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ASYMPTOTIC DISTRIBUTIONS FOR WEIGHTED U-STATISTICS

By PETER MAJOR

Hungarian Academy of Sciences

We prove limit theorems for weighted U-statistics and express the limit
by means of multiple stochastic integrals. This is a generalization of the
paper by O’Neil and Redner. In that paper the method of moments was
applied which does not work in the general case. Hence we had to work out
a different method. In particular, in Theorem 4 we describe the limit of a
model proposed by O’Neil and Redner. In this model the weight functions
cause an intricate cancellation, and the limit can be presented as a sum of
multiple stochastic integrals with different multiplicities.

1. Introduction. Inthis paper we investigate the limit behavior of weight-
ed U-statistics, which means statistics of the following form:

(1.1) Un = Yo aUn e i (X X

1<ji<je-<jeZn

Here X, ..., X, are iid random variables with uniform distribution in the in-
terval [0, 1], the functions a(x1, ..., x;) and f(x1, ..., xz) are symmetric, that is,
they are invariant under all permutations of their arguments, and the function
f also satisfies the condition

(1.2) F2x1, ..., x5)dxy - - -dxp, < 00.
[0, 1

The expression (1.1) is a generalization of the usual (unweighted) U-statistics,
investigated, for example, in [1], because of the appearance of a weight function
a(xy, ...,xt) in it. The assumption that the sequence of iid random variables
X1, ..., X, is uniformly distributed is not a real restriction. If its distribution
function is F(x), then the sequence F(X3), ..., F(X,) is uniformly distributed,
and the statistics U, do not change if the function f(x1, ..., xz) is replaced by
f(F1(x1),...,F~1(x;)) and the random variables X;, by F(X)), j = 1,...,n.
In most of the results of this paper we restrict our attention to the so-called
degenerate U-statistics; that is, we assume that

(1.3) ff(y,xz,...,xk)dy=0 for all xs, ..., xp.

The investigation of U-statistics with general kernel functions f can be reduced
to this special case by means of the Hoeffding decomposition. (See, e.g., Ap-
pendix A in [1].) This gives the following representation of a symmetric function
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WEIGHTED U-STATISTICS 1515

f(x1,...,xr) with £ arguments: there exists a (unique) sequence of symmetric
functions f; = f;(x1,...,%5), s =1,...,k, and a constant f; such that

k
(1.4) fer, ..o =fo+y. Y, file,..,x),

s=1{i1.,....;} C{1,... k}

and the functions f; are degenerate, that is,
1.4 /fs(y,xg, ..,x)dy =0 forallxg,...,xs, 2 <s <k

Because of this decomposition the investigation of the limit behavior of the
statistics U, for n — oo, defined in (1.1), with general kernel functions f can
be reduced to that with degenerate kernel functions. In the case of unweighted
U-statistics when a(x, ..., x;) = 1 the first nonvanishing term in (1.4), that is,
the function f; with the smallest index s in the Hoeffding representation such
that £, is not identically 0, gives the dominating contribution to the U-statistics.
For typical weighted U-statistics the case is similar, but the general situation
is more complex. In this respect we refer to the second section of [9] and return
to this question in Section 2.

Our investigation was motivated by a recent paper by O’Neil and Redner
[9] where the asymptotic distribution of weighted U-statistics of degree 2 was
investigated. This means the investigation of statistics defined by formula (1.1)
in the special case & = 2. The authors of this paper proved the existence of a limit
distribution with an appropriate normalization by showing the convergence of
the moments. This method works only if the limit distribution is determined
by its moments. This property holds for U-statistics of degree 1 or 2. But if
k > 3, then for U-statistics defined by formula (1.1) [with a degenerate kernel
f satisfying relation (1.3)] a limit distribution appears which is not determined
by its moments. Hence in this case a different method has to be applied. The aim
of the present paper is to find such a method and to give an explicit expression
for the appearing limit. Let us first explain why the limit distribution of U-
statistics is not determined by its moments for £ > 3.

The limit of unweighted (degenerate) U-statistics, with normalization n
can be expressed by mens of k-fold Wiener-It6 integrals with respect to a Wiener
process. On the other hand, the following result is known about the tail be-
havior of multiple stochastic integrals. (See, e.g., [8] or Section 6 in [7].) If
Iy = [f(x1,...,x) B(dx1) ... B(dxy) is a k-fold Wiener-It6 integral with respect
to a Gaussian random measure, then

—k/2
)

Clexp{—lez/k} <P(II| > x) < Czexp{—szZ(k} for all x > 1,

with some appropriate constants C; > 0, C2 > 0 and L; > Ly > 0. For us the
left-hand side of the last inequality is interesting. If a distribution function F(x)
decreases at plus and minus infinity exponentially fast, then its moments de-
termine its distribution. On the other hand, if F(—x) + 1 — F(x) > C exp{—Lx"}
with some 0 < ¢ < 1and C > 0, L > 0, then we cannot say that F is determined
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by its moments. (See [2] for an example.) This second case appears in the case
of k-fold stochastic integrals with & > 3.

The case of weighted U-statistics is similar. The only difference is that for
typical weight functions a( ji, ..., jz) the limit of the statistics can be expressed
by a k-fold stochastic integral with respect to a Wiener sheet instead of a Wiener
process. The Wiener sheet is the natural two-dimensional analogue of a Wiener
process. It is a two-dimensional Gaussian process B(x,y), 0 < x,y < 1, with
expectation 0 whose increments B(xg, y2)+B(x1,y1) —B(x1,y2) —B(x2, y1) on dis-
jointrectangles [x1, x2] x [y1, ¥2] are independent with variance (xg—x1)(y2— y1).

Let us briefly explain our approach. First, we give a short explanation about
how to handle unweighted U-statistics and try to adapt it to the case of weighted
U-statistics. Let F), (x) denote the empirical distribution function determined by
the sample X3, ..., X,,. In the case of unweighted U-statistics when the weight
function a(-) is identically 1, formula (1.1) can be rewritten as

k ’
(15) U= / G, 28) Fu(dy) - - - Fr(d),

where [’ denotes that the hyperplanes x; = x; for i/ are cut out from the
domain of integration. Since we consider the degenerate case when relation
(1.3) holds, expression (1.5) does not change if F}, (x) is replaced by F,, (x) —x. We
recall that /n(F,(x) — x) = By(x), where By(x) is a Brownian bridge. Hence it
is natural to expect that we commit a small error by replacing /n(F,(x) — x)
by By(x) or, by exploiting formula (1.3) again, by a Wiener process By(x) + x&,
where £ is a standard normal random variable independent of the Brownian
bridge Bo(x). The last step is useful, because the theory of multiple stochastic
integrals is applicable with respect to Gaussian processes with independent
increments like the Wiener process, but not with respect to a Brownian bridge.
The above argument supplies an informal proof of the limit theorem for the
distribution of unweighted U-statistics, and a rigorous proof can be obtained
by justifying the above manipulations.

If we want to adapt the above argument to weighted U-statistics, we meet
some problems at the start. Formula (1.5) does not hold any longer; moreover,
U, cannot be expressed as a functional of F,(x), since it is not a function of
the ordered sample. But the above argument can be saved in the special case
when the cube {1, ..., n}* can be split into finitely many rectangles where the
function a(j, ..., j) is equal to a constant. Then limit theorems for weighted
U-statistics can be proved in cases when the function a( jy, ..., jr) can be well
approximated by such simple functions. We shall apply this approach, and
throughout the proof we heavily exploit the L2-isomorphism property of stochas-
tic integrals. We also use Poissonian approximation, a method which helped to
overcome certain technical difficulties. The idea that Poissonian approximation
is useful for the investigation of U-statistics appeared in the paper by Dynkin
and Mandelbaum [1], and we borrowed it from there.

2. Formulation of the main results. In this section we formulate the
main results of this paper. We introduce the following notation. Given a real
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number x, let [x] denote its integer part. Our first result is the following theorem.

THEOREM 1. Let U, be defined by formula (1.1) with a function satisfying
(1.2) and (1.3). If there is a continuous function A(yx, ..., yr) on [0, 11* such that,
for Ap(y1,...,y:) = a(lnyil, ..., [ny:]), the relation

lim |A(y1, - 98) =AY, ..y dy1 - dyp =0

n— oo [O I]k

holds, then the sequence n=*/2U, tends in distribution to the stochastic integral
1
V=u f fGer, ..., ) Ay, ..., y8) B(dx1, dy1) - - - B(dxg, dyr),
where B(-, ) is a Wiener sheet.

Let us remark that Theorem 1 is not an empty statement. Its condition can
be satisfied for instance if the function a( j1, ..., ji) is chosen in such a way that
its value depends only on the direction of the vector (ji, ..., jz) in R*, and it
depends on this direction continuously. The subsequent Theorems 2 and 3 are
natural generalizations of the results in Section 4 of [9].

THEOREM 2. Let U, be defined by formula (1.1) with a function satisfying
(1.2) and (1.3). Assume that a( j1, ..., jz) in formula (1.1) can be written in the
form

a(ju, - Jp) = u(h(jv), ..., h(jr)),

where h:Z' — (1, ..., r} with some integer r such that the limit

lim 1#{1‘, J<n, h(j)=s}=H()

n—>oon

exists forall s = 1,...,r, and u is an arbitrary function on {1, ..., r}*. Then the
sequence n~*/2U, converges in distribution to the stochastic integral

1
V= E/f(xl,...,xk)A(yl,..-,yk)B(dxl, dy1) - - - B(dxy, dyz),

where B(-, ) is a Wiener sheet, and

A(yl, ~~-’yk) = u(jlv *"’jk)
fHL+---+H(js—1) <ys <H(j1)+---+H(js), 1<s <k

THEOREM 3. Let us consider a sequence of random variables U, defined by
formula (1.1) with a function f satisfying (1.2) and (1.3) and a weight function
of the form

a(j1,....Jr) =e(j1)---e(jr),
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with a sequence e(j), j = 1,2, ..., such that the sequence e( j) is bounded, and
the limit

n— oo

n
(2.1) lim 1 Ze(j)2 =E>0
ot

exists. Then the random variables n=*/2U, converge in distribution to
L oee
V=05l fxa, ..., x) W(dx1) - -- W(dxz),

where W(-) ts a Wiener process on [0, 1].

Let us remark that, up to a scaling factor, the limit in Theorem 3 is insensitive
to the choice of the sequence e( j).

Let us discuss the distribution of the U-statistics (1.1) if relation (1.3) does not
hold. We get, by expressing the terms f(Xj,, ..., X},) by means of the Hoeffding
decomposition (1.4), that

1 & . .
(2.2) U, = EZ Z Bn(]lw"’]s)fs‘()(jv""){js)’
s=0 1<j,<n,1<p=<s

and j, #jp if p #p
with
(2'3) Bn(jl,n"js): Z a(ll,-..,lk),

Iy #1y ifp#p’
Jp =1y, for some rp,p=1,....s,
such that 1<ry <.-<rg <k

or, by exploiting the symmetry of the function a(l4, ..., I}),

k
2.3) Bn(jl,...,js)=(s) Y als.. .l
1<i,

b #ly ifp#p
Jp=lp for p=1...s

For unweighted U-statistics

k k
Bo(it, .. jo) = (s)m—s— Do (n—k) < (s)nk-s.

The orthogonality of the random variables f;(Xj,, ..., X],) together with this
relation implies that the inner sum with the smallest index s for which f; does
not vanish identically gives the dominating contribution to the external sum
in (2.2), and it has order n*~%/2. For typical weighted U-statistics a similar
picture arises. But since the coefficients a( j1, ..., j;) my cause some additional
cancellation, the situation is more complex. We show this in an example which
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may be of special interest. We consider the model in Theorem 3, but do not
assume that the kernel function f defines degenerate statistics. We consider
statistics of the form

2.4) U= Y, eUp-eUnf(X, ... X).
1<ji<je<je<n
Put
(2.5) Fo=n"12%"e()).
j=1

The limit behavior of Uy is different in the cases when F, has a finite nonzero
limit and when it tends to 0 or to co. We describe the case when F), has a finite
nonzero limit. This seems to be the most interesting case, when the contribu-
tions of different terms in the Hoeffding representation have the same order
and the limit can be represented as a sum of stochastic integrals of different
multiplicity. This question was considered in a special case in papers [4] and [9],
and it also shows some analogy with the surface charge in [6]. The remaining
cases will only be briefly discussed.

THEOREM 4. Let us consider the weighted U-statistics defined in (2.4) with
a bounded sequence e(j), j = 1,2, ..., satisfying (2.1) and a square integrable
kernel function f. Assume that the sequence F, defined in (2.5) has a limit
lim,, , o F» = F. Let us take the Hoeffding decomposition of the function f given
in formulas (1.4) and (1.4'). Then the sequence n=*/2U, converges in distribution
to the sum of stochastic integrals

Difo | §~ _Dezs_pup [ x Wi - W
k! = slk —s)! Ty
asn — oo, where W(x) is a Wiener process in the interval [0, 11, and the sequence
D, is defined by the following recursive formula: Do = 1, D1 = F and

[s/2] s!

T N L
D; pZ=:1 2rpl(s — 2p)!

D, _sp.

3. Approximation of U-statistics. In this section we approximate
weighted U-statistics with polynomials of independent centered Poissonian
random variables (by a centered Poissonian random variable we mean a Pois-
sonian random variable minus its expectation) and show that a small error is
committed if these centered Poissonian random variables are replaced by inde-
pendent Gaussian random variables. To formulate these results, we introduce
some definitions and remarks.
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REMARK 1. For a function f satisfying (1.1) and any ¢ > 0, an approximat-
ing step function g(x1, ..., xz) = g¢(x1, ..., xr) can be given such that

(31) / kIf(xl,...,xk)—g(xl,...,xk)lzdxl...dxk <eg,
[0, 1]

and there is some integer L = L(g) such that the function g(x;, ..., x) is con-
stant on all cubes ((j1 — 1)/L, j1/L] x --- x ((jr — V)/L, jr/L1,1 < js < L for
s=1,...,k, and it is 0 on those cubes for which j; = jy with some s # s'.

We introduce the notion of e-approximability of a weight function a( j1, . .., Jz).

DEFINITION OF &-APPROXIMATION OF WEIGHT FUNCTIONS. A sequence a( j1,
.., Jr) is e-approximable by a set of elementary functions b5(j1,..., k), 1 <
Js <n,1<s <k,if

n‘kz la(j1, .- Jk) = BECJ1, - - ,jk)|2 < const. ¢,

with some constant independent of  and ¢, and the function b%( ji, ..., ji) has
the following property.

There exists a partition A; = Ai1(n,¢),..., A, = Ap(n,e) of the set {1,...,n}
with cardinality [A1| = N1 =Ni(n, ¢), ..., |As| = N, = N,(n, &) with some num-

ber p = p(¢) which may depend on ¢ but not on n and numbers B:(m4, ..., mg)
whose absolute values are bounded by some number B(¢) which does not depend
onn,l<ms;<p, foralls=1,...,k, such that

(3.2) bi(Jj1,....Jr) =Bi(my,...,my) if js € Ay foralll <s <k.

We shall say that the above g-approximation is determined at level n by the
partition Ay, ..., A, of the set {1, ..., n} and the function B}, (m1, ..., ms).

Now we formulate the results of this section.

LEMMA 1. Let U, be a weighted U-statistic as defined in (1.1) with a kernel
function f satisfying (1.2) and (1.3) and a weight function a(j1, ..., jr) which
is e-approximable. Let this s-approximation be determined at level n by a par-
tition A1,...,A, of the set {1,...,n} and a function B;(m1,...,my). Take an
e-approximating step function g(x1,...,x;) = g:(x1,...,xt) of the function f
which satisfies the properties formulated in Remark 1 and put

l l
(3.3) g, . 1) =g(i—, o ik')

where L is the same as in Remark 1. A set of independent centered Poissonian
random variables 1, 1,1 <m < pand 1 <1 < L, can be constructed with
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parameter N, /L (N, is the cordinality of the set A,,) such that

1
E n-k/z Un - E Z Bf,,(ml’ '"7mk)g*(l17'--7lk)nml.ll "'"Mk,lk

< const. (s +

with some constant C(g, k) depending only on € and k.

LEMMA 2. Let us fix some positive integers p and k. Let us have for all posi-
tive integers n a sequence of independent centered Poissonian random variables
ns = ns(n) with parameter Ns and a sequence of independent Gaussian random
variables & = &;(n) with expectation 0 and variance Ny, 1 < s < p, such that
N; <n, 1 <s <p. Consider the polynomials

Sn=n7F2 3" by My

Js=1, Yy
Js #Js if s # 5

and
To=n2 3" by(jr . dw)i &
Js=1..p
Js #igif s #8
with coefficients satisfying the relation
160 (J1, - Jei)l <K foralll<js<p, 1<s<k,
with some positive constant K. Then, for all t € R?,

lim (Ee'Sr — EeTr) = 0.

n— oo

PrOOF OF LEMMA 1. Introduce the expression

U®» = > Bt J (XK - X,

1<j1<ja2<jrsn
where b is the ¢-approximating sequence of a,,. Since

Ef(levH«’Xjk)f(Xj’lv"‘;Xj’) =0 if(jly~~~’jk)#(j§[v""j;¢)

k

by (1.3), hence

(3.4) En*(U,-U®D)? =n* > laG, o) = b5 jn)|? < const. &.
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Let vy, ..., v, be independent Poisson distributed random variables with pa-
rameter N;, 1 < s < p, independent of the random variables X;, j =1,...,n,
too. Let the sets A,, appearing in the definition of ¢-approximability be A,, =
{si(m), ..., sy, (m)}, si(m) < --- < sy, (m), m = 1,...,p. We define sets A/,
with (random) size v,,, 1 < m < p, which are close to the sets A,. Put A}, =
{51(m), ..., s, (m)}, s1(m) < --- < §,,(m) such that 5;(m) = s;(m) for | <
min(NV,,, v,,) and 5;(m) = J(m) +1 — N,,, with J(m) = EZ‘Z‘I (vp = Np)4+ if Npp <
! < v,,. We consider a set of independent random variables Y,,;, 1 <m <p
and 1 <! < v,,, with uniform distribution in the interval [0, 1] which are inde-
pendent of the random variables v,,, n = 1, ..., p, and also have the property

Y1 —Xgm ifl <min(v,, Np), m=1,...,p.

(The choice of the random variables Y, ; with such properties is possible. They
must be chosen conditionally independent and uniformly distributed on [0, 1]
under the condition that the values of the random variables v,, are prescribed.)
Define the numbers I(j) and m(j) as the indices such that j € AL » and j =
Si;y(m())) if j is an element of some A;,, 1 < m < p. Otherwise let /(j) and
m(j) be meaningless. For 1 <m; <p,and[; =1,2,...,i=1,...,k, put

e Bi(my,...,mp), il <vm,i=1... .k,
bn((ml, ), ..., (mg, lk)) = { On(ml, mp) Lt{lefv;)isle 12

and —o
UP= Y B ((mG0, L) (mCi L) )

1<j1 <jor <Jk <0

X F(Ymin v - - -+ YmGindGi)-

We define Eis)((m(jl),l(jl)), .o, M), L(Jr))) = O in the last expression if
m( js) and I(j;) are not defined for some s. We claim that

2
(3.5) E(n (UL - UP)) < Cle, byn™"2.

To prove relation (3.5), observe that the number of terms which appear in
the sum U but not in U,? (two terms in these sums agree if the function f is a
function of the same random variables in them, and it has the same coefficient)
and the number of terms which appear in U,® but not in U,V is less than

k max |vg —Ns|<max Nf‘l + max vf‘l).
s<p s<p S=p
This relation together with the orthogonality relations implies that
2
E(’l_k/z(Ur(Ll) _ U'(lz)))

C(s, k)
nk

(3.6)

< E(maxlvs—Ns|<mafo‘1+maxvf‘1)>.
s<p -\ s<p sS=p
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Since
EvE < C(L)NF < cyn®
and
Eh@"A&FZSn,

with some C(L) > 0 for any s < p and L > 1, then by the Schwarz inequality,

2
[E(maxlvs —Nsl(max Nf‘l +maxvf‘1))}
s<p s<p s<p

_ 172 _
< E max|v; — N,|?- E[max N*~! + max v#*~1]" < const. n?*-1.

The last inequality together with (3.6) implies (3.5).

Put ¥ = 3(e) = [0,1] x {1,..., p} and define the random field consisting of
the points Z(m,l) = (Y, ;,m), L<m <pand1 <! <v,, onit. [} depends on
¢ through p = p(¢).] Then Z(m, ) is a Poisson process such that the expected
number of points Z(-, -) in a set N, _;(An,m) C ¥ equals Y2 _; NyA(Anp),
where A(-) denotes the Lebesgue measure. Introduce the countmg measure
un = pi on ¥ such that u,(B) is the number of points Z(-, -) in the set B
for B C Y. Let P, be its centering, that is, P,(B) = u,(B) — Eu,(B). Given a
function f(x1,...,x:) on [0, 1]*, define the function fl-f((xl, my), ..., (xz, mg)) on
Ek as

fi (e, ma), ..., (o, mp)) = Bo(my, ..., mp) f(x1, ..., %),

where the function B¢ is the same as that which appears in the definition of
e-approximability of a weight function. Then UP can be rewritten as

U(2) — _/ f"’(zl, o Ze)Mn(dz1) .. un(dzy),

with z, = (x5, m;), x5 € [0,1] and m; € {1,...,p} for s = 1,...,k, where [’
means that the hyperplanes z; = z; for j ;' are cut out from the domain of
integration. Condition (1.4') also implies that

fZ} fi@, 2, ... ,2)AMdz) =0 forallzy,...,zs,
with 2(A) = Eu,(A) for A ¢ 5. Hence
3.7 UP =~ / fi@r, ... 2)Padzr) - Pu(das).
Define the mapping I from the set of functions fe to the space of random

variables on (12, A, P), where (12, A P)isthe probablhty space where the Poisson
process is defined, as

€ 1 ' €
I(fy) = T [E” f§ (@1, ..., 20)Pn(dz1) - - - Pr(dzy).
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It is known in the theory of Poissonian integrals, and actually it is not difficult
to prove, that

/ fie, ... 20 Ndz1) - X(dzs) = EI(f;)".
Let g(x1,...,x,) = gc(x1, ..., xr) be an approximating function of f haying the
properties mentioned in Remark 1. Since Ny < nforalll <s < p, A(A) < niA(A)

for A c 3, where A(-) denotes the Lebesgue measure on 3. This fact together
with (3.1) and the definition of &; implies that

/|f,-f(21, z) —gien, ,zk)|2X(dzl) ...Mdzp) < const.en*.
The last relation together with (3.7) and L2-isomorphism of the mapping I

(applying it for f — g) implies that

2

1 i

n‘kE|:U,§2)—E / gg(zl,...,zk)Pn(dzl).-.P,,(dzk)] < const.¢.
sk

This relation together with (3.4) and (3.5) gives that

' 2
wt B[ U, - 5 [ gien o Paden) - Potd)|
(3.8) o

< (const.a + C(a,k)‘

Jn
The random measure P, ((({ —1)/L, /L], m) is a centered Poissonian random

variable with parameter N,, /L, and the measures of the sets (({—1)/L, /L], m)
are independent for different pairs (/, m). Hence

/Ekgg(zl, .-+ 2k) Pn(dz1) - - - Pn(dzs)

Bi(my, ..., mp)g" 1, .. )y 1y - - Do B

I
M

mg=1,..p
s=1...,L
for s=1,...k

and relation (3.8) implies Lemma 1. O

PROOF OF LEMMA 2. Since

'exp(i Zaj) — exp (i Z bj)' < Z lexp(ia;) — exp(ib;)],

hence :
|E explitS,} — E exp(itTy}|

(8.9) < const. sup

Is| <K|t|
Jis e Je

Y ii}
Eexp{zs«/'7 ﬁ} exp{zs =
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with some K > 0. We may assume that

(3.10) supE|n~Y2(n;(n) — Ej(n))|2 -0 asn— oo
J=p

Indeed, if n;/,/Nj is the quantile transform of £/,/Nj;, that is,

nj -1 § )

—=F? == ).

N ( (& )
where @ is the standard normal distribution function, F; is the distribution
function of n;/,/N; and N; is the variance of  and n;, then it is not difficult to
see with the help of the central limit theorem that (3.10) holds for this & and ;.
Actually, the following stronger estimate holds. See formula (2.6) in Lemma 1
of [5].

1
Eln~Y2(n - §)|2 < const. ~.

On the other hand, the random variables S,, defined with these random vari-
ables n; has the right distribution. Then we have

s M | s i S
Eexp{zsx/E n Eexp{zsﬁ Jﬁ}

= n_k/zlleInjl NG T gjl : §1k|

k-1
—k/2 § :

<n / |S| EITIJITIJ,,”’?J,,H _gjp+l||§jp+2'.'$jk|

p=0

k-1
=n"*2s| 3" Elnj,| - Elnj,| Elnjy,, — &pur| BlE,.0| - Elg;,|
p=0
k-1
< n"Y2s| const. Y Elnjy,, = &l
p=0
_ . 2
< const. sup E[n""2(nj(n) — §m)[",

because of the independence of the pairs (n;(n), §(n)) and the condition N; < n.
The last relation together with (3.10) implies that the right-hand side of (3.9)
tends to 0. Hence Lemma 2 holds. O

4. Proofs of the theorems.

Proor oF THEOREM 1. There is a step function A®(yy,...,y:) such that

/[0 " lAn (1, - 0) =A% (31, ... oy Edya, ... dy
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for n > n(e), and it has the following structure. There is some 7' > 0 such that

my mpg oms—1 mg
A —, ..., =), <=
( T T ) if T <ys < T and all numbers
A(y1, -, 98) = . . maq, ..., my are different,
0, if thereissome 1 <s <s' <k and
m-—1 , . m
0 <m < T such that T <Y ¥s < T
There is an e-approximation of the function a(mi, ..., m) which is determined

at level n > n(¢) by the partition

e (252 [p]) ramer

and the functions

£ — A€ ﬂ ﬂ
Bn(ml,...,mk)_A(T,..., T)'

Letg(xy, ..., xr) =ge(x1, ...,x) be an e-approximating step function of f which
satisfies Remark 1. Let the function g*(3, ..., ;) be defined by (3.3) and the
above function g. We get by Lemma 1 that, for

1
Sp = En_kﬂ > Bima, ... ma)g e W) Mgty Tl

r;zs= 5‘
.1 fors=1,..k Cloh
En*?U, - 8,)? < const.(a + e, )),
Jn

where 1,5, 1 <m < T and 1 <[ < L, are appropriate independent centered
Poissonian random variables with parameter n/T.
On the other hand,

fmw @, ) AL ) — 8o, ) AT, 98]
x dx1dy;---dxpdy, < const. e,
and because of the L2-isomorphism of Wiener-Itd integrals
(4.2) E(V —T,)? < const. ¢,

where V is the stochastic integral with the limit distribution defined in the
formulation of Theorem 1, and

1 .
Tn = En_k/z Z Bi(m1’~'~’mk)g*(ll’-'~7lk)§ml,ll"’$mk,lkv
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with independent Gaussian random variables &, ;, 1l <m <Tand1 <[ <L,
with expectation 0 and variance n/T.
It follows from (4.1) that

|E exp{itn™/2U,} — E exp{itS,}| < |t|E[n™*/2U, — S,|
< |¢ (E(n‘k/2 U, — Sn)z) v < const. (V2 + C(e, k)n~1*)

for any ¢ € R!. Similarly, it follows from (4.2) that
lEe”V - Eei’T"| < const /2.
Since Ee'*S» — EeitT» — 0 by Lemma 2, the last two relations imply that

lim sup 'E exp{itn'k/ U} -E exp{itV}] < const. /2.

n-— 0o

Since the last relation holds for any ¢ > 0, we get that the characteristic function
of U, satisfies the relation

Eexplitn™*?U,} — Eexp(itV} forallteR"

The last relation implies Theorem 1. O

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1. Now we
can choose the function a(jy, ..., ji) itself as its approximation by the elemen-
tary function. Then this approximation is determined at level n by the sets

An =1{J; 1 <j<n, h(j) =m}, m=1,...,r,

and the function B¢ (my, ..., my) = u(my, ..., my). Then N, = Ny, (n), the car-
dinality of the set A,,, satisfies the relation
(4.3) tim X _ Hony form=1,...,r

n— o0 n

Let g = g, be an approximating step function of f satisfying Remark 1 and let
the function g* be defined by (3.3). Then

1 _ *
Sp=—=n*2 N Bimi,...,mp)g A, Wty

k!
ms=1,...r
ls=1,..,L
fors=1,...k

well approximates n=*/2 U, in the L%-norm, where 7, ; are independent cen-
tered Poissonian random variables with parameter N,, /L. Because of the defi-
nition of the function A(y1, ..., y:) and (4.3), the stochasticintegral V appearing
in Lemma 2 can be well approximated in the L2-norm by

1

Tn = Hn_k/z Z B;(ml’ ""mk)g*(llv --~,lk)§m1.l1 "'%-mk,lk’
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where &, ; are independent Gaussian random variables with expectation 0 and
variance N,,/L. Then Lemma 2 implies that the characteristic functions of S,
and T, are close to each other. Then a natural adaptation of the argument in
the proof of Theorem 1 implies that the characteristic function of n=*/2U,, tends
to that of V, and this implies Theorem 2. O

In the proof of Theorem 3 we need a lemma which shows why the seduence
e(j) influences only the norming constant of the limit distribution of U, in
Theorem 3.

LEMMA 3. Let f(x1, ..., x) be a square integrable function on [0, 1]*, h(y) a
function on [0, 1] such that fol h2(y)dy = 1, W(x) a Wiener process on [0, 1] and
B(x,y) a Wiener sheet on [0, 1]2. Then the stochastic integrals

Ii= [ flanon) Widen) - Weds)
and

I, =/f(xl,~~-,xk)h(y1)~"h(yk)B(dxl,dyl)"'B(dxk,dyk)
have the same distribution.

ProoF. This lemma could have been proved by considering first elemen-
tary functions and then approximating general functions by them. We choose
a different way. We express both I; and I, by means of Itd’s formula as a series
of independent Gaussian random variables and observe that these two expres-
sions have the same distribution.

Let v, g, ... be a complete orthonormal system in [0, 1] and take the ex-
pansion

f@1 ) =) (i, ¥ @) - Y, ().
The functions g;(x,y) = ¥;(x)h(y), j=1,2,..., are orthonormal in [0, 1]2, and

feer, . 2h(y) - Rw) = Y et -, je)ei, (61, 51) -~ 95, @h, Vi)
By It6’s formula (see [3] or [7], Section 7), these relations imply that

(4.4) L= c(jn - di)inj, - nj:
and
4.4 =Y el it Gt

with n; = [ ¥(x) W(dx) and ¢ = [ ¢(x,y) B(dx, dy). Here nj, - - - n,:, the Wick
polynomial of the corresponding product, equals I1H;, (), where I,,, denotes the
multiplicity of the index m in the set {j1, ...,ji} and H,, (x) is the mth Hermite
polynomial. The definition of :¢;, - - ¢;,: is similar. Since both sequences n; and
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g, J = 1,2,..., are sequences of independent standard normal random vari-
ables, the expressions in (4.4) and (4.4) have the same distributions. Lemma 3
is proved. O

PROOF OF THEOREM 3. The proof is similar to that of Theorems 1 and 2.
Let us fix some small ¢ > 0 and define the sequence &(j) = &°(j), j=1,2,...,
by the formula

e(j)=Ke if Ke <e(j) < (K + 1)¢ with some integer K.
Then

1& 1&
(4.5) = § :52(J) -= z :e2(j) < const. ¢,
ni=1 =t

and the sequence &(j),j = 1,2,..., takes finitely many values K;¢ < Kse <
-+ < Kye with some p = p(¢) because of the boundedness of the sequence
e(j). Let the sequence &(j), j = 1,..., n, take the value K;¢ N; = N;(n) times,
1 <1 < p. Introduce the function 4,(y) = h%(y) on [0, 1] as

. ]_P—l 1 p
hn(y) = K,e on the interval - ;Nl <y < ;;Nl

and the number E(n) = E¢(n) = fol hZ(y)dy. By Lemma 3 the stochastic inte-
gral

1/ E \*?
(4.6) V.= I?(I'Tn)) [ fe1, .. ) (y1) - - ha(yr)

x B(dxy,dy,) - - - B(dxy, dys)

has the same distribution as the stochastic integral V defined in the formulation
of Theorem 3.

The sequence a(j, ..., jr) = e(Jj1)---e(ji) can be s-approximated by ele-
mentary functions such that this approximation is determined at level n by the
partition

Am={ji 1<j<n,e(j)=Kne} forl<m=<p

and the function B; (m, ..., mp) = Ky, 6+ - Ky, .

Letg.(x1,...,x,) =g(x1, ..., xz) be an approximating step function of f satis-
fying Remark 1. Then the random variables n~*/2 U, can be well approximated
in the L2-norm by

1 N .
Sn = En_k/z Z B;(mlv "'7mk)g*(ll, '--’lk)nml.ll o Nmg g
’ =1..,p
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by Lemma 1, where n,, ; are independent centered Poissonian random variables
with parameter N,, /L. Because of the L2-isomorphism property of Wiener—Itd
integrals, the random variable V, defined in (4.6) is well approximated in the
L2-norm by

1 E k2 —k/2 £ * -
Tn = E( ) n Z Bn(ml""’mk)g (ll’~~-’lk)£m1_l1"'smk,lkv

E(n) mg=1,...,p
ls=1....L
for s=1,....k

where £, ; are independent Gaussian random variables with expectation 0 and
variance N,, /L. Since

lirr}) sup |[E*(n) —E| =0
£—> n

by (4.5), Lemma 2 implies that the characteristic functions of S, and T, are
close to each other. These relations together with the observation that V, and
V have the same distribution imply the proof of Theorem 3 similarly to the
proof of Theorem 1. O

The proof of Theorem 4 is based on the following multidimensional version
of Theorem 3 and a lemma about the asymptotic behavior of the expression
B, (Jj1,...,Jr) defined in (2.3).

THEOREM 3'. Consider the random variables

Up= Y e(poeUfi(Xpp... X)), 1<s<k,

1<ji<ja<js<n

with a sequence e(j) satisfying (2.1), degenerate functions fi(x1,...,%s), s =
1,..., k, and iid random variables X;, Xz, ... with uniform distribution in
[0, 1]. The joint distribution of the random variables n=/2UY), 1 < s < k, tends
to that of the random vector

Ve = %Es/zf fi(x1, ..., x5) W(dxy) - -- W(dxs), 1<s<k,

as n — oo, where W(x) is a Wiener process on [0, 1].

PrOOF. The proof follows the same line as that of Theorem 3, only we need
a multidimensional version of Lemmas 1, 2 and 3. We only explain the modified
lemmas we need during the proof. The proof of Lemma 3 also yields that if the
functions f;(x1,...,%), 1 < s < k, are square integrable and [ h2(y)dy = 1,
then the joint distribution of the vectors

Iis) = / fo(x1, ..., %) W(dxy) - W(dx,), 1<s<k,
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and
I = f fiGe1s .., %) (¥1) - - h(ys) B(dx1,dy1) - - - B(ds,dys), 1<s<k,

agree.
We need a multidimensional version of Lemma 1, where we have to approx-
imate the sums

Ués)= Z as(jl’""js)f:?(le""’st)’ 1585k’

l<ji<je<Jjs=n

simultaneously if the functions f; satisfy (1.4’) and the sequences as(ji, ..., Js)
are all e-approximable by a set of elementary functions. We want to get the same
approximation of the random variables U as in Lemma 1 forall1 <s <k
(by replacing k by s everywhere) with the following additional restriction: the
approximating sums must be the polynomials of the same independent cen-
tered Poissonian random variables n;; for all 1 < s < k. This is possible
if the following conditions are satisfied. The e-approximation of the function
a; is determined at level n by a partition A, ..., A, of {1,...,n} independent
of s together with some function Bf ((m1, ..., m,), and the functions f; are &-
approximated by such step functions gé(x1, . . ., xx) which satisfy Remark 1 with
the same constant L in it for all 1 < s < k. These conditions can be satis-
fied. If the ¢-approximation of the function as is determined at level n by a
partition £; = {A1(s), ..., Aps ()} of {1,...,n} which depends on s and some
function B ;, 1 < s < k, then it is also determined by a partition which
is a refinement of all partitions L5, 1 < s < k, and a function B;, ; such
that relation (3.2) remains valid on the new partition with the same function
BE(Jj1s .-+ Js) = b5 (Jj1, ..., Js). To see that the conditions of Remark 1 can be
satisfied simultaneously for all f;, 1 < s < k, observe first that the functions
fs can be well approximated in the L2-norm by continuous functions. This im-
plies that Remark 1 can be satisfied for all sufficiently large L. Then the proof
of Lemma 1 can be carried out to supply the strengthened form of Lemma 1
needed for us.

Finally, we need the following modified version of Lemma 2. In Lemma 2 we
took a polynomial of order % of independent Gaussian and centered Poissonian
random variables and showed that their characteristic functions are close to
each other under certain conditions. Take the polynomials of order s for all
1 < s < k of the same random variables and assume that these polynomials
satisfy the conditions of Lemma 2. Consider the random vectors which we get
when the centered Poissonian and when the Gaussian random variables are
chosen as the arguments of these polynomials. Then the characteristic functions
of these random vectors are close to each other. This statement can be proved
in the same way as Lemma 2, and Theorem 3’ can be proved by means of these
generalized lemmas just as Theorem 3. O

LEMMA 4. Let the function B,(j1,...,Js), 1 < s <k, be defined by (2.3) or
(2.83") with a function of the form a( ji, . . ., jr) = e(J1) - - -e(jr). Assume that e( j),
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j=1,2,..., is a bounded sequence satisfying (2.1) and such that lim, _, , F,
= F for the sequence F, defined in (2.5). Then

) ) k ) ) ) .
47 n®92B,.(ji,....j) = (s) Dy _se(j1)---e(js) + e (1, -1 Js),

such that

(4.7) lim sup sup &¥(j1,...,Js) =0,

>0 <s<k1<j1, s <0

and the sequence D; is defined by the recursive formula Dy =1, D1 = F and

[s/2] 1
S
4. s=F - ) ——————=EDs_sp.
“48) b pz=12pp!(s—2p)!EpD %
ProoF. By formula (2.3"),
. . k . oy .

(4.9) B.(Jj1,---5Js) = (s)Gn(Jl,..-,Js)e(Jl) e Js),
with
4.9) Go(j1s ... Js) = > e(ly) - -e(lr—s).

lp ef{l,.., n)\UL ---vjs]‘ 1<p <k-s
byl i p £
We need good asymptotics for the term G, defined in (4.9'). For this aim we
introduce some notation. Given a finite set A, let | A| denote its cardinality. For
aset U C {1,...,k}let Uy denote the set of all partitions of the set U, and for
asetJ c {1,...,n} and a partition (V1,...,V,) of U C {1,...,k} put

(n) .
HP (V1. V) = > [TeCis-
js€(l,...n)\J,seU seU
Js=Jg if js €V}, jg €V, for the same 1<r=<p
Js #Jy ifjs€Vy, jg €Vy for r #7

Let us observe that Hy; ;(Vq,..., V,) depends only on the cardinalities | V1|, ...,
| V| but not on the exact form of the sets V1, ..., V,. We claim that if |J/| < K
with some fixed K > 0, then

(4.10) |Hg‘?J(V1, ..., Vp)| < const. nlUI/2
and
(4.11) IHE';‘)J(VL ..., Vp)| < const. nlUI-D/2 if |V,| > 3 forsome 1 <r <p.

We prove (4.10) by induction for the number of elements of the partitions. It
holds if the partition consists only of one element, since

const. +/n, if|U| =1,
> e) <

4.12) .
Jellmang const: n, if |U| > 2.
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Then relation (4.10) follows from the inductive hypothesis and the identity

HY (V... V) =Hy ;(Va,..., V) 3 e(jo"i!
Js€l{l,...n)\JforseV;

(4.13) »
=Y HP(Va,....V1U V..., V).
i=2

It is enough to prove (4.11) in the case when |V;| > 3. We can prove it similarly
to the relation (4.10) by induction for the number of elements of the partition. If
the partition consists of one element, then (4.11) holds because of (4.12), and if it
contains more than one element, then it follows from the inductive hypothesis,
(4.13), (4.12) and (4.10).

To investigate those partitions of a set U which consist of sets with cardinality
1 or 2, we introduce the quantities:

H{(r,s) =HP,((L,2},....{2r— 1,27}, (2r + 1}, ..., {2r +5})
withU ={1,...,2r +s}.

For J = ¢ put
H®(r,5) =Hp (r,s).
We claim that
(4.14) |H® (r, 5) —n” E, H(0,5)| < const. n@r+s-1/2

if|J| < K with some K > 0, where E, = (1/n)X}_,e( j)*. To prove (4.14), observe
that

(4.15) anZ H(ﬂ)(oy 3) = Z e(jl) .. .e(j2r+s)'
Ju€fl,...n} for 1<u<2r+s
Jou—1=Jou for 1<u<r
Ju #Ju if 2r<u, v’ <2r+s and u #u’

Hence
|H (r, 5) — n" ES H™(0,s)| < 1 + %,
with

zlz[ sup |e(j)|2’+s+1]((2r+s)|J|)2r+s > HP (V... V)
1<j=zn [Ul<2r+s—-1
(Vl‘...,Vp)GuU

and '

B= Y EROL. V),
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where V = {1, ..., 2r + s} and V denotes the set of those partitions of V whose
elements are unions of the sets {1,2},...,{2r — 1,2r},{2r + 1}, ..., {2r + s}
and it contains at least one set such that it has a proper subset of the form
{2/ —1,2j},1 < j < r. Here ¥; bounds the contribution of those products
e(j1)---e(Jor+s) in (4.15) which contain a term e( j;) withj; € J, and 35 bounds
the contribution of those products for which e(j,) € {1,...,n}\J forall 1 <[
< 2r + s, but do not appear in the expression defining Hf,'f)v(r, s). The relations
Y1 < const. n@+5-D/2 gnd 7 < const. n@ +s-1/2 held because of formulas
(4.12) and (4.13), respectively.
We shall prove by induction for s that

(4.16) lim n=/2H™ (0, s) = D;,
n— oo

with the sequence D; defined in (4.8). Indeed, (4.16) holds for s = 1 and for s > 2
we can write

H®™(s) =n*2FS — Z HE;)Q)(VL e Vo),
(V1. V) € Us\((1)..... L))

where U; denotes the set of partitions of U = {1, ..., s}. We get relation (4.16)
by dividing in the last relation by n~%/2 and taking limit n — oo if we use
relations (4.11), (4.14), the induction hypothesis, the relation lim, , , E, =
E, lim, _, o, F,, = F and the fact that the set {1, ..., s} contains s!/2” p!(s — 2p)!
partitions consisting of p sets with cardinality 2 and s —2p sets with cardinality
1,1<2p<s.

Clearly, for the expression G, defined in (4.9') G,(j1,...,Js) = Hy(0,k — s)
with J = {j1, ..., js}. Hence relations (4.16) and (4.14) imply that

lim n=%=92G,(j1, ..., js) = Dip—s

n— oo

and the convergence is uniform in ( ji, ..., js). The last relation together with
formula (4.9) implies Lemma 4. O

PROOF OF THEOREM 4. We get by rewriting expression (2.4) by means of
the Hoeffding decomposition and applying Lemma 4 that

n—k/2 Un =Vn+nn,
with
SR\ 1 . .
Vn=zln ( )_'Dk—s Z e(-]l)”:e(JS)f;(‘X‘ip---,‘X;js)

s/ k! 1<j,<nforl<p<s
Jp #Jp ifp #p'
and .
. k 1
= n 3 Ot -y i (X -, X)-
s=1

"l<jp<nforl<p<s
Jp #Jpifp #p'
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The random variables f(Xj,,..., Xj,) and f(X-/1 , ..., Xj) are uncorrelated if
the sets {j1,...,Jjs} and {J}, ..., j;} are different, since the functions f; satisfy
relation (1.4'). Hence formula (4.7) implies that En? — 0 asn — oo and
n~Y2U, and V, have the same limit distribution as n — co. By Theorem 3’ the
random variables V,, have the limit distribution given in Theorem 4. O

REMARK 2. Iflim,_, o, F, = oo and the remaining conditions of Theorem
4 hold and s is the smallest index such that the function £ in (1.4) does not
vanish identically, then the sequence n=*/2 F$~*U,, converges in distribution to
the stochastic integral

Es/2
sk —s)! / fe(x1, ..., xs) W(dxy) - - - W(dxs)

as n — 00. This can be proved similarly to Theorem 4. The only difference is
that now the behavior of the coefficient B,, defined in (2.3) is different. In this
case

Bo(j1, ..., Js) n* =92 Fh=se( 1y .. e( j5).

The problem can be handled similarly in the case when lim,, _, ., F,, = 0. Here
again good asymptotics are needed for the function B,. In this case the great
indices s count for which the function f; does not vanish in the Hoeffding decom-
position (1.4). But the situation is more complicated in this case. The asymptotic

behavior of the sums 21'.; ()" can play a role not only for r = 1 or 2. We omit

a closer investigation of this problem.
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