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COEXISTENCE IN THRESHOLD VOTER MODELS!

By THOMAS M. LIGGETT

University of California, Los Angeles

The threshold voter models considered in this paper are special cases
of the nonlinear voter models which were introduced recently by Cox and
Durrett. They are spin systems on Z¢ with transition rates

if there is a y with ||x — y|| < N and n(x) # n(y),

c(x,m) = L
= 0, otherwise.

This system is known to cluster if N = d = 1, and to coexist if N > 4 in one
dimension and if N is reasonably large in other dimensions. Cox and Durrett
conjectured that it coexists in all cases except N = d = 1. In this paper, we
prove this conjecture. The proof is based on comparisons with threshold
contact processes. The hard part of the proof consists of showing that the
second nearest neighbor threshold contact process in one dimension with
parameter 1 survives. The proof of this result is modeled after the proof
by Holley and Liggett that the critical value of the basic contact process
in one dimension is at most 2. By comparison with that proof, however, the
fact that the interaction is not of nearest neighbor type presents substantial
additional difficulties. In fact, part of the proof is computer aided.

1. Introduction. A d-dimensional spin system is a continuous time Mar-
kov process 7; on {0,1}5, where S = Z%, in which the configuration 7 changes
its value at site x € Z% from 7(x) to 1 — n(x) at a prescribed rate c(x, n). Liggett
[(1985), Chapters 3—7] treats various types of spin systems. When c¢(x,7) = 0 for
n = 0 and for n = 1, the point masses on these two configurations are invariant
for the system. A natural problem in this case is to determine whether there
are any nontrivial invariant measures, that is, ones which are not mixtures of
these two. If so, the system is said to coexist, since there is an equilibrium in
which both opinions 0 and 1 coexist. If, on the other hand, P{n,(x) # n:(y)} — 0
ast — oo for every x # y and every initial configuration, then the system is said
to cluster.

The linear voter model has been studied for nearly two decades [see, e.g.,
Liggett (1985), Chapter 5]. One version of it has

cxm= D Linpsnw)
ly=#l <N

[Here and below, the norm is arbitrary, except for the normalization |/x|| = 1 for
nearest neighbors of the origin; N is always taken to be an integer. The process
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is called linear because the transition rate at x is a linear function of the number
of neighbors which disagree with 7(x).] The first thing one proves about this
process is that it clusters if d < 2 and coexists if d > 8. In particular, this
aspect of its behavior depends on the dimension of the lattice of sites, but not
on the size of the neighborhood. Recently, Cox and Durrett (1991) discovered
that certain nonlinear voter models can coexist even in one dimension. Among
those of greatest interest are the threshold voter models, in which

(x.my= { L ifthereisay with lx —y|| < N and n(x) # n(y),
ax,n = 0, otherwise.

Using comparisons with (nearest neighbor) contact processes, they showed that
this process coexists in one dimension if N > 4, in two dimensions if N > 2
(when || - || is the /., norm) or N > 3 (when || - || is the /; norm) and in three
or more dimensions if N > 1. It is rather easy to show that the process clus-
ters in one dimension if N = 1. [See Cox and Durrett (1991) and also Andjel,
Liggett and Mountford (1992) for a more general result.] Based partly on com-
puter simulations, Cox and Durrett conjectured that the threshold voter model
coexists in all cases except N = d = 1. The purpose of this paper is to prove
this conjecture:

THEOREM. Suppose that N > 1, but that (N,d) # (1,1). Then the threshold
voter model on Z% with parameter N coexists.

The proof of this theorem is also based on contact process comparisons. How-
ever, we must consider threshold contact processes with the same neighborhood
set as the one involved in the threshold voter model of interest, since the ear-
lier reduction to nearest neighbor contact processes leads to too much loss of
information. The threshold contact process on Z¢ with parameters N and A > 0
is the spin system with rates

A, ifn(x) = 0 and n(y) = 1 for some ||x —y|| <N,
c(x,m) =140, ifn(x)=0andn(y)=0forall |x—y| <N,
1, ifn(x)=1.
This process is said to survive if it has an invariant measure other than the
point mass on n = 0.

The proof of the theorem is obtained by combining the following propositions.
They are given in order of difficulty of proof, from easiest to hardest. A version
of the first proposition was used by Cox and Durrett in their argument. In doing
so, they used the complete convergence theorem for contact processes, which is
based on the work of Bezuidenhout and Grimmett (1990). We will give a more
elementary proof, which avoids the use of the complete convergence theorem.

PROPOSITION 1. For any N > 1 and d, if the threshold contact process on
Z? with X\ = 1 survives, then the threshold voter model (with the same N) on
Z¢ coexists.
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For a given ), it is easy to see that the survival of the threshold contact process
for one pair (V, d) implies survival of the threshold contact process for any other
pair (', d’) for which N’ > N and d’ > d. [See, e.g., Liggett (1985), Corollary 1.8
of Chapter 3.] Note that a similar comparison statement involving coexistence
of threshold voter models, while a consequence of the above theorem, is not easy
to prove directly. This is one reason for working with contact processes instead
of voter models. In view of these remarks, once Proposition 1 is proved, we may
restrict our attention to the threshold contact processes with (V,d) = (2, 1) and
(N,d) = (1,2), respectively (relative to the /; norm). Fortunately, the survival of
the first implies the survival of the second:

PROPOSITION 2. For any A > 0, if the threshold contact process on Z* with
N = 2 survives, then the threshold contact process on Z? with N = 1 survives.

Now we may restrict our attention to the case (N,d) = (2,1)and A = 1. In
order to prove survival in this case, we follow the outline of the Holley-Liggett
proof of survival of the (nearest neighbor) basic contact process in one dimension
with parameter greater than or equal to 2 [see Liggett (1985), Theorem 1.33 of
Chapter 6). The idea is to take the renewal measure x on {0, 1}# corresponding
to the probability density f(n) on the positive integers, where f(n) is determined
by the requirement that

iut{n: nk)=0foralll <k <n} =0,
dt t=0

for all n > 1. (Here p; is the distribution at time ¢ of the threshold contact
process with initial distribution p.) Then one tries to show that

w{n:nk)=0forallk € A} |

in ¢ for every finite subset A of Z, and hence the process survives. Using the
renewal property of y, it is not hard to see that the above identities [which are
the analogues of equations (1.20) of Chapter 6 of Liggett (1985)] in the present
context are equivalent to

1 1 1
) F(2)=m, F(3)=(—m)‘§, F(4)+F(5)=m,
11 n
> FkF(n—k+1)=4\F(n+1)+ 2 \F(n +2) forn >4,
k=1

where F(n) are the tail probabilities,

F(n)=_fk).

k=n

Note that (1.1) cannot be solved recursively, but that all the values of F(n) can
be computed recursively in terms of F(4). The issue involved in finding a good
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renewal measure which can be used as an initial distribution for the threshold
contact process in the proof of the theorem is whether the value of F(4) can
be chosen in such a way that the resulting F(n) are the tail probabilities of a
probability density on the positive integers with finite mean. For the statement
of the next proposition, recall that the renewal sequence u(n) associated with
the density f(n) is defined by »(0) = 1 and

(12) u(n) =Y flkun—k) forn > 1.
k=1

ProposITION 8. Take A = 1. Suppose there exists a positive decreasing se-
quence F(n) which satisfies F(1) = 1,¥,F(n) < oo and equations (1.1) for which
the density is decreasing and the renewal sequence u(n) satisfies the following
inequalities:

(a) u(n) >un+1) forn>0;
(b) un—1D+uln+1)>2un) forn>3.

Then the threshold contact process on Z' with N = 2 survives.

PROPOSITION 4. If A = 1, then there exists a positive decreasing sequence
F(n) which satisfies F(1) = 1,%,F(n) < oo and equations (1.1). The correspond-
ing density is decreasing and the renewal sequence u(n) satisfies (a) and (b) of
Proposition 3.

REMARKS.

(a) A Mathematica computation indicates that a bounded solution F(n) of
(1.1) exists for all A > 0.985.. . ., but not for smaller X’s. Thus this technique just
barely works. Simulations by Buttel, Cox and Durrett (1993) suggest that the
critical value for this system is about 0.81.

(b) One interesting aspect of the proof of Proposition 4 is that it is computer
aided. We were not able to give an analytic proof of the complete result. Note
that Property 3(a) follows from Property 3(b), except for a few easily checked
values of n. For Property 3(b), we give an analytic proof for n > 1000, but we
have to resort to computer calculations for smaller values of n.

Propositions 1 and 2 are proved in the next section. Propositions 3 and 4
are proved in Sections 3 and 4, respectively. At the end of Section 4, there is a
discussion of the computer work involved in the proof. Each reader will have
to decide whether a proof of this type can be regarded as entirely rigorous.
This is an issue which will almost certainly arise with increasing frequency in
the future.

2. The comparisons. In this section, we give the proofs of the first two
propositions. Inequalities between probability measures on {0,1}5 refer to
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stochastic monotonicity. [See, e.g., Liggett (1985), Section 2 of Chapter 2.] Con-
vergence of measures means weak convergence.

PROOF OF PROPOSITION 1. Suppose that the threshold contact process with
A = 1(and arbitrary N and d) survives, and let v be its upper invariant measure.
By assumption, v concentrates on configurations with infinitely many 1’s. Let
S.(8),Sy(¢) and S;(¢) be the semigroups corresponding to the threshold contact
process with A = 1, threshold voter model (with the same N and d) and the
independent flip process [with c(x,n) = 1], respectively. Finally, let v/, be the
product measure with density % We then have the following elementary facts
[see, e.g., Liggett (1985), Corollary 1.7 of Chapter 3, for the comparisons]:

(2.1) v =vS.(t) < vS;(@),
(2.2) vSi(t) — vyy2
and

(2.3) v =uvS.(t) < vS,(¢t).

Combining (2.1) and (2.2) gives
(2.4) v < vy)s.
Combining (2.3) and (2.4) gives

v < v128,(8).

Thus every weak limit v* of Cesaro averages of v/,8,(¢) is stochastically larger
than v, and hence puts all of its mass on configurations with infinitely many
I’s. Since v1/2S,(¢) is invariant under the operation of interchanging 0’s and
1’s, v* puts all of its mass on configurations with infinitely many zeros as well.
Therefore v* is a nontrivial invariant measure for the threshold voter model [see
Liggett (1985), Proposition 1.8 of Chapter 1], and hence there is coexistence. O

Proor oF ProprosITION 2. [This proofis based on the Holley—Liggett proof
that the critical value for the basic contact process in d dimensions is less
than or equal to 2/d. See Theorem 4.1 and its corollary in Chapter 6 of Liggett
(1985).] We need to compare the threshold contact process 7; on Z, where & has
neighbors & — 2,k — 1,k + 1 and k + 2 with the threshold contact process ¢; on
Z?, where (m,n) has neighbors (m — 1,n), (m + 1,n), (m,n — 1) and (m,n + 1)
(and the same )). Define the mapping 7: Z? — Z by m(m,n) = m + 2n. Then the
four neighbors of (m, n) in Z2 map onto the four neighbors of m(m,n) in Z. This
property permits one to couple the two processes together in order to maintain
the relation 7, < 7(¢), thus proving that survival of 7, implies survival of (.
To construct the coupling, associate a £ € Z such that n(k) = 1 with any of the
(m,n) € Z? such that 7(m,n) = k and ¢(m, n) = 1, letting the exponential times
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for 1 — 0 at the associated sites be the same. For sites & with n(k) = 0 such
that some neighbor j satisfies n(j) = 1, let (m,n) be the site associated with
J, and then associate £ with any neighbor of (m,n). Again, couple the 0 — 1
transitions at the associated sites. O

REMARK. Following a talk on this paper in Zurich, Professor Dobrushin
asked whether the approach used in the proof of Proposition 2 above could be
applied to other lattices, such as the triangular or hexagonal lattices in two
dimensions. The answer is yes in the case of the lattice in which each site has
six neighbors. To see this, we make a comparison between the threshold contact
process on this lattice and the threshold contact process on Z! with N = 3. The
analogue of the mapping 7 used above is given in pictorial form below:

+5 0

+7 +2 -3
+4 -1

+6 +1 —4
+3 -2

+5 0 -5

This mapping preserves the neighborhood structure, as required in the proof.
This approach does not work in case each site has three neighbors. It may be
necessary to prove survival for the two-dimensional system directly, rather than
relying on a comparison with one dimension.

3. Proof of Proposition 3. Initially, we let A\ be general, and we only
take it to be 1 later in the section, when the expressions which appear would
otherwise be too cumbersome. Let u be the renewal measure corresponding to
the probability density f(rn) with tail probabilities F(n), whose existence is given
by the hypothesis of the proposition. For any finite set A of integers, let

1 d
@ =17 dt,ut{n.n(k) =0forallk € A} o
where ; is the distribution at time ¢ of the threshold contact process in one
dimension with N = 2 and initial distribution p. Recall that equation (1.1),
which determines F(n), is just the statement that Q(A) = 0 for all connected
sets A. The first part of the argument is contained in the following lemma, and
is essentially the same for many types of contact processes.

Q) =

LEMMA 3.1. If Q(A) > O for all finite A C Z, then the threshold contact
process survives.

ProoF. This threshold contact process has a (coalescing) dual. [See Liggett
(1985), Section 4 of Chapter 3, for the definition.] The dual is the Markov chain
A; on the set of finite subsets of Z which has transitions

A — A\{k} atratelforeachkcA,
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and
A—-AU{k—2k—1,k+1,k+2} atrate)foreachkcA.
The duality relation gives

pers { mn(k) =0 for allk € A}
=Y P*A; = B)us{n:n(k) = 0 for all k € B}.
B

Differentiating with respect to s, setting s = 0 and using the nonnegativity of
Q(B), we see that

pe{m:n(k) =0 forallk c A}

is nonincreasing in ¢ for every A. Therefore, it cannot tend to 1 as ¢ oo, so the
process survives. O

Next we must prove that @A) > 0 for all finite A. In order to do so, it is
necessary to find a useful expression for it, which incorporates the fact that F(n)
satisfies (1.1). Because of the renewal property, the summands which appear in
the expression for Q(A) can be expressed in terms of the following conditional
probabilities:

La(k) = p{m:n(j) =0 for all j € AN (—o0,k)|n(k) = 1}
Ra(k) = p{m:n(j) =0 for all j € An(k,00) | n(k) = 1}.
Using the renewal property again and a decomposition according to the location

of the first one to the left (respectively, right) of &, it is not hard to see that these
functions satisfy the following relations:

(3.2) Loy = Y La(i)fk —j);
J<k,jgA

(3.3) Ryk) = Y Ra(f(j—h).
J>k,jEA

[See e.g., Liggett (1985), equation (1.27) of Chapter 6.]

To begin the computation, apply the generator of the process to the indicator
function of the set {n:n(k) = 0 for all £ € A} and integrate with respect to u
to obtain

B4H QA=A 3 fU-PLaRAD = 3 La®RA®)
J<k<l hea
kEA,jIgA
|k—jl <2 or |I—k| <2
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In order to use the fact that F(n) satisfies (1.1), rewrite the second sum in (3.4)
in the following form, using (3.2) and (3.3):

Y LakRsB) = > La()fk — RaDFA — k)

kEA Jj<k<l
kREA, jlgA

= D LaRa® Y flk—jfU—h)
Jj<li J<k<l
JIgA

— 3 LaG)fk - HRAOFU — k).

J<k<l
j)k)leA

(3.5)

Strictly speaking, the right-hand side above is the difference of two divergent
sums. Here and below, such expressions are to be interpreted according to the
following convention: Identical summands which appear in the two sums are
to be cancelled before the summations are performed. Note that after this can-
cellation, the remaining sums are convergent.

The convolution equation (1.1) for F(n) can be rewritten as a convolution
equation for f(n) for use in the first sum on the right-hand side of (3.5):

F2(1) = (A +2)f(2) — 2AF(3),
2f(1)f(2) = (2X + 2)f(8) — 2Af(4) — 2)f(5),
3.6 2f(1)f(3) +f2(2) = (BX\ + 2)f(4) — 2Xf(5) — 2\ f(6),

Zf(k)f(n —k+1)=(4X+2)f(n+1) — 2Xf(n +2) — 2A\f(n + 3)

k=1
forn > 4.

Therefore, the first term on the right-hand side of (3.5) is equal to

FAD) Y La()Ra(i+2)+2f)F(@) S La(jRa(j+3)
JJ+t2¢A J1Ij+3¢A
+ [2fFB) +£22)] Y La(DRa(j+4)
JjtagA
+ Y La(DRAD{(AX+2)fU —j) — 2XfA —j+ 1) — 2Afd —j + 2)}.
JlgA
1>j+5
Now use (3.2) and (8.3) on the last sum above, adding and subtracting the
summands corresponding to small values of [ — j, to rewrite the first term on
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the right-hand side of (3.5) as

{42 +2+2)0f) +2Xf2)} Y La(DRa()+2A 1) > La(HRa( -1
JEA JJ—1¢A
— A {La(DRaGG D)
JEA
+ Lo())Ra(j — 2) + La(j + D RA()) + La(j + 2) Ra(j)}

3.7 +{2Xf2)+ 20 f(3) — 4+ 2)f(D} > La(NDRs(j+1)
J+1gA
+ {20 f(3) + 2\ f(4) — (4X +2f @) +fAD} Y La()Ra(j+2)
Jj+2¢A
+{2Xf(4) + 2Xf(5) — (AA+2f(3) +2f(Vf2)} Y La()Ra(j+3)
J,J+3¢A
+{2)\f(5) + 2Xf(6) — (4A +2)f(D) + 2f(fB) +fA2)} > La()Ralj+-
Ji+4gA
Note that the expressions in brackets above could be simplified using (3.6).
They are being left in the more cumbersome form for the time being in order
to facilitate checking the computations up to this point. Using (3.2) and (3.3)
again, we see that the second sum on the right-hand side of (3.5) is

(3.8) > La(k)Ra (k).
kZA

The first expression on the right-hand side of (3.4) can be written as

XY fA-E+2)Lak - 2)R40)

kEA; lfflz,lgA
+A Y f@—k+1)Latk - 1RAD)

kEA; lffll,zgm
2 Y fk—j+ DLy HRak+1)

J<k
kREA;jk+1¢gA

A Y f—j+2La(DRatk +2)

j<k
(3.9) keA;Jj,k+2ezA

- M 3) > Lotk —2)Ra(k+ 1)
EcA;k—2,k+1¢A

~ Af(4) > La(k —2) Ra(k +2)
kEA; k—2,k+2¢A

—- Af(2) > Ls(k — 1)Ra(k + 1)
k€A k—1,k+1¢A

— \f@3) > Lok — DR +2).
kEA k- 1,k+2¢A
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Next, use (3.2) and (3.3) to reexpress the first four terms in (3.9) as

A Y Lak—2)Rak-2)
k€A k—2¢A

+A ) La(k-1DRsk-1)
k€A k—1¢A
+A ) Lyk+2)Rak +2)
3.10) kEA k+2¢A
( +A Y Lotk +1)Rak+1)
k€A k+1¢A

- Q) > Lotk — 2)Ra(k — 1)
kEAR—1,k—2¢A

- (D) Y. Lo(k+1DRs(k+2).
keEA k+1,k+2¢A

So, combining
(3.10) + (negative terms in (3.9)) +(3.8) — (3.7),

using (3.6) to simplify the coefficients of some of the sums in (3.7) and using
the relation f(1) = AF(2) [which follows from (1.1)], we obtain the following
expression for Q(A):

> {ALatk)[Ra(k — 2) + Ratk — 1)) + A[Ly (k + 2) + Ly (k + )| Ra()}
kEgA

—[1+2Xf(1)+20f(2)] D Latk)R4(k)

kEA
+2)\[fV+F@] Y Lak)Rak+1)
kk+1¢ZA
=X Y {2f(DLa(k + DRA(R) + La(k)Ra(k) + La(k + DRA(K + 1)}
kkE+1¢A
=X > {LaORs(R)+La(k + 2)Ra(k +2)

(311) kk+2¢A
—2[f(2) + FB)ILs(R)R4 (R + 2)}

+X Y {fLAGRRk + 1)

B k+1k+2¢A
+f()La(k + DRA(k + 2) + f(2)Lao(R)R4 (k + 2)}

+AB) Y LakRa®+3)+Af3) Y. LakRatk+3)
kk+1,k+3¢A kk+2,k+3¢A

+Af(4) > La(®)Ralk+4).
Rk+2,k+4¢A
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In showing that @(A) > 0, we will need to use some monotonicity and convex-
ity properties of the functions L4 and R4. These are given in the next lemma.

LEMMA 3.12. The functions Ly and R4 satisfy the following inequalities:
(a) La(R) > Lotk — D[1 — u(D1_ 1ea3].
In particular,
Ls(k) > Lp(k - 1)
ifk—1¢ A.

2L (k) —La(k — 1) —La(k+1)
(b) > [u(3) + u(l) — 2u(2)]LA(k — 2)1{k —2€A}
—[2u(1) — w(2)|Lak — 1)1 _1ca} + u(l)LA(k)l{k‘eA}-
In particular,

La(k — 1)+ La(k + 1) < 2La(k)
ifk—2,k -1k &A

La(m +2) + [f(1) — f@)]La(m) + [f@) — f(3)|Latm — 1)
<1 +f(1)]La(m + 1)
ifm—-1mm+1¢ A

(e

(a) Rao(R) > Ra(k + 1)[1 — u(D1(z41c43]-
In particular,

Ra(k) > Rp(k + 1)
ifk+1¢A.

2RA(k) — RA(k + ].) — RA(k — 1)
> [w(3) +u(1) — 2u(2)] Ra(k + 2)1 (4 2 c 4)
—[2u(1) — u@)|Ra(k + D1 114y
+ u(DRA(R)1 (1 c a3

(®")

In particular,
Ry(k—1)+Ra(k+1) < 2R,(k)
ifk,k+1,k+2 & A.
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Ry(m —2)+ [f(1) — f(2)| Ra(m) + [£(2) — f(3)]|Ra(m + 1)

()
< [1+f(D]Ram — 1)

ifm—-1mm+1¢A.

PrROOF. Statements (a), (b), (a’) and (b’) follow from the monotonicity and
convexity properties of the renewal sequence u(n) which are part of the hypoth-
esis of Proposition 3, together with the following two relations:

1—L,k) = ,u{n: n(j) = 1 for some j € AN (—o0,k) | nk) = 1}
= 3wtk —pLaly;
j<kj€EA
1 —Ry(k) = p{n: n(j) = 1 for some j € AN (k,00) | n(k) = 1}
= > ulj—kRs().

J>k, jEA

These relations follow from the renewal property and a decomposition of the
event of interest according to the site in A which is furthest from & for which
the configuration takes the value 1. To check the first statement in (a), for
example, write

La(k) — Latk — 1)
= > uk—j-DLs()- > ulk-pLa())

Jj<k—-1,j€A J<kjEA
= Z [u(k —J-1—uk —j)] La(p)
Jj<k-1j€A

—u(l)LA(k - l)l{k —1€A}-
For the first statement in part (b), write

2L4(k) — La(k — 1) — La(k + 1)
= Y uk-j-DLaN+ Y ulk—j+DLa())

j<k-1j€A j<k+lj€A
-2 E u(k — j)La(J)
Jj<k,Jj€EA
= z [utk —j — 1) +uk —j+1) — 2uk — )]La())
j<k-1j€A

+ [u(2) — 2u(1)]LA(k — l)l{k —1€A} + u(l)LA(k)l{keA}.
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For part (c), first use the renewal property to write

LA(m) = u(l)LA(m — 1) + LA u{m- 1}(m),
La(m +1) = u2)La(m — 1)+ u(DLa G (m - 13(m) + La g (m,m - 13(m + 1),
La(m +2) = u(3)Ls(m — 1) + u(2)Lay (m — 13(m)
+ U(DLAG fmym - 13 + D+ LAG (m+1,m, m — 13(m + 2).

Therefore part (c) is equivalent to the nonnegativity of
Lyy {m,m — 1}(m +1) = Lay {m+1,m,m— 1}(m +2),

which is equal to
> [fen—k+1)—f(n —k+2)|La(k).
k<m-1
This in turn is nonnegative because f(n) is decreasing. O
At this point, we take A = 1 to simplify the expressions which we must
consider. For future reference, we record the values of F(n),f(n) and u(n) for
small values of n in this case. The F(n)’s are obtained from (1.1). This determines

the f(n)s, and then the u(n)’s are obtained from (1.2). To get started, define
B = F(4);

F@=4§, F®=} F@W=p FE=}-5
Fe)=33-3, FMN=%-1p

f(]-):%a f(2)=%1 f(3)=%_:3’ f(4)=2ﬁ_%’
(3.13)

ul =% u@=3 u@=§-5 u@=gF+6

u(5) = - 8p.

The next task is to rearrange (3.11) so it is a sum over maximal intervals in
the complement of A, since we will show that Q(A) > 0 by showing that the sum
over each such interval is greater than or equal to 0. For most terms in (3.11)
there is only one natural choice of a maximal interval with which to associate
it. In some cases, however, there is more than one natural choice, and in these
cases we must make some decisions. The first guiding principle is that a term
which involves site % either in the argument of L4 or R, or in the constraint
in the summation can only be assigned to an interval {m,m +1,...,n — 1,n}
ifk € {m —2,m — 1,...,n+ 1,n + 2}. The remaining ambiguity occurs when
two adjacent intervals in the complement of A have a single point of A between
them, say, m € Aand m — 1,m + 1 ¢ A. Then we assign terms which have not
been already determined by the above principle to the two intervals according
to Table 1.
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TABLE 1
Left interval Right interval
Ls(m + 1)Rs(m — 1) Ly(m + DRs(m — 1)
La(m)Rs(m — 1) Ly(m + 1)R4(m)
—La(m + DR4(m +1) —3La(m + 1)Rp(m + 1)
—8La(m — DRA(m — 1) —Ls(m — DRs(m — 1)
(3 - B)Latm — DR4(m +1) (3 - B)Lalm — DRa(m +1)

Now we begin to check the nonnegativity of the contributions to (3.11) which
are associated with a given maximal interval {m,m + 1,...,n — 1,n} in the
complement of A. Thus we assume thatm —1,n+l1cAandm,m +1,...,n—1,
n ¢ A. It is necessary to consider a number of cases, depending on the size of
this interval and on whether m — 1 and/or n + 1 are isolated points in A.

CasEl(m=n;m—-2,m+2 € A). From (3.11), we see that the contributions

to Q(A) from this interval are
( ) Ly(m)Rg(m — 2) + Ly(m)Ra(m — 1) + La(m + 2)RA(m)
3.14
+La(m + 1DRo(m) — 3La(m)Ra(m).

To check that this is nonnegative, we need to apply Lemma 3.12 to a set which
has more points in its complement than A does. Let

L(k) = LA\ {m+1}(k) and R(k) = RA\ {m - 1}(k).
Then L(m) = Ly(m) and L(m + 1) = L4(m + 1). Writing

{n:n(k)=0Vk € AN (—o0,m]} = {n:n(k) =0Vk € AN(—co,m +1]}
U {nnm+1)=1,n(k)=0Yk € AN (—oco,m]},

and using the renewal property and (3.13), we see that

L(m +2) = Ly(m + 2) + 1La(m + 1).
Similarly, R(m) = Rq(m),R(m — 1) = R4(m — 1) and

R(m — 2) =Ra(m — 2) + Ra(m — 1).
Using these relations, (3.14) becomes

L(m)R(m — 2) + 1L(m)R(m — 1) + L(m + 2)R(m) + 1L(m + 1)R(m)

(3.15) _SLm)R(m)
By parts (a) and (a’) of Lemma 3.12,

L(im)<Lm+1)<Lm+2) and R(m)<R(m —1)<R(m - 2).
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Therefore, it is clear that (3.15) is nonnegative.

CasE2(m=nm—-2¢Aandm+2¢cA). (Thecasem=n,m—2 €A and
m + 2 ¢ A is similar.) From (3.11), we see that the contributions to Q(A) from
this interval are

(3.16) La(m)Ra(m — 2) + Ly(m)Ra(m — 1) + La(m + 2)Ra(m) + Lo(m + 1)Ra(m)
_ La(m — 2)Ra(m — 2) — 3La(m)Ra(m) + (% — B)La(m — 2)Ra(m).

This time we let

(8.17) L(k) =La\ (m-1,m+13(k) and R(k) = Ra\ (m—1,m+13(R).

Partitioning the appropriate events as before and using (3.13) again, we now
obtain the following relations:

Ly(m —2) = L(m — 2),
Ls(m —1) = L(m - 1),
(3.18) La(m) = L(m) — 3L(m - 1),
Lam+1)=L(m+1)— 1Lim — 1),
La(m +2) = LGn +2) — 3m+ 1) — (3 = B)L(m — 1;

and
Ra(m +2) = R(m + 2),
Ry(m +1)=R(m + 1),
(3.19) Ra(m) = R(m) — 1R(m + 1),

Ra(m —1)=R(m — 1) — 1R(m + 1),
Ra(m —2)=R(m —2) — 1Rm — 1) — (3 - )R(m + 1).

Application of Lemma 8.12 to A\{m — 1,m + 1} now gives the following inequal-
ities:
0 <L(m —2) <L(m —1) < L(m) < Lim + 1) < L(m +2),
L(m — 1)+ L(m + 1) < 2L(m),
L(m)+L(m +2) < 2L(m + 1);
0 <R(m+1) <R(m) < R(m — 1) < R(m - 2),
R(m — 2)+ R(m) < 2R(m — 1),

(3.20)

2R(m — 2) + 1R(m) + 2fR(m + 1) < R(m — 1).
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Our task is now to show that (3.16) is nonnegative whenever L4 and R4 are
related to L and R by (3.18) and (3.19), and L and R satisfy (3.20). Initially,
we will regard the L’s and R’s as independent variables in the following dif-
ferentiations, with the L’s and Ry’s being functions of them. As we proceed
through the proof, we will find that we can impose relations among the L’s and
R’s. Begin by computing

0(3.16) 1
i —35 = “Fatm =2+ (5 - 8 am)
= Rm—-2)+=Rm -1+ (% —8)Rem)+ (£ - 18)Rem + 1)
= —-—nm — +-2' m — +<§—ﬂ) m+<§—§ﬂ) m +
1 1
< —BR(m) + (§ - 5ﬂ)R(m+ 1),

by (3.20). Using (3.20) again, we see that this is nonpositive, since by (3.13),
f(4) > 0 and £(5) > 0 imply that

(3.21)

So, (3.16) is a decreasing function of L(m — 2). Therefore, for the remainder of
the argument, we may assume by (3.20) that L(m — 2) = L(m — 1), since if (3.16)
is nonnegative when L(m — 2) = L(m — 1), it will also be nonnegative when
Lim —2)<L(m -1).

Assuming L(m — 2) = L(m — 1), we next compute

5
<B< 3.

00| =

a3.16) 3 1 7
m = —ERA(m - 2) — QRA(m — 1) + gRA(m)

3

3 1 7 3
= ——2-R(m -2)+ ZR(m -+ §R(m) + (-8- - Eﬁ)R(m +1)

_3 3_38
< —3R(m) + (8 2ﬂ)R(m+ 1),

by (8.20). Another application of (3.20) implies that the above partial derivative
is nonpositive. Therefore (3.16) is a decreasing function of L(m — 1); so for the
rest of this case, we may assume by (3.20) that

L(m —2)=L(m — 1) = 2L(m) — L(m + 1).

Using this relation and regarding L(k) for £ = m,m + 1,m + 2 as independent
variables, compute

0(3.16)

3
Lo = —2Rp(m - 2) — ZRA(m)

—9R(m — 2)+R(m — 1)+ %R(m) + (g _ 2,B)R(m +1)

< —-R(m -2)+ (g — 2ﬂ>R(m +1),

<0,
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where the inequalities follow from (3.20). Therefore, (3.16) is a decreasing func-
tion of L(m), so we may assume by (3.20) that

Lm)=2L(m+1)—L(m +2)
and L(m —2)=L(m —1)=3L(m +1)—2L(m + 2).

To complete the consideration of Case 2, we must now show that the following
holds: (3.16) is nonnegative whenever 0 < L(m+1) < L(m+2); L(m —2),L(m —1)
and L(m) are nonnegative and have the values given above; and the R’s satisfy
(8.20). Since (3.16) is [via (3.18)] linear in L(m + 1) and L(m + 2), it suffices to
show the nonnegativity at the two extreme points, which by homogeneity we
may take as ‘

(3.22) Lim+1)=Lm+2)=1
and
(3.23) Lim+1)=2, L(m +2) = 3.

In case (3.22), the expression in (3.16) is equal to

—1Ry(m — 2)+ LRy(m — 1) — 1Rs(m)
= —1R(m - 2)+ 2R(m — 1) — 1R(m) — 1R(m + 1),

which is nonnegative by (3.20).
In case (3.23), the expression in (3.16) is

=Rsm —2)+Ry(m — 1)+ %RA(m)
=R(m —2)+ 3R(m — 1)+ 3R(m) — ( — B)R(m + 1),

which is nonnegative by (3.20). Thus we conclude that (3.16) is nonnegative in
Case 2.

Case3(m=n;m—-2,m+2¢ A). From(3.11), we see that the contributions
to Q(A) from this interval are

La(m)Ra(m — 2) + La(m)Ra(m — 1) + La(m + 2) R4(m) + La(m + 1) R4(m)
— La(m — 2)Ra(m — 2) — 3Las(m) Ra(m) — Ly(m + 2) Ro(m + 2)
+ (3 = B)La(m — 2)Ra(m) + (3 — B)La(m)Ra(m + 2)
+ (28 — })Lalm — 2) Ra(m + 2).

(3.24)

Making the same definition as in (3.17), the functions L and R again satisfy
(3.18) and (3.19). Since now m +2 ¢ A, Lemma 3.12 generates additional in-
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equalities:
0<Lm—-2)<L(m-1)<L(m)<L(@m+1) < L(im+2),
Lm —1)+L(m + 1) < 2L(m),
L(m)+L(m +2) < 2L(m + 1),
(3.25) 2L(m +2)+ 3L(m) + 2BL(m — 1) < L(m + 1);

0<R(m+2)<R(m+1)<R(m)<R(m —1) <R(m - 2),
R(m — 1)+ R(m + 1) < 2R(m),
R(m —2)+ R(m) < 2R(m — 1),
2R(m — 2)+ $R(m) + 2BR(m + 1) < R(m — 1).
We proceed in much the same way as in the previous case. First compute

4
% —Rp(m — 2) + <% - ﬂ) Ra(m) + <2ﬂ - l) Rp(m +2)

= —R(m—2)+%R(m— D+ (— —ﬂ)R( )+ (— — —ﬂ)R(m+ 1)
+ (Zﬂ — 211-)R(m+2) < —BR(m)+ <§ﬁ — §) R(m +1),

where the inequality follows from (3.25). This is nonpositive by (3.25) and (3.21).
So, we may assume from now on that L(m — 2) = L(m — 1). By symmetry, we
may also assume that R(m +2) = R(m + 1).

Next, compute

8(3.24 3 1 7
____.__aLEm _)1) = _ERA(m -2)— §RA(m -1+ gRA(m) + ( B— —) Ry(m +2)

3 1 7 1
= —§R(m -2)+ ZR(m -+ §R(m) + ZR(m +1),

which is nonpositive by (3.25). Therefore (3.24) is a decreasing function of
L(m — 1), so we may assume henceforth that

Lim -2)=L(m-1)

= mm{zL(m) Lim+1), S-Lim +1) — ~Lem) — LL0m + 2)}.

"20 40 B

By symmetry, we may also assume that
Rm+2)=R(m+1)

= min{2R(m) - R(m + 1) 3 Rm -1 — LRm) - LR(m — 2)}.

'2p ﬁ B

At this point, we may assume by homogeneity that L(m + 2) = 1. Then the
first half of the inequalities in (3.25) become

Lm+1)<1, L(m)+1 <2L(m +1), L(m + 1) < 2L(m),
4+L(m) <6L(m +1).
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These determine a quadrilateral in the (L(m), L(m + 1)) plane with vertices at
(n, ll) (2, Z) (2,1) and (1, 1). The corresponding values of L(m — 2) = L(m — 1)
are 0 in the first three cases and 1 in the last case. By (3.18), the values of
(LA(m 2) LA(m —1),La(m),La(m + 1),L4(m + 2)), in the four cases are then
0,0, 4, %, %), (0, o,;,i,g) (0,0,3,1, 1) and (1,1,,1,% + ). By symmetry,
these are also the extreme points of the set of possible values of the vector
(Ra(m+2),Rp(m +1),Ra(m),Ra(m — 1), Ro(m — 2)). The value of (3.24) obtained
by taking one extreme point from one set of vectors and another from the other
are given in the following 4 x 4 matrix:

8 8 11 2

121 11 22 11
8 3 13

7 1 1 0
7 18 1 3
22 16 8 16
2 3

i 0 1 O

Since all the entries are nonnegative and expression (3.24) is bilinear, it follows
that (3.24) is nonnegative whenever the inequalities (3.25) are satisfied. This
completes the consideration of Case 3.

We must now consider maximal intervals {m,...,n} in A® of length greater
than 1. In each of Cases 4-9, we take

L(k) = La\(n+1y (k) and R(k) = Ra\ (-1} (k).
Then, as before,
(326) Lp(n+2)=L(n+2)—3L(n+1) and La(k)=L(k) for k<n+1.
Similarly,

Ra(m —2)=R(m —2) — 1R(m - 1),

(3.27)
R4(k) = R(k) fork>m —1.

These functions satisfy the following inequalities, by Lemma 3.12:

(3.28) 0<Lm)<Lim+1)<---<L(n+2)

3.28) Lk—1+LkE+1)<2Lk) form+2<k<n+1,
' 2L(m +1) — L(m) — L(m +2) > (} - #) L(m — 1);

(3.30) 0<R(m)<Rn-1)<---<Rim-2);

(3.31) Rtk —1)+R(k+1) <2R(k) form—-1<k<n-2,

2R(n — 1) —R(n) - R(n —2) > (1 - ) Rn + 1);
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(3.32) Lim —1)<2L(m) and R +1)<2R(n);

(833) Lm-2)<Lim-1) and iLGn —1)+L(m+1)<2L(m)
ifm—2¢A,
(3.34) Rn+2)<R(n+1) and iR(n+1)+R(n—-1)<2R(n)

ifn+2¢A.
Cases 46 correspond to intervals of length 2, while Cases 7-9 correspond to
longer intervals.

CaseE4(n =m+1; m—2,n+2 € A). From (3.11), we see that the contributions
to Q(A) from this interval are [using (3.26) and (3.27)]

Lm)R(m —2)+Lm+1)R(m — 1)+ L(m + 2) R(m) + L(m + 3)R(m + 1)
+ %L(m)R(m —1)+L(m + 1R(m) + 3L(m + 2) R(m + 1)
- %L(m)R(m) — %L(m +1)Rm + 1)+ (1 +28)L(m)R(m + 1).
By (3.28) and (3.30), this is greater than or equal to
3Lm + 1)R(m) + (1 +28) L(m)R(m + 1) — 2L(m) R(m) — 2L(m + 1) R(m + 1).
Using (3.28) and (3.30) again, we see that this is nonnegative.

CASES(n=m+1,m—-2 ¢ A,m+3 € A). From (3.11), we see that the
contributions to Q(A) from this interval are [using (3.26) and (3.27)]

Lm)R(m —2)+L(m+1)R(m — 1)+ L(m + 2) R(m) + L(m + 3) R(m + 1)
+ 2L(m)R(m — 1) + L(m + 1)R(m) + 3L(m + 2) R(m + 1)
— IL(m)R(m) — IL(m + 1)R(m + 1) + (1 + 28) L(m) R(m + 1)
+ (1 = B)L(m — 2)R(m) + (} — B) Lim — 2)R(m + 1)
— L(m — 2)R(m — 2) + L(m — 2)R(m — 1).
By (3.28) and (3.30), this is greater than or equal to
Lm) [R(m — 2)+ $R(m — 1) - §R(m) ~ (1 - 26) R(m + 1)
(3.35) +Lon —2) [-Rn - 2)+ 1R0n - 1+ (} - §) Rom)
+(1-B)Rom+1)].

Since L(m — 2) < 2L(m) by (3.32) and (3.33), the expression in (3.35) will be
nonnegative if

Rm —2)+3R(m — 1) - 3R(m) — (1 - 28)R(m +1) > 0
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and
—R(m —2)+ 3R(m — 1) — (} +2B8) R(m) — JR(m + 1) > 0.

The first of these follows from (3.30). For the second, use (3.30) and (3.31) to
conclude that the expression is greater than or equal to

1R(m —2)+ (} — 26) R(m).
The nonnegativity of this follows easily from (3.30) and (3.21).

CasE6(n=m+1;m —2,m+3 ¢ A). From (3.11), we see that the contri-
butions to Q(A) from this interval are [using (3.36) and (3.37)]

L(m)R(m — 2) +L(m + 1)R(m — 1) + L(m + 2) R(m) + L(m + 3) R(m + 1)
+ 2L(m)R(m — 1) + L(m + 1) R(m) + $L(m +2)R(m + 1)

— 1Lm)R(m) — JLom + DR(m + 1) + (1 + 26) L(m) R(m.+ 1)
3.36) + (4 —B)Lm—2)R(m)+ (% - B)Lim —2)R(m +1)
— L(m — 2)R(m — 2) + L(m — 2) R(m — 1).
+ (3 = B)L(m + 1)R(m + 3) + (; — B) L(m) R(m + 3)
— L(m +3)R(m + 3) + 3L(m + 2) R(m + 3).
Constraints (3.28) become
(3.37) 0<L(m)<L(m+1)<L(m+2) <L(m+3).
The first constraint in (3.29) becomes
(3.38) Lm + 1)+ L(im + 3) < 2L(m + 2),
while the second combines with the second in (3.33), to give
(3.39) (2 —4p) L(m) +L(m +2) < (§ — 26) L(m + 1).
Finally, the two parts of (3.33) combine to give
(3.40) L(m — 2)+2L(m + 1) < 4L(m).

Similar constraints hold for the R’s.

The coefficient of L(m + 2) in (3.36) is nonnegative, so by (3.38) we may
assume that 2L(m + 2) = L(m + 1) + L(m + 3). After doing so, the coefficient of
L(m + 3) in (3.36) is

$R(m + 1)+ §R(m) — $R(m + 3).
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By the analogues for the R’s 0of (3.37) and (3.40), this is nonnegative. Therefore,
by (3.37), we may assume that L(m + 3) = L(m + 1). Similar reductions can be
made by symmetry, so at this point we may assume that L(m + 1) = L(m + 2) =
L(im +3) = 1 and R(m — 2) = R(m — 1) = R(m) = 1, and that the following
inequalities are satisfied:

(3.41) iLm—-2)+1 <Lm)<1
and
(3.42) fRm+3)+ I <Rm+1)< 1.

After these reductions are made, the coefficient of L(m) in (3.36) becomes
(1+28)R(m +1)+ (3 - B)R(m + 3) — 2,
which is less than or equal to
(2-20)Rm+1)-5+28<0,

by (3.42). Therefore, by (3.41), we may take L(m) = 1, and b3; symmetry,
R(m + 1) = 1. With these choices, (3.36) becomes

26+ (1 — 26) [L(m — 2) + R(m + 3)].
This is nonnegative by (3.41), (3.42) and (3.21).

CASET(n>m+1;,m—2,n+2 € A). From (3.11), we see that the contri-
butions to @(A) from this interval are [using (3.26) and (3.27)]

n+1 n—-1
>, Lk+DRE-1+ Y Lk+1RE-1)

k=m—1 k=m+1

+ Y L&)RE-1)+iLm)Rm — 1)+ 1L(n + DR®)

k=m+1

n n—2 n—1
-5Y L®WRE) - Y LERE- > LERK)

k=m k=m+1 k=m+2
n—1

n—2
(3.43) +(2+2p) Z L(E)R(E+1) + 1 Z L(E)R(E +1)

k=m k=m+1
n—1

+(3-26) Y. L&k-DRE+1)

k=m+1

n—2
+(3-28) > Lk-1DRE+2)
k=m+1
n—2

+(26-1) ) L&-2)Rk+2).

k=m+2
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By the bilinearity of this expression, in order to show that it is nonnega-
tive whenever (3.28) and (3.30) are satisfied, it is enough to show that it is
nonnegative when

(3.44) L) = 1{k21} and R(k) = l{ks,.},

wherem <l <n+2andm -2 < r < n. All terms in (3.43) are nonnegative
unless m < | < r < n, so we assume this throughout. With these choices,
(3.43) becomes

(r—1+3)+ [min(r — 1,r+1) —max(m + 1,1 — 1) + 1]
+ [min(n,r+1) —max(m + LD + 1] + 314omy + 31ony — 3 —1+ 1)
— [min(n — 2,7) — max(m + 1,1) + 1] — [min(n — 1,7) — max(m +2,0) +1]"

+ (3 +260)(r — )+ i [min(n — 2,r — 1) — max(m + 1,)) + 1]"

+(E-28)—-1-D*+ (2 —28)r—1-2)+ (28— 1)r—1-3).

If r = I, this becomes 1 + 11(nccny. If 7 = 1+ 1, it becomes 28. If r = 1 + 2 it
becomes 23 — %. If r > 1 + 8, it is zero. Thus in all cases it is nonnegative.

CAsE8(n >m+1,m—-2 ¢ A,n+2 € A). From (3.11), we see that the
contributions to Q(A) from this interval are [using (3.26) and (3.27)]

n+1l -1

> Lk+DRE-D+ E L+ DRk - 1)
k=m -1 " k=m+1
+ Y L®&RE - 1)+ 3L(m)R(m — 1) + 3L(n + DR(n)
k=m+1
n n—2 n—1
-$Y L®&RE) - > LE&RGE) - ) Lk)Rk)
k=m ne1 k=m+1 k=m+2
(2+26) Y LBRE+1)+} Z L(k)R(k +1)
(3'45) k= m1 k=m+1 i
+(§-28) > LE&-DRE+D+(3-26) Y Lk-1DRE+2)
k m+l k=m+1
+(28-1) Z L(k — 2)R(k +2)
k=m+2

+ (1 = B) L(m — 2)R(m) + (% — B)L(m — 2)R(m + 1)
+1L(m —2)R(m - 1)

+ (28— 1)L(m — 2)R(m +2) — L(m — 2)R(m — 2).

By (3.32) and (3.33), 0 < L(m — 2) < 2L(m), so we need to check the nonnega-
tivity of (3.45) at the two extreme points. If L(m — 2) = 0, then (3.45) is the same
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as (3.43), so we are back to the previous case. So, we may take L(m —2) = 2L(m).
The coefficient of R(m — 1) in (3.45) is nonnegative, so by the first constraint in
(3.31) with 2 = m — 1 we may assume that 2R(m — 1) = R(m — 2) + R(m). After
doing so, the coefficient of R(m — 2) is

SL(m) + 1Lm + 1) — L(m — 2) > —2L(m) + $L(m + 1),

where the inequality comes from (3.33). The right-hand side above is nonnega-
tive by (3.28). Therefore, by (3.30) we may assume that R(m —2) = R(m — 1) =
R(m). Now we can proceed as in Case 7, letting L(k) and R(k) be defined by (3.44)
for k > m, where m <! < r < n, and checking the nonnegativity of (3.45) in
each case. The result of the computation is the following expression for (3.45):

5= — (3+20)1pztom) — 5lpr=tan)

+261 (21401} — (48— 3)Lpr=me1,0=m) + (26 — §) Lroiagy-
This is nonnegative by (3.21).

CAsE9(n>m+1;,m—-2n+2 ¢&A). From (3.11), we see that the contri-
butions to Q(A) from this interval are [using (3.26) and (3.27)]

n+1 n—1
> LEk+DRE-D+ Y Lk+DRk-1)

k=m -1 k=m+1

+ > L&Rk-1)+3Lm)R(m — 1)+ }L(n + DR()

k=m+1
n—-1

n n—2
-$> LWRE - Y L&RK - Y LkRK)

k=m k=m+1 k=m+2

n—1 n—2
+(3+28) Y L®R*k+1D+} > LE)RGK+1)

k=m k=m+1
n—1 n—2
+(§-28) > LE-DREk+1D+(3-26) Y Lk-DRE+2)
k=m+1 k=m+1
n—2
+(28-1) Y L&-2Rk+2)
k=m+2

+ (3 —B)Lim — 2)R(m) + (3 — B) L(m — 2)R(m + 1)
+2L(m — 2)R(m — 1) + (28 — })L(m — 2)R(m + 2) — L(m — 2) R(m — 2)

+ (L -B) LR +2)+ (2 —f)L(n — DR(n+2) + LL(n + DR(n +2)

+ (28— )L — 2)R(n +2) — L(n + 2) R(n +2).

This case is handled much like the previous one. The reduction which was
made at the left boundary in the previous case is now made at both boundaries
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before computing the above expression explicitly in case L and R are given by
(3.44). The result of the computation is the following expression:

=iy — (3+28) 1paiomy — (3 +26) Lirmi=n) + 261141y
— (48— 3) Lr=ms1,1=m) — (46— 3) Lu=n—1,r=n} + (26— 1) Lir=142)-

This is nonnegative by (3.21).

4. Proof of Proposition 4. Throughout this section, we take A = 1. Once
we have let 5 = F(4), equations (1.1) can be solved recursively for F(n) for n > 2.
The first few values are given in (3.13). As can be seen from those values, the
requirement that F(n) be positive and decreasing imposes conditions on 3. We
need to show that there is a choice of 8 such that the corresponding solution
has the required properties. Our first task is to show that there is a choice of
(8 which makes the solution bounded. To do so, define the generating function
¢(x) of the sequence F(n) by

@1 #(x) =Y F(nx".
n=1
Multiply (1.1) by **! and sum for n > 4, to get
Y FOFmst™ =43 Fowt +2 Y Foow.
IL,m>1l+m>5 n=5 xn=6

Using (4.1) and the values of F(n) for 1 < n < 5 from (3.13), this becomes
2 3 o 1\ 4
¢°(x) — 4+ ¢(x)+2+5x+§x +20x + 2'B_Z x*=0.

Solving this quadratic for ¢(x) gives the following expression, after some
algebra:

Kx)= L2 = \/P(x_
where
4.2) P(x)=1+4x+2¢® — 5x° — 3x* — 20x° — (28 — })a°

[The negative sign in front of the root is chosen, since otherwise ¢(x) would be
unbounded near the origin.]

Next, regard P(x) = 0 and P'(x) = 0 as two equations in the two unknowns x
and G:

(4.3) 1+4x+2¢% — 5x% — 3x% + 148 = 28x5(1 + %)
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and
4+ 4x — 155 — 623 + 3x° = 28x"(5 + 6x).
Eliminating § gives
x® + 12x5 + 66x* + 8x® — 104x% — 88x — 20 = 0.

This polynomial is negative at 0 and positive at —1, so it has a root in (-1, 0).
Mathematica gives this root as xo = —0.4254654735 . . .. Using this in (4.3) gives

— 6§ — 2023 + 8x2 + 16 + 4
ng(xo + 1)

With this definition of xy and 3, P(x) has a double root at x,. Therefore, it can
be factored as

=0.1497729..

p="=

P(x) = (2 — x0)%(ap — a1% — agx® — azx® — agx?),

where ag = 5.524...,a; = 3.871...,a; = 1.272...,a3 = 0.257... and a4 =
0.0495.... Since ag > |a;| + |ag| + |as| + |a4|, the image of the closed unit disk
in the complex plane under ag — a1z — as2? — @323 — a4z* lies entirely in the
right half-plane. Therefore, for this choice of g (which we use from now on),
¢(z) is analytic in a neighborhood of the closed unit disk, and hence F(n) decays
exponentially rapidly (so, in particular, it is bounded).

In order to show that F(n) is decreasing, we will need an explicit expression
for F((n). To obtain one, use the expansion

(2n —2)!
Vi-t=1- 2an( —1)'( t)

to write
Vag — a1x — agx? — azxd — agxt
o0 n
_ 2n —2) [a1x+agx? +asx® + agxt
- v 1-23 G (amven e
(4.4) (2j + 2k + 21 +2m — 2)!
= 1-
\/66[ 2 j+k+;m>1 G+k+l+m—D\j R !m!
Jrkyl,m20 .
ajasasay j+2k+31+4m
(4a0)j+k+l+m .
This suggests that we define
sm= Y (2j+2k+2l+2m —2)!  ajabala}
n= G+h+l+m DR m! (dag)i+k+l+m’

j+2k+3l+4m=n
j1k’l’m20
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Using (4.1) and the expressions for P(x) and ¢(x) above, we can then write
(4.5) F(n) =2,/a¢S(n)+28(n + 1)

for n > 1. Thus, in order to show that F(n) is decreasing, for example, it is
enough to show that S(n) is decreasing.

Before doing so, we derive a relationship between the renewal sequence u(n)
and F(n), since we will need to check some of its properties. Equation (1.2),
which relates u(n) to f(n) [or, equivalently, to F(n)], is nonlinear. However, it
is possible to use the fact that f(n) satisfies (3.6) to replace this by a linear
relation. In order to do this, take n > 4 and use (1.2) twice, (3.6) and (3.13)
to write

u(n) =Y _fk)un — k)
k=1

n—1 n—k

=f)+ > f®)Y_f(un —k—))
k=1 Jj=1
n—2 n—i—-1
=f)+ > u@ > fEfln—k-i)
i=0 k=1
=f(n)+ tu@n —2)+ Juln - 3)+ (& - B u(n - 4)
n-5
+) " u@)[6f(n —i) —2f(n —i+1)—2f(n —i+2)].
i=0

Using (1.2) again and (3.13), and then simplifying, one obtains

f(n)=2u(n+2)+u(n+1)— 12—3u(n) +(2+28)u(n-1)
(4.6)
+ (5 -28)un—2)+ (3 - 28) utn — 3)+ (26 — 1) u(n — 4).

Since f(n) = F(n) — F(n + 1), this can be rewritten [assuming for the time being
that f(n) > 0, so that the limit of u(n) exists by the renewal theorem] as

“n Fn)=—2u(n+1) — 3u(n) + %u(n -1)
q
+ (% —26)u(n — 2)+ 3u(n — 3) + (26 — 1) u(n — 4),
for n > 4. Letting A(n) = u(n) — u(n + 1) for n > 0, (4.7) can be rewritten as

F(n) = 2A(n) +5A(0n — 1) + 3A(n — 2) + 28A(n — 3)
(4.8) +(268-HAMn -4).

Write (4.8) as F = M A, where F and A are the column vectors with entries
F(n) forn > 1 and A(n) for n > 0, respectively, and M is the matrix with entries
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my, j, for k, j > 1, given by the following:
my1=2; ma1=3—46; ms,1=3—26;
mppe1=2 fork>1; myp=5 fork>2 my_1=3 fork>3;
mk,k_2=2ﬁ fork > 4, mk,k_3=2ﬁ—% for & > 4;

and all other m;, ; = 0. We wish to invert this matrix, in order to be able to solve
(4.8) for A(n). We will look for an inverse P with entries p; ; of the form

pr,j = (-1 " *[ewp’ —br_j],

where b, = 0if £ < 0 and p is the unique root of absolute value smaller than
one of the polynomial

2 — 5z + 32% — 262 + (28 - })2*.

(Mathematica gives p = 0.45748....) Writing out PM = I gives the following
equations:

4.9) 4c1(1-2p)=p and 2b,=1;

1-2p _ 3 1
> =2bp_1— (§ —4ﬁ)bk-2+ (5 —2,3>bk-3

—(2,8— %)bk_4 fork > 1,

4cy,
(4.10)

(4.11) 2b,,1—5b, + gbn_l —208b, _o+ <2ﬂ - i)bn_g =0 forn>1.

Next we need to solve (4.11). Let p~1, q, w and W be the roots of the polyno-
mial
(4.12) 2z* — 528+ 322 — 282+ 26 - 1.

(Mathematica gives the following approximate values: p~! = 2.18586,¢ =
0.244625, w = 0.0347572 +0.212417:). Then the solution to (4.11) is of the form

(4.13) b, =Ap~" + Bq" + R(Cw"),

for n > —2, where A and B are real and C is complex. These coefficients are
chosen so that (4.11) is satisfied for small values of n. (Mathematica gives the
following approximate values for them: A = 0.2634, B = —0.1729, C = —0.0905+
0.1427i.) Using this expression for b, in (4.10) gives

cr =Ap~* + Dg* + R(Ew"),
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for £ > 1, where

Bp@—2 1633 and E=PY =2 _ 7937 _ 1619

@14 D= =1 %

In this computation, we have used several times the fact that p~1, g and w are
roots of (4.12). Now, we can complete the computation of

(4.15) pij=A(-p) =% + D(~@)*(—p)! + (—pYR[E(—w)*] ifl <k <},
and

pr,j = D(=p)/(—q)* — B(—q)*~/
(4.16) +R[E(—p)(—w) — C(—w)~7], ifl1<j<k.

Letting p; o = 0 and using (4.5), we obtain the following for £ > 1:

Alk) = Zpk +1,;F()
(4.17) j=})°
=2 [VaoPks1, s+ Pre1,j—1)S().
j=1

When we use the expressions for p; ; given in (4.15) and (4.16) to evaluate the
right-hand side of (4.17), there will be terms which have a factor of A, terms
which have a factor of B and so on. We will compute these separately. The ones
which have a factor of D are

—2pD./asS(1)(—q)**! + 2D(y/ag — p~1)(—g)*1 ) (-p)S()
j=2

= GD(—q}**1,

where

G = —2p/aoS() +2(vao —p~') Y _(-pYS().

j=2

Similarly, the terms in (4.17) which have a factor of E are GR[E(—w)**1].
The terms in (4.17) which have a factor of A, B or C are

2A(vao —p7Y) Y (-p)IF1S()
j=k+2
k+1
—2B(/ag —q) Y _(—q)*1IS(j) + 2BS(1)(—q )t **
Jj=1
k+1
—2RC(yag — w) > _(—wl*17I8(j) + 2RCS()(—w)++1.

Jj=1
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In this computation, we have used the relation A + B + RC = 0, which follows
from (4.13) with n = 0.

Next, we compute G. By (4.4) and the expression given above for G,

G=-2511)+ (\/a_ —p‘l) (\/a_ —Vag +a1p — agp? + azpd — aup? )/\/a_o.
To evaluate the right-hand side of this expression, write

P(-p)=(p +2x0)> (ao+ap — agp® +asp® — agp?).
From the definition of p,
2 5p+§p" - 205" + (26— })p* = 0.
Therefore, by (4.2),
P(—p) =1—4p +2p*+5p® — § p* + 20p° — (26 — })p®

=(1-2p)>.
Combining these two expressions for P(—p) yields

ag +a1p — agp® +azp® —aupt = 1-2p i
0 3 p+xy )

Therefore
-1 1-2p
=-28(1) + (vVao —p )(1 - W).
Now, S(1) = a1/(4ao), apx? = 1 and 2agxo + a1x3 = —4, so that S(1) = $v/ag — 1.
Therefore, a short computation yields
G=4-2p7 L.
From the definitions of D and E, we conclude that
GD=22—-q)B and GE =22 -w)C.

Combining the above expressions for the various parts of (4.17) then leads
to the following:

AR) — AR +1)

=2B(2 — q)(1 +gX—q)l*1 + 2RC(2 — w)(1 + w)(—w)F+!

+2A(1 +pY)(vas—p~Y) Y (-pY*71S()
Jj=k+3
(418) +2[A(1-py@s) + B(vas - g) + RC(vas - w) | Sk +2)
k+1
- 2B(1+9q)(/ao —q) Z(—q)”+l ~IS(j)+2B(1 + q)S(1)(—gq)k+!
Jj=1
k+1
—2RC(1 + w)(y/@o — w) 3 (—w)*1IS() + 2RC(L + w)SAN-w) L.
Jj=1
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We must show that this expression is nonnegative for £ > 2. In order to do
so, we need some information about the behavior of the sequence S( ;). The
required result is contained in Lemma 4.19. By (4.5) this result also implies
the monotonicity of F(n), which had been left unproved earlier.

LEMMA 4.19. Let o =~ 0.990075 be a root of the polynomial
aoxt — a1x® — agx® —asx —ay
[so that P(c~1) = 0]. Then

S(n+1) <

<g-— .
0<o——5m n

Before proving the lemma, we will use it to complete the verification of the
nonnegativity of (4.18). The idea is to show first that it is nonnegative for large
E, and then to compute the left-hand side for the remaining finitely many values
of k. So, using the lemma, compute

AR -AR+D
L=lim —c o)

—2A(1+p 1) \/—_p Z( p)z+2 i+1

—2B(1 +q)(vao — q) Z( —gYo~i71 — 2RC(1 +w)(vao Z( —w)o~i"t

i=0

+2A(1 —p\/—") +ZB(\/——q) +2§RC(\/_0— w)

1+pa oc+q oc+w

This implies that (4.18) is positive for large k. Next we need to know how large
k must be.
Iterating the inequalities in the lemma gives

758\" _Sn+m) _ ,,
(4.20) (J—-n—) S—‘S—,WgG .
This implies that
S(n+m) S i
Stn)y ~— 2m’

for n > 16. To include all n, we use the inequality

S(n) S(1)

Stn+m) — S(16)2m'

(4.21)
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Now take £ > 35. Then (4.18), (4.20) and (4.21) imply that
Alk) — AR +1)

Sk +2)
2B(2 —g+S(1))(1+q) . 2|C(2- w +S(1))(1 +w)) b+l
= S(16) @ S(16) i)
—7.58/(k +2) po?
+2A(p+1) ~1 [ g - ]
p+1)(pvao—1) 1—p2(0—7.58/(k+2))2 1_p2o?

+2A (1 - py/ag) +2B(\/as — q) + 2RC(v/ag — w) — 2B(1 +¢)(vao - q)
i 1 (g0 1= (q/[a —7.58/(k — 19)])20
ot - g (0 —7.58/(k — 19))* — g2
2R C(1 +w)(v/ag — w)
_wjoyr 1 (w/[o—7.58/(k - 19)])
02 R
(a 7.58/(k — 19)) w2

5(1) (2¢)*
+4B(1+q)(Vao—q )5(16) 1 q2q

S1) wp*

—4|C +w)(vao - w)| gae T gw]

In using (4.20) above, note that the overall coefficient of S( /) in (4.18) forj < £+1
has the same sign as (—¢)**1~/, since |w| < q and

|CQL+w)(vao - w)| < BI(L+q)(vao - q)-

Therefore, one of the bounds in (4.20) can be used for even i and the other for
odd .

After discarding all the terms above which have powers greater than or
equal to 20, the remaining expression is increasing in k. Using the explicit
values which we have for the constants, it is easy to check that the expression
is positive if £ = 1000. Therefore (4.18) is positive for £ > 1000. The final step is
to show that it is positive for 2 < £ < 1000. We have computed A(k) — A(k +1)
for all these values of &, and in fact it always is positive. In the computation,
we use the recursion (3.6) to compute the density f(n) for n < 1000, and then
(4.6) to compute u(n) for these n. This computation is discussed further at the
end of this section.
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Proor oF LEMMA 4.19. For nonnegative integers j, k,l,m, not all zero, let

/ _ 9\ J kol om
c(j k1, m) = .(2]+2k+2l+2m. 2)! ala?a3a4 '
(jJ+Ek+1+m — DIJIRNIM! (4ag)i+k+l+m

By the definition of S(n),
(4.22) S(n) = > c(j,k,1,m).

Jj+2k+3l+dm=n

Take a,b,c,d > 0, and write

\aJ + bk +cl +dm

S(n+1)= Z c(j,k,l,m, '
j+2k+3l+dm=n+1 aj+bk+cl+dm

. aj
= > c(j, k,l,m)—
Jj+2k+3l+dm=n+1,j>0 a]+bk+Cl+dm

bk .
* > (b, 1, m)—
j+2k+3l+dm=n+1,k>0 aj+bk+cl+dm

+ 3 c(j,k,1,m) ol

j + dm
Jj+2k+3l+4m=n+1,1>0 @ bk +cl +

. dm
* 2 L m) e kv dm’

J+2k+3l+4dm=n+1,m >0

Using the form of ¢(j, k2,1, m) and then making a change of variable in the sum,
the first sum on the right-hand side above can be written as

; 2/ +2k+20+2m — 3
? > o~ Lk Lm) [+ bk + l+r:il
Q0 ok 48ladmens1,j>0 o c+am
_aa . 2/ +2k+2l+2m — 1
= 24, 2 kL m) kvl vdmta

Jj+2k+3l+4m=n

Similarly, the second sum is

@ Z C(j+1,k—1,l,m) 3 bk 1 l d
01 okeSledment1, k>0 aj + Ok +ct +am
ba2 . J
N 2 kM) vl v dm —a+h

J+2k+3l+4m=n

Arguing in an analogous way for the other two sums, we obtain the following
expression:

(4.23) S(n + 1) = Z C(j,k,l, m)d(jak,l,m)$

Jj+2k+3l+4m=n
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where
) _0a12j+2k+2l+2m -1 bay Jj
4, k,lm) = 2a9 aj+ bk +cl+dm +a * ay aj+bk+cl+dm —a+b
cas k day l

G2 aj+bh+cl+dm —b+c a3 qj+bh+cltdm—c+d’

Note that the limits of this expression as j — co with the other variables
fixed, as £ — oo with the other variables fixed, and so on, are

a1, basy aa; cas aay day aay

4'24 ] o FE] .
( ) ay aap bag bay cap cag dag

Our choice of o makes it possible to choose a, b, ¢ and d in such a way that each
of these expressions has the value o. The values are a ~ 1.413, b ~ 1.244 and
¢ =~ 1.194 if we choose d = 1. Using the fact that each of the expressions in
(4.24) has the value o, we see that

d(j,k,lm)  j+k+l+m—3 . (@a-1)j
o T aj+bk+cl+dm+a  aj+bk+cl+dm—a+b
b-1Dk (c—1I

aj+bk+cl+dm —b+c aj+bk+cl+dm —c+d’
Therefore,

[0 — d(j,k,0,m)](aj + Bk +cl +dm +a)

o
_ 1 (@ — 1)(2a — b)j
(4.25) SOt T Gjtbk+cd+dm—_a+b
__ (b-1Xa+b-ck = (c—1Na+c-d)
aj+bk+cl+dm —b+c aj+bk+cl+dm —c+d’
Using
J 1
< aj+bk+cl+dm —a+b < b’

two similar inequalities and the values of a, b, ¢, d and o, we see from the above
expression that

1.894
aj+bk+cl+dm+a’

(4.26) 0<o-d(jklm)<
Using this in (4.23) and recalling (4.22), we obtain the required result. O

It now remains to prove that the density f(n) is decreasing. We begin by
combining (4.22) and (4.23) to obtain

(427)  S(n)-Sh+1)= > [1-dG,kLm)]e( k1, m).

J+2k+3l+4m=n
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Replacing n by n + 1 and applying the technique used in proving Lemma 4.19,
we can write

(428)  S+D-Sm+2= Y DGklLmk(jklm),
J+2k+3l+4m=n
where
' . j+vk+l+m -1
D(J,k,l,m)—a[l d(~7+l’k’l’m)]aj+bk+cl+dm+a
L 1-d(j-1,k+1,l,m)
+G(a_1)]aj+bk+cl+dm—a+b
(4.29)

1-d(j,k-1,l+1,m)
aj+bk+cl+dm —b+c
1-d(j,kl—-1m+1)

aj+bk+cl+dm —c+d’

+0(b -1k

+o(c—1)

Considering (4.5), (4.27) and (4.28), it is clear that we need to show that
D(j,k,l,m)<1-—d(j,k,I,m).

While this inequality probably holds for all choices of j, &, I, m, its verification
would involve a lot of algebra. On the other hand, it is clearly true for sufficiently
large values of the arguments, since the limit of the right-hand side is 1 — o
by (4.26), while the limit of the left-hand side is (1 — o) by (4.26) and (4.29).
Therefore our strategy will be to estimate the rate of convergence in order to
prove the inequality beyond a certain point, and then rely on the computer
to verify f(n) > f(n + 1) for the remaining finite number of cases. So, using
(4.29), write

1 _d(.])kal)m) —D(J,k,l,m)
= [1-d(j,k,1,m))?
jtk+l+m -3
+ 00—
aj+bk+cl+dm+a

(4.30) ola —1j i —d(j
aj+bk+cl+dm—a+b[d(J LE+1Lm) —d(jk,1m)]

. ab— 1)k
aj+bk+cl+dm —b+c

N olc— 1)
aj+bk+cl+dm —c+d

[d(j+1,k,0,m) — d(j, k,1,m)]

+

[d(.]ak - lal+ lym) _d(]ak)lam)]

[d(.]ak,l - l,m + 1) —d(j,k,l,m)].

Using (4.26), the first term on the right-hand side of (4.30) can be bounded
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below by (1 — )2. For the second term, use (4.25) to write

[d(j+1,k,1,m)—d(j,k,I,m)|laj+bk+cl+dm +al
ola — 1)(2a — b)aj
 (@j+bk+cl+dm —a+b)aj+bk+cl+dm +b)
o(b—1)a+b —clak
" (@j+bk+cl+dm —b+cYaj+bk+cl+dm+a—b+c)
olc—1)a+c —dal
" (@j+bk+cl+dm —c+d)aj+bk+cl+dm+a—c+d)
—aa(a_ 1)2a —-b)j+(b—-1Xa+b—ck+(c—1)a+c—d)
(aj+bk+cl+dm —c+d)aj+bk+cl+dm+a —c+d)
> 0.66
= aj+bk+cl+dm—c+d’

Arguing similarly for the other terms on the right-hand side of (4.30), we obtain

[d(j— 1,k +1,l,m)—d(j,k,l,m)]laj + bk +cl + dm + b]
> 0.97
= aj+bk+cl+dm —2a+2b’
[d(j,k—1,l+1,m)—d(j,k,l,m)|laj+bk+cl+dm+a —b +c]
- 0.45
~ aj+bk+cl+dm —2b+2c

and

[d(j,k,l —1,m +1) —d(j,k,l,m)]laj + bk +cl +dm +a — ¢ +d]
> _ 0.68
= aj+bk+cl+dm—2c+2d’

Using these bounds in (4.30) gives

1
(@j+bk+cl+dm —c+d)?’

1—d(j,k,l,m)—D(j,k,l,m)>(1-0) -

This is nonnegative provided that
aj+bk+cl+dm —c+d > (1 - o) L.

If j + 2k + 3l + 4m = n, this requires that n > 434. Computation of f(n) for
smaller n completes the proof that f(n) is decreasing.

Since the results of this section rely heavily on the results of computation, we
list in Table 2, some sample values of the density f(n) and renewal sequence u(n).

The complete table for n < 999 has been provided to the Editor of this journal
and will be provided on request to any interested reader. The computation was
performed on a Macintosh Quadra, using Mathematica 2.0.4. In using (3.6) to
compute f(n), the value of 3 must be used. Since § is defined in terms of a
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TABLE 2
n f(n) u(n) Am) - AR +1)

001  0.500000000000 0.500000000  0.0247729291433
002  0.250000000000 0.500000000 0.0118187874301
003 0.100227070856  0.475227070  0.0014191928538
004 0.049545858286 0.462272929  0.0036847060256
005 0.025908283426 0.450737980  0.0015215456146

276  0.000000233542 0.383035925  0.0000000259411
277  0.000000229683  0.383034225  0.0000000255132
278  0.000000225893 0.383032552  0.0000000250929
279  0.000000222172  0.383030903  0.0000000246803
280 0.000000218518 0.383029280  0.0000000242751

501 0.000000008530 0.382923072  0.0000000009507
502 0.000000008416 0.382922998  0.0000000009380
503 0.000000008304 0.382922925  0.0000000009255
504 0.000000008194 0.382922853  0.0000000009132
505 0.000000008084 0.382922782  0.0000000009011

751 0.000000000354 0.382917453  0.0000000000395
752  0.000000000350 0.382917450  0.0000000000390 -
753  0.000000000346 0.382917447  0.0000000000386
754  0.000000000341 0.382917443  0.0000000000381
755  0.000000000337 0.382917440  0.0000000000376

999  0.000000000019 0.382917185  0.0000000000021

root of a certain polynomial, we must approximate its value when performing
the computation. Since there is only one value of § for which the solution to
(3.6) is even bounded, and our approximation will not be that value, it is clear
that there is the potential for large errors to occur. When combined with the
possible accumulation of round-off errors, some care must be taken to ensure
that the computation is rigorous. We conclude the paper with several remarks
concerning this point.

We carried out the computation several times, with different degrees of ac-
curacy in the value of 3 used, and the corresponding numbers of digits carried
throughout. In four trials, we used 200, 400, 500 and 650 digits of accuracy,
respectively. It was clear from the behavior of the output that, with 200-digit
accuracy, the results were not correct for n > 530. (The results oscillated, be-
came negative, etc.) However, the results for the other three levels of accuracy
were identical (to each other) up to n = 999. These are the ones reported above.
In addition, an unusually responsible referee reports carrying out the computa-
tion using Mathematica 2.1 on both a DOS machine and a NeXT with an initial
accuracy of 400 digits. His results were “identical to the author’s.” He also did
them using Maple V on a NeXT, but that computation “self-destructed” soon
after n = 500.

While probably completely convincing to most people, the approach described
above may not be regarded as entirely rigorous (and, of course, it is not). There
are at least three ways to proceed in order to make the computation rigorous.
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One is to use the IntervalAnalysis Package of Mathematica 2.1. This was not
done because the author did not have access to this version of Mathematica.
A second approach is to carry out an error analysis, which would include both
the error in the value of # and the round-off error. This was carried out by
the author, with the conclusion that 650-digit accuracy is sufficient. (Hence the
choice of this level of accuracy above.) We will not present this analysis in detail
here, because we prefer the third alternative on grounds of elegance.

This approach begins with the observation that 3, as defined at the beginning
of Section 4, is a rational function of x4, and x, is the root of a polynomial of
degree 6 with integer coefficients. Therefore, 3 itself is a root of another sixth-
degree polynomial with integer coefficients. In this case, this polynomial turns
out to be

1,600,0004° + 15,959,552(3° + 53,702,4643*
— 8,798,0803°% — 2,956,74432 + 722,760 — 40,609.

Therefore, all the f(n)s and u(n)’s can be written explicitly and with perfect
accuracy as fifth-degree polynomials in § with rational coefficients. After doing
this computation with perfect accuracy, one can compute § as accurately as
necessary to obtain the desired accuracy in the values of the f(n)’s and u(n)’s.
There is a practical difficulty in that the numerators and denominators involved
in the rational coefficients are extremely large integers, and their storage and
computation requires large amounts of memory. In the case of the author’s
Quadra, the memory limits were reached at about n = 700, so another computer
had to be used. The computation described below took approximately 60 hours
on a Sun 4 Sparc using Mathematica, version 2.0. Writing the polynomials in
the form

10974£(999) = —fo + f1B — f28% — fo8® + fuB* — f5.8°
and
Nu(999) = —ug +u18 — ugf? — us 33 +ugf* — usf®,

one finds that the coefficients are all positive integers, with fp,...,fs having
1415, 1442, 1422, 1423, 1423 and 1423 digits, respectively, and N, u,,...,us
having 1448, 1888, 1894, 1895, 1895, 1896 and 1894 digits, respectively. There-
fore, the rational coefficients in the polynomial expressions for £(999) and u(999)
are bounded by 10%6°, We then approximated 3 to 500 digits and evaluated these
polynomials, with results which again agree with those given above. The coef-
ficients themselves have too many digits to be included explicitly in this paper,
but they will be shared with any interested reader.

Even with the efforts reported above, the computations do, of course, rely
on the assumption that Mathematica is doing what it is supposed to be doing.
This is impossible to check, since the routines are not public domain (and if they
were, could one then be confident of their correctness?). Therefore, we conclude
by stating explicitly what we are assuming is happening. First, we assume
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that integer operations are done correctly. This is easy to check for small inte-
gers, but conceivably something could go wrong with the large integers which
come up in this computation. Second, we assume that when we solve the sixth-
degree polynomial for 3 to 500-digit accuracy (with NSolve [P(8) == 0, 3, 500}),
Mathematica really provides the required accuracy. Finally, we assume that
there is minimal loss of accuracy in computing the first five powers of 3. (Note
that we allowed an extra 31 digits of accuracy for this purpose). The author’s
own conclusion about all of this is that the chance that anything is wrong
with the computation is significantly smaller than the chance that there is an
error in the “rigorous” proof in Section 3, with all its cases and pencil-and-
paper computations.
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