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A SOLUTION TO THE GAME OF GOOGOL!

BY ALEXANDER V. GNEDIN

University of Gottingen

For any n > 2 we construct an exchangeable sequence of positive
continuous random variables, X1, ..., X,, for which, among all stopping
rules, 7, based on the X’s, sup, P{X, = X; V--- vV X,} is achieved by a
rule based only on the relative ranks of the X’s.

1. Introduction. “Ask someone to take as many slips of paper as he pleas-
es, and on each slip write a different positive number. The numbers may range
from fractions of 1 to a number the size of googol (1 followed by a hundred zeros)
or even larger. These slips are turned face down and shuffled over the top of
a table. One at a time you turn the slips face up. The aim is to stop turning
when you come to the number that you guess to be the largest of the series. You
cannot go back and pick up a previously turned slip. If you turn over all slips,
then of course you must pick the last turned.”

This is the description of the (two-person zero-sum) game of googol as it
first appeared in print, in Martin Gardner’s February 1960 column in Scientific
American [cf. Fox and Marnie (1960)].

We identify player I with the person writing n numbers and player II with
the person trying to recognize the maximum. It is well known from the solution
of the best-choice (or secretary) problem that player II has a strategy based
only on relative ranks of the numbers, which gives probability of recognizing
the maximum ¢, ~ e~! for any strategy of player I [cf. Gilbert and Mosteller
(1966)].

Samuels (1981) showed that if player I is allowed to use also negative reals
and selects the numbers from a uniform distribution on some interval (o, 3) with
unknown endpoints, then the relative rank strategy is minimax. Berezovskiy
and Gnedin (1984) and Ferguson (1989) used alternative arguments to prove
that a similar result holds for positive numbers if player I exploits uniforms on
the intervals (0, 3). Thus ¢, is the lower value of the game.

[Further results on the e-minimaxity of relative-rank rules in different ver-
sions of the best-choice problem are found in Hill and Krengel (1992) and
Hellweg (1992).]

On the other hand, Ferguson (1989) showed that, for any ¢, player I has
a strategy for writing the numbers which guarantees that player II cannot
succeed with probability larger than ¢, +¢. Thus the value of googol exists and
equals ¢,.
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The problem whether player I also has a minimax strategy (rather than e-
minimax), or googol has a solution, was most explicitly formulated by Samuels
(1989): “Given n, either find a [positive] exchangeable sequence of continuous
random variables, Xj, ..., X,,, for which, among all stopping rules, 7, based on
the X’s, sup, P{X; = X; V--- Vv X,} is achieved by a rule based only on the
relative ranks of the X’s — or prove that no such sequence exists.”

It is known that the answer is negative for n = 2 [cf. Cover (1987)] and is
positive for n = 3 [cf. Silverman and Nadas (1992)].

In this article we prove that the answer is affirmative for all n > 2. Our
principal result is the following.

THEOREM. Assume (X;...,X,)is a random element of R}, n > 2, with the
probability density function

€ - .

%(xlv---Vxn) n”, if 0<x1V---Vx, <1,
P, ,x0) =

€ —n— .

Eﬁ(xl\/-qun) tTE df VeV, > 1.

If € is sufficiently small, then
P{X, =X,V -VX,} =supP{X, =X, V---VX,}
e
where the supremum is taken over all stopping rules adapted to the sequence
Xy,..., X,
min{k:d <k <n, X, =X;V---VX,},
a4 = {n, if no such k,
and d is the positive integer found from the inequalities

(0) 1+ 1 + 4 1 <1<—-1——+1+ + 1
d d+1 n-1 d-1 d n-1

2. A class of exchangeable sequences. Let g be a positive measurable
function satisfying

(1) n/oog(x)x"_ldx =1.
0

Consider the random element (X3, ..., X;,) € R} with probability density func-
tion '

(2) p(xlyyxn)=g(x1\/vxn)7 xl>0

Condition (1) guarantees that the total probability integral equals 1. Clearly,
the random variables X, ..., X,, are exchangeable.
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Setg, =gandforj=1,...,n -1,
gi(x) = glx)x ~ + (n —j)/ gy)y* =~ ldy.
x

Observe that j-dimensional marginal distributions are of the form similar to
(2), that is,

(3) pi(x1, ..., x) =gj(x1 V- V).
Indeed,

pj(xl,...,xj)=/ / p(x1,...,xp)dxjq ... dxy,
0 0

=// gley V- Vay)dxjiq...dx,
X1V VI >%41V -V

+// gley V- - Vag)dxjiq...dx,
X1V VX <%iy1 V-V

oo
=gl V- Va)eg V- V)t “J4+(n—j) glo)x™ 7~ 1dx.
XV Vg
Our objective here is maximizing the probability P{X, = X; VvV --- VX, }
over the class of stopping rules adapted to the sequence of o-algebras F; =
o(Xy,..., X)), j=1,...,n. This is equivalent to maximizing the expected payoff
Ew.., where

is the conditional probability of recognizing the maximum at stage j. The ex-
istence of an optimal stopping rule in a problem with finite time is a standard
fact of the general theory of optimal stopping [cf. Chow, Robbins and Siegmund
(1971)].

The probability (4) equals 0 if X; is not a record (i.e., a relative maximum
among the first j observations. Thus it is sufficient to consider only stopping
rules which never stop if the observation is not a record , unless this is the last
observation. To make things precise, introduce record times by setting 7, = 1
and Ty,1 =min{j:T, <j <n, X; =X;V---VXj}if T}, is defined and the set
under the minimum is not empty and T} ., is undefined otherwise. Let 7, be
the o-algebra generated by the events {T}, = j} N C, with C € J;, and by the
events {7} is undefined} N C, with C € F,. Set

{w,ﬁn=z

wTk - . . )
0, if T} is undefined,

and introduce record values as

_ | X;, if Ty =j, for somej € {1,...n},
Te = undefined otherwise.
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The optimization problem for the sequence {wj, ¥;} is reduced to optimal stop-
ping of the sequence {wr,, Fr, } if we accept that a (finite) stopping rule ¢ adapted
to {Fr,} determines a {F;}-adapted stopping rule 7 by

{ T,, ift =Fk for some k and T}, is defined,
T =

n, otherwise.

We emphasize at this point that the above reduction is typical for best-choice
problems [cf. Berezovskiy and Gnedin (1984)] and does not exploit a special
structure of observations.

The next step is to show that under assumption (2) the pairs (X7, T%) build
a homogeneous Markov sequence.

Define E as the union of n copies of positive reals with one-point set {0}, that
is, E = (R, x {1,2,...,n}) U {3}, and consider a homogeneous Markov process

Z1,Z,, ... with values in E with the initial state Z; g(Xl, 1), absorbing state 0
and transition probabilities

P(5,0) =1,
P((x,1),0) = &xn‘i forx>0,i=1,...,n,
gi(x)

and

g,(y) j—i—-1 o .
. . % dya 1fl<.]§nay>x,
P((x,),(y,y +dy) x {j}) = | &&)
0, otherwise.

LeEMMA. The stochastic sequence {wr,,Fr,} has a Markov representation,
that is,

a [ Xr1,,Th), if T is defined,
Zy= }
0, otherwise,

forany BCE
P{Z.1€B|97,} =P(Z,B)
and
wr, =w(Zy),
where the function w: E — [0, 1] is defined by

{P(z,a), ifz40, -
w(z) = X
. 0, ifz=0.

ProOOF. Letxy,...,x;_1,x be a sequence of positive numbers such that x is
the kth record and i < n. Given je{i + 1,i+2,...,n} and ye(x, o), we derive
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from (3)
P{z,e+1 € (y, y+dy) x {j}‘Xl =xy, X1 =%io1, Xy =x, T =i}
=P{Xje(y,y+dy), Tho1 =j}X1=x1,...,X,~_1=x,~_1, X, =x, Ty =i}

=P{Xj€(y,y+dy), X141 <Xpg,. -, Xjo1 <Xpp | X1 =21,..., X1

=xi_1, Xi=x, Ty =i}

= (// pj(xl,...,xj_l,y)dxi+1...dxj_1>
X411V Vxj 1<%

dy gy i_i 1
X = J L dy.
pilxy, ..., % _1,%) gi(x)x Y

For other j and y this probability equals 0.
Other transition probabilities are obtainable in the same way, and the
Markov representation follows. O

3. A resolution. Using the Markov property simplifies enormously our
stopping problem, since optimal decisions depend exclusively on the pair (record
value, record time).

By Theorem 5.1 of Chow, Robbins and Siegmund (1971), Markov represen-
tation implies that the optimal stopping problem of the sequence {wr,, ¥7, } is
reducible to the optimal stopping of the Markov sequence {w(Z;), Z,} which,
in turn, has an optimal stopping rule of the form

t* =min{k: Z, € T'}, I'CE, 0¢€l.

Define T as the set of states z € E satisfying
w(z) > Tw(z),

where T denotes the one-step Markov transition operator. We are in the mono-
tone case if the set I' is absorbing, that is, P(z,T") = 1 for all z € T". In this case

T =T [cf Theorem 3.3 of Chow, Robbins and Siegmund (1971)].

Recalling the definition of w, we see that Jw(d) = 0, and Jw(z) for z £ 0 is the
probability of jumping from z into 9 in exactly two steps. Explicitly, Tw(x,n) = 0,
and, fori <n -1,

Twee,i) = 3 / P(Gx, ), (y +dy) x {j})P((, ), )

j=i+1v%

n o o ) 1
— Jj—i—-1 n—=Jj g

j=i+1 x

Consequently, 0 € T, R, x {n}‘ cT,and (x,i) € T, fori<n-—1andx > 0iff

(5) glaa™ > ( > a7t / glyy" ™ dy).

J=i+1
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In particular, I = T = (R, x {d, d + 1,...,n}) U {90} iff (5) holds exactly for
(x,7) € Ry x{d,d+1,...,n—1}. Since the right-hand side of (5) is monotonically
decreasing in , this amounts to the following inequalities:

(6) gla)x™ > ( Z %/~ 1 / g(y)yn-fdy> for x > 0,
Jj=d+1 x

(7) gl < (fo -1 / oog(y)y” -J dy) for x > 0.
Jj=d x

The stopping rule of the Markov sequence {Z,} with the stopping set
(R+ x {d, d+1,...,n})U {0} translates into the best relative-rank-based rule,
74, described in the formulation of the theorem. We have come to the following
conclusion: the stopping rule 74 is optimal if and only if g satisfies (1) as well as
(6) and (7).

The “only if ” part of this statement requires a little additional work, which
we leave to the reader.

Substituting g(x) = cx™" into (6) and (7), we obtain exactly (0)! However, the
integrability condition (1) is then obviously violated. (The reader is advised to
find a resolution within the class of elementary functions.)

We claim that (1), (6) and (7) are satisfied for the function

€

%x"‘”, for x € (0, 1],

€ -n-c¢
%x , forx > 1.
provided ¢ is sufficiently small. Indeed, the integrability condition holds for any

positive e. For x > 1 inequalities (6) and (7) are written as
1 1 1 1 1 1

—_— <1 e —
d+e+d+1+5+ +n—1+£" <d—1+.€+d+£Jr +n—1+e

glx) =

and are satisfied for all sufficiently small ¢, because the segments of the har-
monic series cannot add to exactly unity, except for the first term. Given x < 1,
(6) and (7) turn, respectively, into

- 1 n xj—l—e
1- Z — > 2 Z _ i
jiaad —e 1 j=d+1(J“‘€—1)(j+e—1)
and
“ ]- n xj_l—s
1-—- —_ < -9 .
jgc:ij_e—1< ejzzd(j—c”—l)(j+s—1)

The two inequalities hold for sufficiently small ¢ uniformly in x € [0, 1](d > 2
for n > 2). ‘
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This proves our main result for all » > 2 and shows why the method does
not work in the casen = 2.

4. Final remarks. The results of Berezovskiy and Gnedin (1984) and
Ferguson (1989) mean that the following two informational situations for player
IT are equivalent: .

1. No information regarding a method of writing the numbers is available (and
only the fact that the numbers are randomly shuffled can be exploited).

2. It is known that the numbers are selected independently from a uniform
distribution on (0, 8), but there is no information about 3.

Silverman and Nadas (1992) constructed a minimax strategy for player I in the
case n = 3 as a mixture of uniforms in the cube [0, 5]%. This means that there
exists a prior distribution, F, such that in the following situation player II has
no advantage in comparison with situation 1 or 2:

3. It is known that the numbers are selected independently from the uniform
distribution on (0, 3), and the 8 has known distribution F.

Samuels (1989) named distributions with this property noninformative priors.
It is natural to ask whether noninformative priors exist also for general n > 3.

Let f be a probability density function of the parameter 3 ¢ R, and let
Xi,...,X,|0 be ii.d., uniformly distributed on (0, 3). The n-variate density of
X,...,X,) 18

oo

N /0 px1,.. xn | B)F(B)dB = BF(B)dB

X1V -V,

Setting

®) o) = / Y (y)dy,

we see that the distribution of (X, ..., X},) is of the form (2). Conversely, given
an appropriate g, one can define f by (8). Combining this with our main result,
we see that the noninformative priors exist for all n > 2.

Given n, there is a critical parameter value, say a,, such that our result holds
for all € € (0,,). Using an asymptotic expansion of the harmonic series and
irrationality of e, it is not hard to prove that the values of o, are dense in a
small interval. It follows that ¢ cannot be selected the same for all n, though
for some infinite sequences n1,ns, ... we can choose &(n;) = const.

A related intriguing problem remains open. Does there exist an infinite ex-
changeable sequence X;,Xy, ... such that any finite segment (X, ..., X;,) has
the noninformative property? We conjecture that at least a weaker assertion
holds: there exists an infinite sequence with infinitely many finite subsequences
satisfying the noninformative property. ’
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