing of a rectangle B to
be an open path in B which joins some vertex on the left (respectively, upper)
side of B to some vertex on the right (respectively, lower) side of B but which
uses no bond joining two vertices in the boundary of B. Similarly, we can define
a left-right (respectively, top—bottom) closed crossing of a rectangle. Here we
state their result for the Z2 lattice:

RSWLEMMA. Ifp = %,for any integer k > 0, there exists a constant C(k) > 0
such that

Py)5(3 a left-right open crossing in [-kn, kn] x [-n,n])
(1.2) =Py (Ei a left-right closed crossing in [—kn,kn] x [-n, n])
> C(k),

for all integers n > 0.

To introduce the ideas behind the proof that there is no percolation at p, = %,
we need the knowledge of duality. We define Z* as the dual graph of Z2 with
vertex set {v + (%, %)} and edges joining all pairs of vertices which are one unit
apart. For any bond set A C Z2, we write A* C Z* for the corresponding dual
bonds of A. For each bond e* € Z*, we declare that e* € Z* is open or closed if e
is open or closed. In other words, each open (closed) e* crosses a corresponding
open (closed) bond in Z2. With this definition, we can obtain (see [6] for more
details) that if there exists a closed circuit surrounding the origin in Z*, then
percolation cannot occur in Z2, Therefore, to show no percolation occurs, the
main work is to construct a closed circuit surrounding the origin in some finite
set of Z2. More precisely, set

A(n) = [-2n,2n)?\[-n,n]%

In a celebrated proof by Harris it was shown (see [4]) that for homogeneous
percolation at p, there exists a closed circuit in A(n) with a probability bounded
away from zero uniformly. Clearly, we do not care how many times the closed
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circuit crosses the X axis in the homogeneous model. However, if we want to
use Harris’ proof for inhomogeneous percolation, we have to restrict the num-
ber of intersections of the closed circuit and the X axis to be finite uniformly.
Therefore, the difficulty is to construct a special closed circuit (for homogeneous
model) in A(n) which only intersects the X axis finitely many times with a pos-
itive probability. Fortunately, building on the work of [6], [8] and [12], we can
demonstrate the following theorem.

THEOREM 1. There exists a constant p >0 which is independent of n
such that

P,, (3 a closed circuit in A(n) which only intersects the X axis twice) > p,

for all integers n > 0 when d = 2.
By using Theorem 1 and Harris’ argument, we have the following corollary.
COROLLARY 1. For any pg < 1, there is no percolation at p = Pc when d = 2.

REMARK 1. It is not very difficult to adapt the proof of Theorem 1 to show
no percolation at p. for d = 2 if the densities of bonds in both the X axis and the
Y axis are changed.

REMARK 2. A consequence of the proof of Theorem 1 is the following refined
version of the RSW lemma:

P, (Ei a left-right open crossing in [—kn, kn] x [—n,n]
which only intersects the Y axis once) > C(k),

for all integers n > 0, where k is a positive integer and C(k) is a positive constant
which only depends on k.

REMARK 3. Van den Berg and Kesten [12] proved the following result:
P, (the origin is connected by an open path to the boundary of

1.
13 [-n,n]?) > Cn~1/2.

Later, Kesten [7] improved the lower boundary of (1.3) to Cn~/3, Here, by our
Lemma 4, we can obtain a slightly stronger result than (1.3) by a different
approach as follows:

P, (the origin is connected to the boundary of [—n,n]? by an open
path with bonds in [-n,n] x (0,n)) > Cn~1/2,

REMARK 4. It can be seen that the symmetry of the Z2 lattice plays an
important role in the proof of Theorem 1. However, if we consider the contact
process or the oriented percolation, we cannot take advantage of symmetry as
much as we did in the Z2 lattice. Therefore, the corresponding question for the
contact process or the oriented percolation is still open.
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2. Proofs.

PROOF OF COROLLARY 1 FROM THEOREM 1. Let
Sm)=A(m)+(1,3) and {y €A} ={(x,y):x € (~00,00), y € A}.

Define each bond in S(n) to be open with a homogeneous density p.. It follows
from Theorem 1 that there is a closed circuit in S(n) which only intersects
{y = %} twice with probability p. We select such a closed circuit and denote
by v; and v the two intersection vertices. Then the existence of such a closed
circuit can also be written as the following event:
E,= {EI two vertices vy € [-2n+1,—n+1] x {1} and
vg € [n+3,2n+ 3] x {1} such that v; and v, are connected by
two closed paths I'; and I'; on Z* with 'y ¢ S(n)N {y > 3} and

Ty € S(n) N {y < 3} except vy and vg}.
Denote

S(n)=[-2n+3,2n+1]
x[-2n+3,2n+3]\[-n+3n+d] x[-n+in+]]

Now we define the bonds in S(n)N {y = 0}* to be open with a density po and the
other bonds in S(n) to be open with a density p.. Define

W, = {3 two closed bonds {(a,-31), (a,3)} and {(b,-3), (b, 3)} on
Sm)n{y=0}"withae[~2n+3,-n+1]andbe [n+},2n+]]
such that there exist two closed paths I'; and I'; with bonds on
S(n)n{y > 1} and S(n) N {y < —3} which connect
(a,2) to (b,3) and (a, —3) to (b, —1),respectively}.

Clearly, by Theorem 1,
Py, po(Wr) = Py (Ex X1 —po)? > p(1 — po)?.

In addition, there exists a closed circuit on S(n) if W,, occurs. Therefore,

Pp. 5o (IC] = ) < [ Ppe,po (no closed circuit in S(n))

n=1
<[[(@-@-poPp)=0.
n=1

Hence Corollary 1 is proved. O
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We now turn to the proof of Theorem 1. Note that Theorem 1 only involves
the critical case for the homogeneous percolation. We shall always consider the
homogeneous percolation from now on, and we abbreviate the measure P,, to
P. In addition, throughout the proof of Theorem 1, C or C; will always stand
for a strictly positive finite constant, whose value is of no significance to us. In
fact the value of C or C; may change from appearance to appearance. Before
the proof of Theorem 1, we first give some lemmas.

LEMMA 1. There exist constants € > 0 and C such that
P (3 two disjoint closed paths on [-n,n] x [0,n] from [k, k] x {0} to Bn)
< C(%) _ePz (EI a closed path on [-n,n] x [0,n] from [k, k] x {0} toBy)

for any integers n > k > 0, where B, = ([—n,n] x {n}) U({—n} x [0,n]) U ({n} x
[0,n]).

Before the proof of our Lemma 1, we need an inequality for disj oint occurrence
of two events. More precisely, let

Q=9 ={0,1}",

for some bond subset T on Z2. A typical point w (w’) of Q (') is a sequence
{w(e)}eer ({w'(e)}ec,). The value w(e) = 1 (0) corresponds to e being open
(closed). The measure P is the product measure on Q with

P(we)=1)=1=P(wle)=0) foreer.
We define P’ in the same way as the product measure on ' with
P (w'e)=1)=3=P (w'(e)=0) forecr.
For any event B C Q write B’ for its copy in §¥', that is,
(2.1) B’ = {w' € : Jw € B such that w'(e) = w(e) for all e € 7}.
For a fixedw C Q and K C 7, [@]x denotes the cylinder
[W]g = {w € Q:wle) =wle), e € K}.
Similarly, for fixed @’ € ,
[@g ={w € Q:w'(e) =w'(e), e € K}.
We say that two events A and B occur disjointly if A o B occurs, where

AoB:={weQ:3IK,LCrsuchthat KNL =9

(2.2) and [wlg C A, [wly, C B}.

This terminology should be reasonably intuitive; we interpret [w]lx C A as A
occurs because of the coordinates of w in K; A o B then is the event that A and
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B occur because of the disjoint sets of coordinates. We define in a similar way
for two events A in Q and B’ in ' the event Ao B’ in 2 x Q' by

AoB' ={w,w)eQx®IK,Lcrsuchthat KNL=¢

(2.3) and [wlg C A, W'l C B'}.

With these definitions and interpretations, the following lemma was proved
in [8].

LEMMA 2. IfA and B are increasing events of , each depending on finitely
many coordinates only, and B' is the copy of B in Q' as defined in (2.1), then
(2.4) P(AoB)<PxP(AoB))

(here P x P’ is the product measure of P and P’ on Q x V).

The following inequality of van den Berg and Kesten (BK) is implied by
Lemma 2 directly:

P(A o B) < P(A)P(B),
for any increasing events A and B.

PROOF OF LEMMA 1 FROM LEMMA 2. We follow the same method of [8], Pro-
position 1. When n < 25k, Lemma 1 is implied by the RSW lemma directly.
When n > 25k, we write H for the half-square [—2¢,27] x [0,2]. An Q-closed
(9'-open) path is a path (vo,ey,...,en,vs) on Z2 w1th wle) = 1 [Ww(e) = 1]
for 0 < i < n. A half-circuit surrounding H; in H; is a path from {0} x

[—2/, —21] to {0} x [2,2/] in H;\H;. By the RSW lemma and the FKG inequality,
we have

(2.5) P(3 a closed half-circuit on Z2 surrounding H,, in H,,1) > 6.
Now let

&= {EI two Q-closed half-circuits, one surrounding Hg;_; in Hj;
(2.6) . .
and another surrounding Hyj,; in Hyjup}

for every j, and let

J = {j:k < 2%~ <2%*? <7 and & occurs}

(note that n > 26k). The events & and J' are defined in the same way for

'-closed circuits, and we further define
N = cardinality of J N J'.
Our first step will be the easy estimate

.7 PxP’(NSCllog%) < %
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FiG. 1. Illustration of N E J’ . The solid (dashed) half-circuits are Gg; (Qé/) and Dgj.g (Dé/ +2).

for some suitable C; and n sufficiently large. Actually, (2.7) is easy by virtue of
(2.5) and independence of the w and w’. We now take

A =B = {[-k, k] x {0} is connected to B, in

2.8
@8) [-n,n] x [0,n] by a closed path},

for some £ and n. By (2.7) and the FKG inequality,

(2.9) PxP’(AoB’)§2P><P’(AoB’andN201 log%).
We shall estimate (2.9) by conditioning on J and o’ and on certain half-circuits
in Hgj and Hgj,g, j € J NJ’. When & occurs, let G3; be the innermost Q2-closed
half-circuit surrounding Hs;_; in H3;j, and let Dg;j,5 be the outermost Q2-closed
half-circuit surrounding Hsj,; in Hgj,o. Define ggj and ng Lo in a similar way
as extremal '-closed half-circuits when £/ occurs (see Figure 1). The exis-
tence of such innermost half-circuits and outermost half-circuits can be demon-
strated by the method of [5], Lemma 1 or [6], Proposition 2.3. For any half-
circuit G defined above, G and a segment of the X axis form a Jordan curve
G. Define

G°= interior of @, G¢ = exterior of @, G=G°UG.

It follows from the method of [5], Lemma 1 or [6], Proposition 2.3, that, condi-
tionally on &;, G3; and Dg;j,9, the families

(2.10) {w(b): b € D§j,p NG5} and {w(d):b € G5, U Dy} N {w'(B):b € 2%}
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T5(1)

35(1)

To

-k k

Fia. 2. Sji) and rji;) are closed paths which connect gaj(i) and D3j(i)+2’ and g3j(,~+1) and 'Da,'(i),.,g

are independent. Moreover, the conditional distribution of the family in (2.10)
is equal to the unconditional distribution P. Now condition on the set of indices
J and the closed half-circuits Gs; and Dg;,g, j € J. Let J consist of j(1) < j(2) <
-++ < j(v). Then A occurs if and only if there exists the following collection of
Q-closed paths (see Figure 2):

an Q-closed path ro from [—£, k] x {0} to Gg;(1) that lies in G5, ;

(2.11) except for its endpoint on Gs;1);

an Q-closed path s;; from Ggi;) to Dgj.e that lies in
(2.12)  G§iy N Dgjyee except for its endpoints on Gyi;) and D42,

i=1,...,v;

an Q-closed path T'j(i) from D3j(i)-0:2 to Q3j(i+1) that lies in
(2.13)  Ggjsn) N Dij)42 except for its endpoints on Gyjis1) and Dyjgyaz,
i=1,...,v-1;
an Q-closed path rjy) from D))o to B, that lies in [-n,n] x

(2.14) [0,n]N ng(v) .o except for its endpoint on Dg;).2.

It is obvious that such Q-closed paths must exist for A to occur. In the opposite
direction, once such paths exist, they can be connected by pieces of the Q-closed
circuits Gg; and Dg;j,o to make an Q-closed path from a vertex in [k, k] x {0}
to B, (see Figure 2). In exactly the same way, we see that B’ occurs if and
only if there exist {2'-closed paths r},;) and s),; as in (2.11)~(2.14) with G and
D replaced by ¢’ and D’ and j(i) by /(). For A o B’ to occur, we must be able to
pick the {rju,s;i} disjoint from the {r},,s};}. We shall only insist on s; being
disjoint from the s} when j € J N J’. This then leads to the following inequality
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whenever the cardinality of J NJ’ is at least C; log(n/k):

PxP'(AoB and N > C1log 2|J,J", Gy, Dajuzs j €, Gy Dyany J' € )

(2.15) <PxP (ro, rj and s; exist as in (2.11)~(2.14) and their analogues
’ o rJ’. and s; exist in such a way that s; is disjoint from s}

when j € J NJ'|J,J", Gyj, Dyjuz, Jj € J, Gy, Do J' € ).
When J NJ’ contains fewer than C; log(n/k) indices, then the left-hand side of
(2.15) is zero. Then by the independence statement (2.10) and its analogue for

primed quantities, the right-hand side of (2.15) can be written as the product
of the following factors:

P(every r required by (2.11), (2.13) and (2.14)

2.16
(2.16) exists |J, Ggj, Dyjsa, j € J);
(2.17) H P(s; exists as required by (2.12) |J, Gs;, Dyjs2);
Je\J!
(2.18) P(every r’ required by the analogues of (2.11), (2.13)
‘ and (2.14) exists | J', Gy, Dy, J' € J');
H P'(s}, exists as required by the analogue
(2.19) jeINg
of 2.12) |, G}y, Gyra);
H P x P'(sj and s; exist and can be chosen
(2.20) jeJnd

disjoint |J,J’, Gy}, Dyjsz, Gyj, D'ajsz)-

By a straight adaptation of the method of Lemma 4 in [8] we can prove the
following estimate for some constant 0 < X < 1:

P x P'(s; and s}, exist and can be chosen disjoint | J, J”, Gaj, Dyja2, Gyj» Dy +2)
(2.21) < AP(s;j as required in (2.12) exists | J, Gy, Dyjs2)
x P'(s] as required by the analogue of (2.12) exists |J’, Ghj» Dajsa)-
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We then obtain
PxP (A oB'and N > C1log 7|/, ", G, Dyjea,

Jed, Gy Dy ' € J’)
< [product of (2.16)—~(2.19)] \C1 log(n/k)

(2.22) X H P(s;j as required in (2.12) exists |J, Ggj, Dgjs2)
jednd’
X H P (sJ' as required by the analogue

JeJnd’
of (2.12) exists | J', Gy, Dy,

= Acllog(n/k)P(AlJ, ggj,D3j+2, JE J)P/(B/ | J, géj,,Déj/+2, jl S JI)

Taking expectations with respect to J, J’, and all the G, D, G’ and D', we
finally get

—Cj|log)
(2.23)  P{AoB} < 2)Cile/DpIAYP/ (B} = 2(%) B paca),

Hence Lemma 1 is proved by (2.23). O

LEMMA 3. There is a constant C such that

P(EI a closed path from [u,u + k] x {0} to B, in [-n,n] x [0, n])
(2.24) < CP(3 a closed path from [u,u + k] x {0} to [-n,n] x {n}
in [-n,n] x [0,n]),

for all integers n,k and u withn > 2k > 0and u € [-n/2,n/2—E]. In particular,

P(3 a closed path from (u,0) to B, with bonds in [—n,n] x [0,n])
(2.25) < CP(3a closed path from (u,0) to [-n,n] x {n} with bonds
in [-n,n] x (0,n]),

for all integers u with u € [-n/2,n/2].

Proor. We write F,, for the event that there exists a closed half-circuit in
[-n,n] x [0,n]\[-n/2,n/2] x [0,n/2], and we write D, for the event that there
exists a top—bottom closed crossing in [-n/2,n/2] x [n/2,n]. Clearly,

{3 a closed path from [u,u + k] to [-n,n] x {n} in [-n,n] x [0,n]}

must occur if

{3 a closed path from [u,u + k] to B, in [-n,n] x [0,n]} N F, N D,
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occurs. By the RSW lemma,
(2.26) P(F,)>C; and P(Dy) > Cy,
for some constant C;. Then Lemma 3 is implied by (2.26) and the FKG inequality.

If I} is a path on the dual of [-n,n] x [0,n] from v* to B} for some vertex

vt e n+l n-1 y 1
2 7 2 2’

then /, may not be a connected path on Z2. However, /,, divides [-n,n] x [0,7n]
into two parts. In other words, any connected path from part 1 to part 2 in
(=n,n) x (0,n) has at least a common bond with [,. Actually, [, is called a
cut set. With this geometric knowledge and Lemmas 1 and 3, we have the
following corollary.

COROLLARY 2. There exist € > 0 and C such that
P(3 closed bond sets Iy and ly in [-n,n] x [0,n] withl;Nly =@
such that 1, is a path from [vy,v1 +k] x {0} to B, and
2.27) U3isapath from [vy — 1,01 +k — 1] x {}} to B})
< C('—z)_EP2 (3 a closed path in [n,n] x [0,n] from
[0,£] x {0} to B,),
for all integers n, k and vy withn > 2k > 0,and vy € [-n/2,n/2 — E].

ProoOF. By the method of Lemma 1,
P(3 closed bond sets /; and I3 in [-n,n]x[0,n] with /; Nl = @ such that
I1 is a path from [vy,v1 +k] x {0} to B, and
I3 is a path from [v1 — §,v1 +k — 3] x {1} to B})
<C; (%) _EPZ(E! a closed path in [-7,n] x [0,n] from
(2.28) [vi, vy +&] x {0} to B,)
< Cy (%) _EPZ(E! a closed path in [-n,n] x [0,n] from
[v1,v1 +&] x {0} to [-n,n] x {n})
(by Lemma 3 for some constant C5)
<Cy(2 _EPZ(EI a closed path in [—n,n] x [0,n] from
[0,k] x {0} to B,) (by translation invariance).

Therefore, Corollary 2 is proved by (2.28). O
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Sn

l'(v‘) P -~ ~\
- N

=

X, !

F1G. 3. The solid path is the leftmost open path and the dashed path is the closed path with the
smallest area X.

With Corollary 2 and some techniques of [12], we shall show the following
lemma.

LEMMA 4. There are constants € > 0 and C such that

1/2—¢
C(é) < P(3a closed path on [-n,n] x [0,n] from [0,k] x {0} to By),

n

for all integers n > 2k > 0.

PRrOOF. Let T, be the event that there exist a top—bottom closed crossing in
[-n/2,0] x [0,n]*, a left-right closed crossing in [-n, 0] x [0,n]* and a bottom—
top open crossing in [0,n/2] x [0, n]. By the RSW lemma and the FKG inequality,
we have

(2.29) P(T,) > Cs,

for some Cs. Since Z2 is a planar graph, we can define the leftmost open crossing,
denoted s,, in [-n,n] x [0,n] if there exists a bottom—top open crossing (see a
similar definition in [6]). We define S, to be the left region surrounded by s, and
the boundary of [-n,n] x [0,n]. If T, occurs, it can be seen that one end vertex
of s, has to stay on [-n/2,n/2] x {0}. We write v = (v1, 0) for this vertex. By the
definition of the leftmost open crossing, there also exists another closed path in
the dual of Z2 from v* = (v; — %, 3) to B;. Similarly, we can find a closed path
I*(v*) from v* to B} such that the region X;; C S}; surrounded by /*(v*) and the
boundary of [-n,n] x [0,n]* is minimized (see Figure 3). The existence of such a
path /*(v*) can be demonstrated by the method of Proposition 2.3 in [6]. Hence
I(v*) divides [—n,n] x [0,7n] into two parts. One is X,,, and we write Y}, for the
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other. We denote by M(Y,) the event that there exists an open path from v to
By inY,. It follows from the method of Proposition 2.3 in [6] that, conditionally
on the existence of /(v*), the families {w(e): e € X,} and {w(e): e € Y,} are
independent. Therefore,

C3 <P(T,) < Y P(lw*) =T, M(Y,))
r

< ZP(Z(U*) =T) P (M(Yy))

ZP I(v*) =T) P(3 a closed path from v to B, in Y,)
(2.30) (note that p, = %)

< P| 3 closed bond sets /; and I; in [-n,n] x [0,n]

with /; NIy =@ such that [, is a path from
(v1,0) to B, and [} is a path from

(v1 ; ;) to B;; for some (vy,0) € [——, —] X {0})

where the sum is taken over all possible sets I' such that I'* on the dual of
[-n,n], x[0,n] is such a path from [(-n — 1)/2,(n — 1)/2] x { } to B;;. By con-
vention we assume that n/k is an integer, otherwise we can always use |n/k]
instead of n/k. Now we divide [-n/2,n/2] x {0} into n/k segments with equal
length k£ and denote these segments by Ly,...,Ly,. Hence if T, occurs, the left-
most open crossing has to go from one of these segments to the B,,. It follows
from Corollary 2 that the right-hand side of (2.30) is less than

1-¢
(2.31) constant (%) P2 (3 a closed path from [0, %] x {0} to B,).
Hence Lemma 4 is proved by (2.30) and (2.31). O

ProOOF OF THEOREM 1. For any v on the X axis, denote by V,(v) the event
that there exist two closed paths from v to B, and B,, with bonds in [-n, n] x (0, n]
and [-n,n] x [-n,0), respectively, where B, = ({-n} x [-n,0]) U ([-n,n] x
{-n}Hu({n} x [-n,0]), that is, B, is a reflection of B, along the X axis. Let I(v)
be the indicator function of V,(v), and let K,, = [n/2,n/2] x {0}. By Lemma 3
and translation invariance, there exists a constant C; such that

(2.32) P(V,(w)) < C1P(Tnw)) < C1P(Vu(0)),

for any n and v,u € K, where T),(u) is the event that there exist two closed
paths from u to [-n,n] x {n} and [-n,n] x {—n} with bonds in [-7n,n] x (0,n]
and [—n,n] x [-n,0), respectively. Now we need to estimate

(2.33) P({ > I(v)} > o) >C,
veK,
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for some constant C. To estimate (2.33), let us first estimate the second moment
of ¥yek,I(v). Obviously,

2
E( z I(v))
vekK,
=E ) IwIw)

v,u€K,

@34 SEY Y. Y Iw

vek, k=1 |lu—vl|=k

n 3
=ESI0Y. Y Iw+EY I®Y. Y Iw

veK, k=4 |lu—v|=k vek, k=1 |lu—vl|=k
=I+1I

By convention we assume that k/4 is an integer, otherwise we can use |k/4|
instead of k/4. Let us estimate term I in (2.34). If V,(v) N V,() occurs with
lu — v|| = & for k > 4, then there exist two closed paths r; and rp from u and v
to B, with bonds in [-n, n] x (0,n], and another two closed paths r3 and ry from
u and v to B, with bonds in [-n,n] x (—n, 0]. Note that each pair of paths may
intersect each other. Suppose that r; and r, intersect each other. Then there
exists the innermost closed half-circuit M which connects u to v with bonds in
[-n,n] x (0,n], and M is also connected to B, by a closed path with bonds in
MeN[—n,n] x(0,n]. Once such a circuit and path exist, it can be seen that there
exist two disjoint closed paths on [-n,n] x (0,n] either from u to B, and from
v to v + By or from v to B, and from u to u + By». Clearly, we have the same
situation if 7; and r, do not intersect. A repetition of the argument above with
r1 and r, replaced by r3 and r4 shows that there also exist two disjoint closed
paths on [-n,n] x [—n, 0) either from u to B, and from v to v + By or from v to

B, and from u to u + By 2. By (2.32) and the BK inequality,
(2:35) P(Va() N Vaaw) with [Ju — ]| = &) < CIP(Va@)P(Vis2((0,0)),

for any k& > 4 and u,v € K,,. Hence, by (2.34) and (2.35),

(2.36) I<GY P Y. Y P(Vis(0,0)).

veK, k=4 |lu—v|=k

Now let G, be the event that there exists a closed half-circuit in [-n,n] x
[-n,0l\[-n/2,n/2] x [-n/2,0], that is, the symmetric event corresponding to
F, reflected through the X axis (see Figure 4). It follows from (2.26) and the
FKG inequality that

(237 P(Veya((0,0))) < CaP(Vh/a((0,00) N Fijz N Gasa),
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for some constant C; and & > 4. For k& > 4, let J; , denote the event that there
exist two closed paths in Z2 one from [— k/4 k/4] X {k/4} to B, in [-n,n] x
(k/4,n] and the other from [—k/4,k/4] x {~k/4} to B, in [—n,n] x [-n, —k/4].
Obviously, if V;/2((0,0)) N Fp/3 N Go N Tk, occurs, then V,((0,0)) occurs (see
Figure 4). Hence,

I<C? Zp(v,,(v))i > P(v,,,z((o, o)))

vekK, k=4 |lu—v||=k

<CICy 3 PULN Y 2P(Vhya((0,0) N Fayz NGay) by (2.37)]

vEK, k=4
< CICiCs Y P(Vutw)) Z (% k)(1 -
veK, k=4

X 2P(Vk/2 ((0, 0)) N .7:];/2 N gk/z N t7k,n)

(by Lemma 4 and the FKG inequality for some constant Cs)

<203C,Cy Y PA0) 3 ()P (w(0.09)

UEKn k=4

< 20,C1C;C3 Y P(Va(0))nP(Va((0,0)))
vekK,

(2.38)

(1-2¢)
< Cy4n for some C,

[note that Z ( )

<2C4CiC,C3 Y Y P(Vu@)P(Vaw)) [by (2.32)]
veK, u€k,

= 2c4c§czcgE<{ g}; I(v)})E({ g I(v)}) .

Clearly,

(2.39) < C5E({ %; I(v)})E({ §,§ I(v)}),

for some constant Cj5. It follows from (2.34), (2.38) and (2.39) that

2 2
(2.40) E( > I(v)) < C(E{ > I(v)}) ,
veK, vekK,

for some constant C. It also follows from Lemma 4 that

(2.41) E( > I(v)) > Cy,

veEK,
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Fi1G. 4. The event Vk/z((o, )N fk/z N gk/2 N Tk,n-

for some constant C;. Therefore, (2.33) is implied by Schwarz’s inequality, (2.40)
and (2.41). It follows from (2.33) that

P(3 a top-bottom closed crossing in [-n,n]? which only

(2.42) . .
intersects the X axis once) > C.

By translation invariance, (2.42), the RSW lemma and the FKG inequality,

there exists p > 0 such that

P(3 a closed circuit in A(n) which only intersects

2.43
(2.43) the X axis twice) > p.

Therefore, Theorem 1 is proved by (2.43). O
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