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LARGE DEVIATIONS FOR A RANDOM WALK
IN RANDOM ENVIRONMENT

By ANDREAS GREVEN! AND FRANK DEN HOLLANDER!

Universitit Erlangen and Universiteit Nijmegen

Let w = (py), ¢ z be an i.i.d. collection of (0, 1)-valued random variables.
Given w, let (X,),>¢ be the Markov chain on z defined by X; = 0 and
X +1 = Xn+1(resp. X, —1) with probability px, (resp. 1—px, ). It is shown that
X, /n satisfies a large deviation principle with a continuous rate function,
that is,

lim ,—lllog Py(Xn=|0nn]) = —10) w-as.for 6, — 6 €[-1,1].

n — oo

First, we derive a representation of the rate function I in terms of a vari-
ational problem. Second, we solve the latter explicitly in terms of random
continued fractions. This leads to a classification and qualitative descrip-
tion of the shape of I. In the recurrent case I is nonanalytic at 8 = 0. In the
transient case I is nonanalytic at § = —6,, 0, 6. for some 6, > 0, with linear
pieces in between.

0. Introduction, results and pictures.

0.1. Motivation. In this paper we obtain a large deviation principle for the
position of a nearest-neighbor random walk on Z with random site-dependent
transition probabilities. We calculate the rate function explicitly and find in-
teresting dependence on underlying parameters. The main tools are some com-
binatorial and variational techniques from Greven and den Hollander (1992)
and Baillon, Clément, Greven and den Hollander (1994).

Let w = (py)r ez be an i.i.d. collection of (0, 1)-valued random variables with
marginal distribution a. For fixed w, let X = (X,,), > o be the Markov chain on Z
starting at X, = 0 and with transition probabilities

P, ify=x+1,
(0.1) P,(Xpi1=y|Xn=x)=q1—p,, ify=x-1,
0, otherwise.

The symbol P, denotes the measure on path space given w. The process (X,w)
is an example of a random walk in random environment, and X has law P =
[ o(dw)P,,.

Received March 1993. -

1Research partially supported by NWO (Nederlandse Organisatie voor Wetenschappelijke On-
derzoek) and NATO Grant CRG 920680.

AMS 1991 subject classifications. 60J15, 60F10, 82C44.

Key words and phrases. Random walk in random environment, large deviations.

1381

j
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

8

o

The Annals of Probability. STOR ®

WWw.jstor.org



1382 A. GREVEN AND F. DEN HOLLANDER

This model has been studied quite a bit and has been found to exhibit a
number of phenomena not shared by classical random walk. We recall some of
the literature.

Abbreviate

1-p
0.2 = £ = .
(0.2) p=—7 (f) /f(p)a(dp)

It was established by Solomon (1975) that X is w-a.s.

©0.3) recurrent if (logp) =0,
' transient if (log p) #0.

In the transient case

(0.4) lim X, =

n— oo

+00, P-as.if (logp) <0,
—o0, P-as.if (logp) > 0.

Moreover, there are two speed regimes, namely,

. X, 1-(p) .
@) nl_)oO n " 1T () P-as. if (p) < 1,
X, 1-{p7} i
(0.5) An _ 27\ | pas. 1
nllrxgo el Py P-as. if (p~) < 1,
@G) lim % =0 P-as. if (p)‘l <1< (p_1>.

(By Jensen’s inequality log(p=1)~! < (logp) < log(p). Which case occurs de-
pends on the location of 0 w.r.t. these three points.) Kesten, Kozlov and Spitzer
(1975) supplemented the law of large numbers (0.5) by central limit type the-
orems. For instance, in regime (i) the classical central limit theorem holds
if (p?) < 1 (provided (p%logp) < oo). In regime (ii), on the other hand, if
(log p) < 0 < log(p), then

1 . . . .
(0.6) n_“X" = Z in law w.r.t. P with 0 < k < 1 the unique solution

of (p*) = 1 (provided (p~logp) < o0),

where Z is a random variable with a law related to a stable law of index «. The

result analogous to (0.6) in the negative direction holds after replacing p by p~!.
In the recurrent case the motion is extremely slow. Sinai (1982) proved that

9 .

0.7) (—l(é;)an =Z'in lgw w.r.t. P with 0 < 0% = ((log p)?) < oo,

where Z' is a functional of the Wiener process. The explicit law of Z’ was iden-

tified by Kesten (1986), namely, Z’ is symmetric and |Z’| has the law of the exit

time of the standard Wiener process from the interval [-1, 1].
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Several other interesting results have been obtained, for which we refer the
reader to the literature [see, e.g., Révész (1990)]. The purpose of the present
paper is to do a large deviation analysis, that is, to compute

(0.8) lim 1 logP, (X, = |6n]) for6e[-1,1],

n—oon

and to derive some properties of the limit as a function of 4.

0.2. Large deviations. We shall assume throughout the paper that (log p)
< 0. The case (log p) > 0 follows after replacing p by p~! and 6 by —8. We shall
also assume that supp(c) is finite. This assumption will be removed at the end
of subsection 0.3.

In order to formulate our large deviation result, we need to introduce the
following notation:

(0.9) i,jeN, p,q € supp(a),
(0.10) P(E) = set of probability measures on E,
(0.11) a(G,p),(j,@) =i+j—1,

and the following three objects:

1.

My, o = .{Q € fP([N X supp(a)]z):
(0.12)
Q stationary, E 2g(a) = 671, 72Q = az},

where 6 € (0,1], 72Q is the projection of @ on [N x supp(a)]? (i.e., the two-
dimensional marginal), E,:q is the expectation w.r.t. 72Q and 72Q is the
projection of @ on [supp(a)]Z.

2.

(0.13) I(Q|R,) = specific relative entropy of @ w.r.t. R,.

For the definition of specific relative entropy, see Georgii (1988), Sections 15.1
and 15.2.

3. R, is the stationary Markov process with transition kernel Pg_((i,p) —
(@) = Aqli, alg) given by

i+j—2

(0.14) Ay, )) = ( S )q"(l—q)f‘1

and with one-dimensional marginal given by
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(log p) < 0: the invariant probability measure of Pg

)

(0.15)
(logp) = 0: A®a, with A the counting measure on N.

In subsection 1.3 we shall see that the kernel Pg, describes the successive num-
bers of right jumps by the random walk X along the bonds of Z. In subsection 3.2
we shall see that Pg_ is positive recurrent when X is transient ((log p) < 0) and
null recurrent when X is recurrent ({(log p) = 0). (In the latter case R, should
actually be called a Markov shift.)

We can now formulate our large deviation result:

THEOREM 1. Forevery 6 € [-1,1] and 6, — 0,

(0.16) lim %long(Xn = |Oun)) = 1) w-a.s.,
with

0.17 I0)=6 inf I(Q|R.) if6e(0,1
0.17) () Qi (Q|R.) if 6€(0,1]
and

1(0) = I(—6) + 8{log p) if 6 € [-1,0),

(0.18) ‘
I1(0) = lim I(9).
6—0

We give an informal interpretation of the preceding results.

Imagine the random walk starting at x = —oco. Consider the total number of
steps to the right, m(x), taken by the random walk at site x. We shall see in
subsection 1.3 that, given w, the sequence {m(x)}, ¢z is Markov with a transi-
tion kernel at site x depending on w through p,. If together with m(x) we record
p- and form the sequence {m(x),p,}xcz, then we obtain a “double layer” pro-
cess. In subsection 2.6 we shall see that the reverse of this process is Markov
with transition kernel A, (i, j)a(p,). This is the process R, defined in (0.14)
and (0.15).

In Section 2 we prove that, on the event X,, = |6n |, the probability of the class
of paths for which the empirical distribution of {m(x),p,} J;i"é converges to @ as
n — oo equals exp[—nbdI(Q | R,)+o(n)]. This explains the variational formula in
(0.17). The two restrictions E 2g(a) = 6~ and 72Q = o” in the set M}, » in (0.12)
mean the following: (i) the average time that the path spends on a typical site
converges to 1 (“top layer”); (ii) the empirical distribution of the environment
that the path sees converges to o (“bottom layer”). The minimizer of (0.17)
therefore describes the typical path and environment realizing X,, = |6n].

The identity I(9) = I(—6) + §{log p) in (0.18) can be understood by reversing
the path. Indeed, the ratio of the probability of a path from 0 to [6n] and the
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probability of its reverse from |6n | to 0 equals exp[—né(log p) +o(n)] as n — oo.
This follows from the observation that

.. 11— ..
Ay _(j,D) = Tqu(t,J)

and from a Radon-Nikodym argument combined with the ergodic theorem ap-
plied to the medium (see the end of subsection 2.7).

0.3. Solution of the variational problem. In order to state our solution of
(0.17), we need to introduce the following three objects:
1. Let pmax and ppi, be the maximal resp. minimal value of p = (1 — p)/p over
supp(a). Note that pyin < 1 by our assumption that (log p) < 0. Define

0, if pmax > 1 (case A),
(0.19) re=4¢1 4p .
5 log(—l—_'_—iia:?ﬁ <0, if pmax < 1 (case B).

In case A the random environment has local drifts in both directions, whereas in
case B the local drifts always point to the right. The distinction will be important
because in the first case there are large regions where the random walk gets
“trapped” (see Corollary 1), while in the second case there are not.

2. Let f(r,w) be the random continued fraction

1 pol p1l
0.20 W)= - Al s,
( ) fr,w) Ty o) T r>r
with w = (py)rez and p, = (1 — p,)/p,. Define A(r) as
(0.21) log A(r) = / oEdw)log fir,w), 7> re.

In subsection 3.1 we shall see that A(r) is the Lyapunov exponent of a product
of infinite random matrices drawn from an r-dependent family. The parameter
r plays the role of the Lagrange multiplier needed to match the #-restriction
in (0.12) and (0.17). In subsection 4.1 we show that f(r,w) a.s. exists and is
positive iff » > r.. In subsection 4.2 we show that r — A(r) is continuous, strictly
decreasing and strictly log convex on [r., o), analytic on (r,, 00), and A(0) = 1.
3. Let 6, be given by

. N(r)
-1 - —_—_—
(0.22) ;" = }1& ( ) )
Define r(0) as
0<6<6,: r =;C,

(0.23) 6, < 0 <1: r(f)is the unique solution of =1 =

)
A7)
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We shall see in subsection 3.4 that the parameter 6, appears as the point where
the infimum in (0.17) becomes a minimum.

We can now state our solution of the variational problem:
THEOREM 2. For 6 €(0,1),

(0.24) 1(6) = —1(6) — 6log A(r(6)).

At the boundaries, I(0) = —r, and I(1) = —(log p) = (log(1 + p)).

The solution (0.24) is based on an explicit construction of a minimizing pro-
cess @, and on the evaluation of the minimum / (@, | R,)- The process @, has the
following form. Let G, ,, = {@¥ ..} denote the collection of all Gibbs measures
on NZ, relative to the counting measure, with Hamiltonian

(0.25) w(Gez) ZVw £l _1,0) + ZWrzx,

with random pair potential and external field

Vw,x(i;j) = —].OgA x_l(iaj),
(0.26)
W, =2r.

(We use the standard convention that the Hamiltonian appears with a minus
sign in the Boltzmann weight factor.) Let G, ., denote the set of all stationary
measures @ € P(IN x supp(a)]?) satisfying nZQ = o and admitting regular
conditional measures Q,, € G, ., where Q,, is defined by Q(:, dw) = Q. (- Yo (dw).
We shall see in subsections 3.2 to 3.4 that {Qs} = G9),« "Mo,a # D. (This state-
ment means that the minimizers precisely make up the set of Gibbs measures
in the rh.s.)

The reference process R, defined in (0.14) and (0.15) is one of the Gibbs
measures in o 4.

REMARK. The statements in subsections 0.2 and 0.3 continue to hold when
supp(e) is infinite, provided a([6,1 — §]) = 1 for some § > 0. This can be seen
as follows. First, given a and ¢ > 0, pick o/ with finite support such that |l -
o||lvar < €. Then clearly |P,(X, = |6n]) — P(X, = |6n))| < exp(en), with w and
w' drawn according to o (resp.c’) and coupled in the obvious way. Hence the
difference between the rate functions vanishes as ¢ — 0. Second, the random
continued fraction f(r,w) in (0.20) is uniformly convergent in w and analytic in
r (see subsection 4.1). Consequently, the solution (0.20)—(0.24) remains valid
for general «, and therefore also all the properties to be discussed in the next
section.



LARGE DEVIATIONS FOR RWRE 1387
0.4. Properties of the rate function. Define

1- (, ,0> .
(0.27) 0* = 1+ <p> ) if (p) < 1,
0, if (o) > 1

Recall (0.5): 6* is the typical speed of the random walk.
The qualitative properties of the rate function are [see Figures 1 to 3 and
recall (0.18)] stated in the following corollary.

COROLLARY 1. Suppose that « is not a point mass.

(a) 8 — I(0) is continuous and convex on [0,1], with I(0) = —r, and I(1) =
(log(1 + p)).
(b) 0 — I(9) is linear on [0, 8,], strictly convex and analytic on (6,, 1).
(c) I(6*) = 0.
(d) case A: 0 <6, =0* 1(0)=0 for 6 € [0,6%),
case B: 0 < 6, < 6%, I() = —r, — Olog \(r.) > 0 for 6 € [0, 0*).
(e) limg | g, I'(6) = — log A(r).
(f) 6 — I(6) is convex on [~1,1].

We give an informal explanation of the linear pieces appearing in Figures 2
and 3.

In case A the random environment contains arbitrarily long stretches where
the local drifts point to the center. Such stretches tend to “trap” the walk, and
the longer the stretch the easier it is for the walk to lose time inside. In the
interval [0, |6 |] the longest stretch has a length of order logn. Now, in order
to move at speed 0 < 6 < 6*(= 6,), the walk can decide to: (i) move at speed 6*
outside the longest stretches over a time 6n/6* (which is the typical behavior
with a subexponential rate); (ii) move at speed 0 inside the longest stretches
over a time (6* — 6)n/0* (which also has subexponential rate). The result is
I6)=1(6*) =0

In case B, on the other hand, stretches of the preceding type do not occur
and therefore I(¢) > 0 when 6 < 6*. The linear piece for § < 4, in Figure 3
can be related to the flat piece in Figure 2 after a transformation of the en-
vironment (see subsection 3.4). This transformation changes the law on path
space by a Radon-Nikodym factor exp[—n(—r, — 8log A(r.)) +0(n)] for every path
running from 0 to |fn|. The transformed environment has ppax = 1, which is
again case A. Moreover, 6, is the typical drift of the random walk in the trans-
formed environment.

The effect of the randomness of w can be further illuminated by comparing
with effective media. Let

(0.28) T,(6) = 2(1+6) log [L(1 % O)(L + )] + 1(1 - O)log[2(1 — )1+ 7]

be the rate function corresponding to the homogeneous medium with p, = 7
[i.e., px = (1 +n)~! for all x].
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—re

0 L L o
-1 -4, 0 8, 4" 1

FiGs. 1-3. Qualitative pictures of the rate function I(6) for 6 € [—1, 1]. Three cases are plotted: F1G.
1. recurrent ({logp) = 0). F1G. 2. transient with positive drift (case A: {p) < 1,pmax > 1). F1G.
3. transient with positive drift (case B: {p) < 1, pmax < 1). The transient case with zero drift (case
A: (logp) < 0,{p) > 1) is the same as Fig. 2 but with the two linear pieces shrunk to zero.
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COROLLARY 2. Suppose that o is not a point mass.

(a) If (log p) = 0, then I(6) > Tl(e) for 6 € [0, 1] with equality iff 6 = 6*(= 0).
(b) If {p) < 1, then I(6) < T(p)(ﬁ) for 6 € [0, 6*] with equality iff 6 = 6*(> 0).

Figures 4 to 6 are simulations of the rate functions of Figures 1 to 3 for some
choices of o with two atoms.

0.5. Open problems. Here are some interesting questions that should be
solvable from (0.19)—(0.24).

1. Is @, defined through (0.25) and (0.26) the unique minimizer of (0.17)? In
other words, is G, , a singleton w-a.s. for all » > r.? In subsection 3.3 we
show that the set of minimizers is given by

(0.29) {Q €My o0 1(Q|Qy) = o}.

It can be shown that (0.29) coincides with G,) o " Mp,q, i.e., the Gibbs varia-
tional principle holds for the random Hamiltonian in (0.25) [see Greven and
den Hollander (1994), Section 2.6]. To prove for random Hamiltonians that
the phase is unique is a somewhat delicate matter [see Zegarlinski (1991)].
A proof would depend on the specific form of the interaction.

2. Is it true that limy_, o I”(6) = oo in the recurrent case ((logp) = 0)? We
know from (0.7) that X, is of order (logn)?. This is slower than central limit
behavior, which typically corresponds to I(§) having finite curvature at 6 = 0.
From (0.23) and (0.24) it follows that limg | ¢ I"(f) = oo is equivalent to

(log A(r) "

5 =0.

(0.30) lim
r1o [(log)\(r))/]

3. Isit true that I(§) < T< (@) for 6 > 6* in the transient case with positive drift
({p) < 1)? For this it would suffice to show that

N(@) 1+ (p)A\2(r)

(0.31) o) > 1= G
as is explained in subsection 4.4. There we prove that the opposite inequality
holds for r € [r¢,0) in case B and equality holds for » = 0, which is what
produces Corollary 2(b).

4. Is it possible to compute A\(r.) and 6, = —A(r.)/\ (r.).explicitly in case B? [In
case A we haver, =0,\(0)=1,6, = 0*]

for r > 0,

It is a natural question to investigate the large deviations of X, /n also under
the measure P = [ oZ(dw)P,, instead of P,. This is particularly interesting in
the recurrent case and in the case of zero speed, because (0.6) and (0.7) do
not have an analogue for fixed w. It is not hard to guess how Theorems 1 and
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0.20
L

0.15
1

0.10

0.05
1

0.0 0.2 0.4 0.6 0.8 1.0

F1Gs.4-6. Simulations of the rate function I(9) for 6. € (6., 11. Three cases are plotted that correspond
to Figures 1-3, respectively: FiG. 4. a = %(61 /3 +82/3):1c = 0, 6c = 6* = 0. The dotted line is the
lower bound I,(6). Fic. 5. a = %(611/24 +811/12): Te = 0,0 = 0" = %. The gap is where 6 < 6.
and 1) = 0. The dotted line is the conjectured upper bound I /11(0) (see subsection 0.5). Fic.
6. a = %(62/3 + 85/6): Te = %log g,O <0 <6 = % The dashed line is where 6 < 6. and
1(6) = ro — 0log A(rc). Numerically, 8. = 0.3528 and \(r;) = 1.1506. The dotted line is the conjectured
upper bound I 720(6), proven only for < 6*.  Each curve was obtained by picking 25 values of
r, computing A(r) and —X (r)/ X(r), and plotting 6 = [-Ar)/N ()]~ vs. I(8) = —r — 6log X(r). The
computation of \(r) was based on (0.20) and (0.21). To compute —X\'(r)/X(r), we need not estimate
differences, but instead we can use (3.12),(3.13) and the first expression in (3.21) to compute this
quantity directly. For each value of r we simulated 10* random continued fractions, each of length 40.

The simulations only give 1) for 6 € (8., 1. The degenerate part 8 < 6. corresponds tor < re,
where the random continued fractions have a positive probability to become negative so that A(r)
fails to exist (see the remark following Lemma 9 in subsection 4.1). The simulations do not always
give a sharp indication of this failure. In Fig. 6, for instance, due to the truncation after 40 terms
the computations break down only for r below —0.078, whereas r. = —0.058.

2 transform, but the derivation is open. The rate functions will be different
because P allows additional large deviations in the random environment.

The outline of the rest of the paper is as follows. In Sections 1 and 2 we prove
Theorem 1. The derivation uses large deviation theory and ideas from Greven
and den Hollander (1992). In Section 3 we prove Theorem 2. Here we encounter
random maps and Gibbs measures, and we use ideas from Baillon, Clément,
Greven and den Hollander (1994). In Section 4 we analyze the random con-
tinued fraction appearing in (0.20) and (0.21) and prove Corollaries 1 and 2.
Sections 1 and 2 are the most technical parts of the paper. Sections 3 and 4 are
more easily accessible. )
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1. Reformulation as a large deviation problem for an associated
Markov chain. The aim of this section is to transform the original prob-
lem into a large deviation problem for the total bond crossing numbers of the
random walk, which turn out to have a nice Markov representation. In Sections
1 and 2 we fix 6 > 0. At the end of Section 2 we shall show how to treat § < 0
and 6 = 0. ’

1.1. Bond crossing numbers. In this subsection we rewrite P, (X, = |6n])
as the expectation of an exponential functional of the bond crossing numbers
under the law of the n-step path of the random walk with drift 6.

Let

(1.1) Q"= {S" =(S)r¢: S0 =0, |S;s1—Si|=1for 0 <i<n},
n-1

(12) mi(x,8M =) 1{Si=x, Sj,1=x+1}, S e
i=0
n—-1

1.3) m (2,8 =) 1{Si=x, Sjy1=x-1}, S e

i=0

Let Py and Ej denote probability and expectation for the nearest-neighbor ran-
dom walk with transition probabilities %(1 + 0) to the right (resp. left). Let

(1.5) C,,(B) _ [%(1 _ 6)](n~ |6n])/2 [%(1 + 9)](n+ [an)/2.

PRroPOSITION 1.

P, (X, = |6n])

= C; Y 9)E, (exp[ 3 fe(my (2,8, mi(x, s"))J 1{S, = |6n] }).

xE€Z

(1.6)

PrOOF. The probability that X; = S; for 0 <i < n under P,, is

.7 H (1 _px)m;(x,s")p;n,,(x,s")'
XEZL

The same path under P4 has probability
1 my (8" 1 mt(x,S")
(1.8) 1T [5(1 - 0)] [5(1 + 0)] .
. xXEZL

The claim follows by noting that the latter equals C,(f) on the event S, =
[fn|. O )
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1.2. Total bond crossing numbers. In this subsection we extend the random
walk with drift 6 to a doubly infinite process (S;); ¢ z by adding an independent
reflected copy of the random walk conditioned on not returning to the origin.
The same notation Py, Ey will be used for this extended process. We show that
the r.h.s. of (1.6) can be approximated by an analogous expression involving the
total bond crossing numbers.

Let
(1.9) Q={S=(Si)ieZ: So=0, |Si+1—Si|=1fori€Z},
(1.10) m*(x,8) =Y 1{S;=x, Sj.1=x+1}, SeQ,
IEZ
(L1)  m™(x,8) =) ISi=x, Sis1=x-1}, Seq
i€Z

View S”,Q)" as the projection of S, on the time coordinates 0,1,...,n. The
following proposition will serve as the starting point for the large deviation
analysis in Section 2. Its role is to replace the time dependence by a space
dependence.

PROPOSITION 2.

E, (exp[ > f;(m;(x,S”),m;(x,S"))} 1{S, = |6n] })

xXEL

L6n]
= exp(o(n))Ee.(exp [ Z fe(m™(x,8),m*(x, S))}

x=0

(1.12)

[6n]
X 1{ Z [m~(x,8) + m*(x,8)] =n}

x=0

x 1{m=(0,8) = m™((6n],S) = 0,m*(0,8) =m*(|6n],5) = 1})

Proor. The reader should ignore the last indicator, as it has a purely tech-
nical function.

The proof follows from Section 4 in Greven and den Hollander (1992). The
only difference is that there, instead of (1.4), we had a function of the form
f:@, J) = cx(i +), but this does not affect the argument. Here we repeat the
strategy of proof in order to give the reader some guidance.

Pick 6: N — N such that §(n) — oo and 6(n) = o(logn) as n — 0. Define

(1.13) Al={Seq:S,=6n]},

(119)  AZ={SeALS; e (~5(n), |on) + () for 0 <i < n},
A3 ={S €A S; < —bn)fori< —bn),

(1.15) S; > |6n|+6(m)fori >n+é(n)}.
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The two main steps are

Ey (exp [ Z}‘;(m;(x, S), m,‘;(x,S))] 1{S e Ai})

x€EZ

(1.16)
= exp(o(n))Eq (exp [ Z fe(m; (x,8), m,’;(x,S))} 1{Se Aﬁ})?
xE€EZ
E, (exp [ Z fe(m; (x,8), m,‘:(x,S))J 1{S e A,ZL})
(1.17) ver

= exp(o(n))Eq (exp { Z fe(my (x,8), m,’;(x,S))} 1{Se Ag}) ,
XEZL

These are the analogues of Lemmas 11 and 12 in Greven and den Hollan-

der (1992).

The idea behind (1.16) is to construct a map from A1\ A2 to A2 which preserves
the exponential functional and which maps only exp(o(n)) paths onto a single
image. The existence of such a map shows that the contributions of A}\A2 and
A2 are comparable on an exponential scale. The construction uses the fact that
all local configurations of length §(n) in the environment appear in the strip
[0, |6n]] with probability tending to 1 as n — co. The point in (1.17) is that the
exponential functional does not depend on the path at times: ¢ [0, n]. By using
the Markov property at times i = 0 and i = n, we get that the ratio of the two
expectations in (1.17) equals Po(A3 | A2) = 8[2(1 + 6)]25™ = exp(o(n)).

Continuing from (1.16) and (1.17), on the set A3 we have

m*(x,S), for x € [0, [6n]),
m*(x,8) — 1, forx e [-6(n),0) U [[6n], |0n]+6(n)],

m; (x,8) = m~(x,S), forx € [-6(n), [6n] + 6(n)],
m; (x,8) =m}(x,8)=0, forx¢ (—é(n),[6n]+6(n)).
Substitution into the exponent in (1.17) gives
[6n] +6(n)
(1.19) Y fi(m(x,8),m*(x,9) + 0(6()),
x=-6(n)
where the error term comes from the fact that £;.(, j) is linear in both coordinates
with bounded coefficients. Moreover, with the help of (1.18) the set A2 can be
rewritten as

m,’;(x,S) = {
(1.18)

6n] +6(n) .
A3 = {S e O Z [m‘(x,S)+m+(x,S)] =n+26(n)+1,

x=-6(n) -

(1.20) m~(-6(n),S) = m- (16n] +6(n),S) =0,

m*(=6(n),S) =m*(|6n] +6(n),S) = 1}.
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The Lh.s. of (1.16) is the Lh.s. of (1.12). The r.h.s. of (1.17), after inserting (1.19)
and (1.20), becomes the rh.s. of (1.12) but with 0, || and n perturbed by 6(n).
However, in subsection 2.3 we shall give a perturbation estimate (Lemma 5)
showing that this has no effect on an exponential scale because 6(n) = o(n). O

1.3. The associated Markov chain. Since § > 0 implies lim, _, o S, = oo
Py-a.s., and similarly at the negative end, we have

(1.21) m~(x,S)=m*(x—-1,S)-1 Py-as.

Hence the r.h.s. of (1.12) can be rewritten in terms of the m*(x,S)’s alone. This
is important because the latter form a Markov chain with x playing the role of
time. Abbreviate m*(x,S) = m(x).

PROPOSITION 3. The process {m(x)}, ¢ z is stationary Markov with transition
kernel and invariant measure given by

.. i ji-1
(122) Pyl j) = (‘ 7 2) [%(1 +0)] [%(1 - 9)} ., GLJjEN,

1
20 [1-6\"' |
(123) 7!'9(1) = m (m) y XS N.

ProoOF. Greven and den Hollander (1992), Lemma 4. O

Introduce the empirical pair distribution
1 N-1
(1.24) W= D S — 12,py - ), (), >

x=0

with periodic boundary conditions [i.e., m(—=1)=m(N — 1) and p_; = py -1].
PROPOSITION 4.
P (X = |6n]) = C-1(@)exp(o(m) Eg (exp[K,,< Fv) 1 € AL)

(1.25)
x1{m(-1) =m(0) =m(K, —2)=m(K, - 1) = 1}),

where

n+l
K, '’

.27 £(Gp)(j,@) =G — Dlog(l — q) +jlogg,

(1.28) a(G,p),(J,@) =i+j—1,

(1.29) Ar = {u € ?([N x supp(a)]z): vt =12 (a,v) =Ln},

(1.26) K,=|6n]+1, L,=
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vt and v? are the first and second marginals of v on N x supp(), and (-, -) denotes
inner product over [N x supp(a)]%.

ProoF. Combine Propositions 1 and 2 and rewrite the r.h.s. of (1.12) using
(1.4), (1.21) and (1.24). O

By combining Propositions 3 and 4 we see that at this stage we can forget
about the underlying random walk: (1.25) is a large deviation problem for the
associated Markov chain {m(x)},cz defined by (1.22) and (1.23). The same
symbols Py and Ey will be used to denote probability and expectation for this
process.

2. Large deviations for vjy: derivation of the variational formula.
The asymptotic analysis of the expectation in (1.25) looks like a standard large
deviation problem for Markov chains. However, there are several obstacles
blocking the way:

I. The kernel Py in (1.22) is not uniformly ergodic [see, e.g., Deuschel and
Stroock (1989), page 95].
II. The environment w is fixed, hence in v of (1.24) only the m(x)’s are
random.
III. The set Az, in (1.25) is n-dependent and is not closed (in the weak topol-
ogy).
IV. The function v — (f,v) is not continuous (in the weak topology).

Techniques to circumvent I-IV are described in Greven and den Hollander
(1992), Sections 3 and 5. This involves a sequence of steps, all of which carry
over but one, namely the truncation procedure discussed in subsection 2.2.
Again we repeat the strategy of the whole proof in order to give the reader
some guidance. Subsections 2.2, 2.6 and 2.7 contain new material. Subsections
2.1 and 2.3 to 2.5 are based on Greven and den Hollander (1992) and therefore
we omit details. The main result of Section 2, and the key to Theorem 1, is the
following.

THEOREM 3. Forevery 6 > 0,

lim ~log Eo (exp [Kalf v )] 1{k, € A1)

@1 "7

x 1{m(-1) =m(0) = m(K, — 2) =m(K, — 1) = 1}) =J(@),
whgre
2.2) JO) =0 sup [(f,7°Q) ~1(Q|Rs,a)|

QEMy o
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and Ry , is the stationary Markov process with transition kernel

2.3) Ro,a(G,p) = (j,@) = Poli, alq).

The same limit is obtained when in K,,, L, of (1.26) the 0 is replaced by 6, — 6.
2.1. Passing to i.i.d. random variables. In this subsection we rewrite the

expectation w.rt. {m(x)},cz appearing in (2.1) as the expectation of a new

functional w.r.t. to an auxiliary i.i.d. process.
Fix n. Define

Yn=<y=0,1,y1,...,9x,_, 1,1 € NEn +1.

@4 1 &2t n+1
é ’;)(yk—l"'yk—l): i =Ln}y
K,-1
(2.5) Fw(y) = Z f((yk—l,Pk—l), (yk;Pk)); ye yn’
k=0
K,-1
(2.6) P(y) = Z log Po(yr —1,2), Y € Yn.
k=0

Introduce i.i.d. random variables (Y}), > 1 given by

2.7 PYy=0)=Q0-cx'"!, 1eN ce(0.
Let their law and expectation be denoted by P, E. Abbreviate
(2.8) Y=(1,1,Yy,...,Yg, 3,1, 1).

In terms of these auxiliary objects we may rewrite the expectation in (2.1)
as follows.

PROPOSITION 5.

Ey (exp[Kn<f, V%)]l{% €A}

(2.9) x 1{m(~1) = m(0) = m(K, — 2) = m(K, — 1) = 1})
= mp(1)(1 — ¢) Kn~lem 1 = Kut DS (K, L),

where

(2.10) Su(Bn, L) = Eexp[Fu(Y) + PO| 1{Y € Uy} ).

ProoF. First note that the event defined by the two indicators in (1.25) is
the same as {m € Y,} with m = {m(x)}* % [recall (1.24) and (1.29)]. Next note
that K,.(f,vg ) = F,(m) by (1.24) and (2.5). -
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The probability that m = y under the law of the stationary Markov chain
given by (1.22) and (1.23) is

K,-1 K,-1
761 [] Po(yr—1,5) =ms(Dexp| > logPo(yi—1,)
2.11) k=0 k=0
= mg(1) exp[P(y)].

The probability that Y = y under the law P is

K,-1
(2.12) [I {@-oe* 1} =1 - cfrtlei—EarD, O
k=-1

2.2. Truncation. In this subsection we show that the components of Y may
be truncated to stay on a finite state space. The proof is somewhat involved,
but the truncation will be very important for the large deviation analysis in
subsection 2.5 and the variational analysis in subsection 2.6.

Let R € N be the truncation level and define

(2.13) Y¥ =Y, N [1,RI%+1
(2.14) SE(Kn, Ln) = E (exp[FL(¥) + PO 1{Y € ¥F}).

The rest of this section is devoted to the proof of the following proposition.

PROPOSITION 6.

(2.15) lim lim sup %| log S (K, L,) — logSﬁ(K,,,Ln)| =0 w-as.

R—o© p—oo

Proor. The idea is to construct a map that associates with each configura-
tiony € J, such that sup, y, > R a configurationy’ € Y, such that sup, y, <R,
in such a way that y’ contributes about as much to the exponential as y. For
that purpose a configuration y will be viewed as a collection of K,, — 3 piles of
units, of sizes y1,...,yx, — 3 [recall (2.5)], and y’ will be built out of y by moving
units around in blocks of piles. Since all y have the same probability, because
y € Y, fixes Ty, [recall (2.4) and (2.7)], all units may be moved around freely.
The problem will be to control the effect on the exponential. This has two as-
pects: F,,(y) that was induced by the environment and P(y) that was induced
by the Markov dependence of (m(x)), > . The hard part is to deal with both at
the same time.

It suffices to show that there exists c¢(R), with ¢c(R) — 0 as R — oo, such that,
for all n > ny(w, R), )

E(exp[Fu(¥) + PO 1{Y € Y,\YF})
(2.16) :
< exp(nc(R))E (exp [F.(Y)+PY)]1{Y € Y& }) .

The proof of (2.16) will be achieved by showing the following result.
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LeEMMA 1. Forevery R € Nand n > ny(w, R), there exists a map
(2.17) T: Y, \Y% — 45,

with the properties:

(a) P(Y =y) = P(Y = Ty) for y € Y»\Y%,

(b) F,(y)=F (Ty) fory € Y,\Y%,

(¢) P(y) < P(Ty) + nc(R) for y € Yo\YE,

@) [{y € Yn\Y5: Ty =y'}| < exp(nc”(R)) for y' € Y%,

where ¢'(R),c"(R) — 0 as R — oo.

Lemma 1 gives (2.16) as follows. First apply (b) and (c) to get that the Lh.s.
of (2.16) is less than or equal to

(2.18) exp(nc'(R)E (exp[Fu(TY) + PTV)|1{Y € Y,\¥5}).
Then apply (a) and (d) to get that the r.h.s. of (2.18) is less than or equal to
(219)  exp(n[c'(R)+"(R)] ) B exp[FL(r") + PO 1{Y" € YF}).

Combination of (2.18) and (2.19) proves (2.16) with ¢(R) = ¢'(R) +c”(R). The rest
of this subsection is devoted to the proof of Lemma 1.

Proor oF LEMMA 1. In order to construct a map T with the desired prop-
erties, we shall need some preparation. This comes in the form of Lemmas 2 to

4 below.
Pick s,t,u € N. Later we shall put R = 2st + 1 and let

1) s,t,u — oo,
(2.20) (>i1) %logs — 00,
(iii)) u/s — 0.
Define the following sets:
Al = {k: y;, > st},

(221 A? = smallest set containing A! such that y, < ut
when |k — A?|=1,2.

Let 0A? = {k: |k — A?| = 1}. The set A% U 9A? can be decomposed into clusters
(= maximal connected components)

(2.22) A?U0A? = la;, b))
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with b; + 2 < a;, 1. Abbreviate

(2.23) Zp=Yp-1+Yr — 2

and note that

(n+6n)) <n.

DN =

228 yeYy = Yy=m+K, -D=
k

LEMMA 2.

1 2
2 < —_— 4 —
(a) |A I_n(st+ut>'

(b) [042) < n< 27:)

st
(© Y 2o+ zb41 < 2ut|0A?.
i i

(d) Forevery i such that b, —a; > 2t there exists a sequence of “cutting points”

(c{)j‘;(i) with a; < c} < --- <P < b; such that:

W " -cl<2a  for1<j<ilQ),
cf —a; <2t
b; — cf/(i) <2t

@ Yesz Y a
J

k€ [a;, b; +11\(c))

with K = K(t) given by t —2 =1log K/ log(l + I%)

ProoOF. (a) Use (2.21) and (2.24) to get |A!| < n/st and |A2\AY| < 2n/ut.

(b) 8A% = 3;{a;,b;} and every [a;, b;] contains at least one site of AL

(¢) Obvious from (2.21) and (2.23). ‘

(d) Pickisuchthatb;—a; > 2t. A set of cutting points (¢/) may be constructed
recursively as follows. First find a site ¢ € (a; +¢,b; — #] such that

(2.26) 2. = sup zp.
k€ (a;,+t,b; — 1]

Next let

) 1
(2.27) c =max{l<c:zl§I—{ Z zk}.

“ked,c]
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We claim that ¢ — ¢’ < ¢. Indeed, since

1
(2.28) z; > 7 Z z, forle(cd,c),
ke,cl

it follows by iteration that

1 1 c—-1-1
(2.29) z; > ZcE <1 + f) forl € (¢',c).

Since z, is a maximum we must have

1 1 c—c' -2

This implies ¢ — ¢’ < ¢ when K is such that (1+1/K) ~2/K > 1, which identifies
K = K(2) as in (2.25)(ii). The point ¢’ is a first cutting point in the construction,
that is, ¢’ = ¢/ for some j.

The same argument works on the right of ¢ and gives a second cutting point
¢” > c such that ¢” — ¢ < t. Clearly, ¢”” — ¢’ < 2t and so we have found two
successive cutting points in the interval (a;, b;). If ¢ = b; —¢, then it may happen
that ¢ = b;. In that case ¢”’ can be dropped because b; — ¢’ < 2t already.

Repeat the procedure on the two remaining pieces la;,¢’) and (¢”, ;], and so
on, until what is left over has length < 2¢. By construction (2.25) (i) and (ii)
hold.

Define the following sets:
B = {k:y, < st |k — A% >3},

B2 = subset of B! obtained from B! by successively chopping off
(2.31) igtervals of length 2z + 1

= Z J;.
J
An element 7 € [supp(a)]**2 will be called a ¢ype. Each interval J; carries a
type in the environment w, namely 7 = (pz) ¢, Now define
(2.32) C, ={J: J; has type 7}.
LEMMA 3.

() |BY| > K, —n 2+ 2 (g + 9).

t s u
1 |B?|
> —
®) [Cr| > 555

[min o p)1%#*2 for all 7 and n > no(w, s, u,t).
P
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ProoOF. (a) Since no more than 2¢ + 1 sites can be deleted in a row while
building B? from B!, we have |B1\B?| < (2t + 1)|B¥|. Since |B!| < |A1| + |A?| +
2|0A2?| and |A!| < n/st, it follows from Lemmas 2(a) and (b) that |B°| < n(2/st +
6/ut). Now note that |B?| = |B!|—|B!\B?| = K,,—|B|-|B}\B?| > K, —(2t+2)|BY|.

(b) Since ¥,|C,| = |B2|/(2¢t+2) and the environment w = (p, ), ¢ z is i.i.d. with
marginal «, the claim follows from (a) and the ergodic theorem when s and u
are large enough [recall (2.20)(i) and K, ~ 6n as n — oo].

We are now in a position to define a map T which satisfies the requirements
of Lemma 1. Put

(2.33) yr =1+ A, Ap > 0.

According to (2.22) and Lemma 2(d), we have a decomposition of A2 U A2 into
intervals of length < 2¢:

(2.34) A?U0A* =),

J
Recall that B2 has a similar decomposition, but with all intervals of length 2¢+1.

1. Take I; and record its type 1 defined by 7, = (p;, )f;:f” ! withi; = min{k: & €
I} (note that 7, reads the environment over a length 2¢ + 1, which exceeds
at least one over the right edge of I;). Let

(2.35) M,y = sup Ay,
kel
(2.36) AL = [My\st] 1A, +¢€h, kel 1<1<[My/st],

where €} is picked such that

(2.37) el <1, ) g, =0foreachk el
' !

Think of (Ai)k 1, as one of [M;/st] versions of (Ax) ¢y, each reduced by a
factor | M, /st|~!. Think of (¢} ), ¢ 7, as round off errors needed to make each
of the reduced versions integer-valued.

2. Pick |M;/st| intervals in C,,. Transport (A}), ¢, to the /th interval picked
in C,,, in such a way that Afl(with iy = min{k:k € I}) comes on top of the
leftmost site in the interval. Only transport if M, > s¢, otherwise not.

Repeat steps 1 and 2 for I, that is, record its type 75, reduce (Az)rcr, by
[Mj/st]~! with My = sup, cj, Az, and if My > st then transport the [My/st]
reduced versions to [My/st] intervals in C., disjoint from all the intervals picked
earlier, and so on.

The resulting configuration, after all I;’s in A2 U A? have been thus trans-
ported to some J;’s in B2, makes up the image configuration Ty.



LARGE DEVIATIONS FOR RWRE 1403

LEMMA 4. (a) T is well defined, in the sense that |C.,| is large enough to
accommodate all reduced versions for all T and n > ny(w, s, t,u).

() Ty € Y® with R = 2st + 1.

Proor. (a) The total number of reduced versions moved is
M.
Z[stl] Z l<_zk_
1

because of (2.24), (2.33) and (2.35). From Lemma 3(a) we have |B?| > 1K, > 16n
for s and u large enough by (2.20)(1). From Lemma 3(b) it therefore follows that
|C;| > n/s provided
2t+2
¢ ¢[ min, o( p)] 1

(2.38) 4 2t + 2 s
which holds eventually by (2.20)(i).

(b) At & € A2 U 0A? remains (Ty), = 1 after applying T. At £ ¢ B2 we have
¥ < st, and not more than st + 1 is added by the map T because A}, < st + 1 for
all £,1.

We are now finally ready to verify (a)~(d) in Lemma 1.

Proof of (a): Obvious.

Proof of (b): All reduced versions have the same environment before and after
moving, including the site at the right boundary which contributes to F,(y) in
(2.5).

Proof of (c¢): This is the hardest estimate. By substituting Py of (1.22) into
(2.6) we have

=1+ ~2> ((7&>k_1+<71v>k ~ z)*l

K,-1
—_ = y
(2.39) P(y) - P(Ty)=log [] ( yeo1-1 Ty -1-1

k=0
Note that here the §-dependent part of Py drops out becausey, Ty € Y,,, implies

-1 K,—-1

Zyk_l— Zyk— Z(Ty)k_l- Z(ka

Let B? be the subset of B? consisting of the sites where a reduced version is
moved to by the map T'. Then

Yks for k ¢ A2 U0A? UB3,
(2.40) (Ty), = 1, for k € A% U 0A?,
Vi + AZ,, for £ € B3 and some k' = k'(k), I! = l'(E).
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The set B2 has a decomposition into intervals of length < 2¢:

(2.41) B =) "J/=> [ab]].
J

J

Recall (2.22). The sets A2 U 0A? and B® are everywhere separated by at least
one site. Hence the product in the r.h.s. of (2.39) has two contributions, namely

I =[] 1Tk ew 6+ 10
Iy =T, er[a;,b;n].

We shall estimate these products separately, for which we need the following
fact which is immediate from Stirling’s formula:

(2.42)

’

(2.43) ) =C(A,A) exp [AI(é—>], AN >1,

A

A+ A
A

with I(z) = (1+2)log(1+2) —zlogz and §(1/A+1/A")1/2 < C(A, A’) < 1 for some
6> 0.

First consider II;. We get an upper bound for II; by dropping the second
binomial coefficient in (2.39). Now return to Lemma 2. The contribution of the
boundary points and the cutting points can be estimated by using the inequality

a+b> < 2(l+b
a = .

This gives, via (2.23)—(2.25) and Lemma 2(b) and (c), that
11 11 (yk —1+Yr — 2)
11
i ke {aich,..c? b+1} V-1

(24, +2p 4 Mz
(2'44) S 22L L+ b, l)+2LZj cij

< 92ut|0A%| + (1/K) Yz

< 2n(4u/s +2/K).

Adding the contribution of the remaining points, we get, after substitution of
(2.33) [recall also (2.22) versus (2.34)], that

I < 2n(4u/s+2/K)H H ' (yk—l + Yk I2>
h Yh-1—

i kelag, b+ 1\ {a;,cl,.c @, b+ 1}

_ Ak—1+Ak>
lj_Ik:k—];,Ikte( Ae-1 /)

(2.45)
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Next consider II,. By using the inequality
c
(Z) <d> = (Z:(;)
we have, aﬂ’;er dropping the boundary terms & € & j{a}, b} + 1} in (2.42), that
( Ay + A:;faz) )

U'(k-1)
AIz’(k -1

m<I] 1T

Jj k€@, b]
(2.46) H H erL/fﬂ' ([Mj/st] M (Ap_1+Ap) + el _ +6} !
) /s 4 Ay +ed

j kk-1,kel; I=1

) -1 - fMj/st]
S H H (I—Mj/sﬂ (Ak—1+Ak)> .

j kk-1kel, [M;/st]™ + Ay 1

The last inequality follows from ¥ ai = 0 because

<a+b+x>
x — log

a

is convex.
Combine (2.44)—(2.46) with (2.39) to get

P(y) — P(Ty) = logII; +logTl,
du 2 Ap_1+A;
§n<—+—> log 2 + [log( )
(2.47) s K %:k:k—;kelj Ap-1
M;/st] Y Ap_1+Ap)
— [Mj/st]log<( i ] o1t O )}
[M/st] ™ Ay _4

Now substitute (2.43) into (2.47) and use that the exponential terms cancel
because the two binomials have coefficients with the same ratio. It follows that
the sum in the r.h.s. of (2.47) is bounded above by

%'I ) 1 11 A 1Ay
Z Z [st { 0g6+2 Og<{Mj](Ak_1+Ak)>}

(2.48) j k:k—l,kEIj ?
<M M, log1 R log(st) 2t
- I st 5§ 2 ’

where the inequality uses that each I; has length < 2¢ and that A, < M for
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k € I;. Finally, use that ¥; M; < ¥y, < n to get

(2.49) P(y) - P(Ty)<n (4— + f) log2 +n— {log 1 + = log(st)}

The r.h.s. is no(1) under (2.20).

Proof of (d): The total number of reduced versions moved by the map T does
not exceed 2n/st, as we remarked in the proof of Lemma 4(a). Since each reduced
version has length < 2¢, the total number of piles in all of the reduced versions
does not exceed 4n/s. Since a reduced version can come from not more than K,
different sites, we have

2st+1, o n K,
(250 e Ty =y 1< (0 ) ()
where we again use (2.24). The bound is exp(no(1)) under (2.20)(1).

2.3. Perturbation: going to the slab. The aim of this section is to relax the
restriction
1 Bt

= Z (Yp-1+yr— D=L
k=0

in Y, of (2.4) by allowing the sum to varyin a thin slab [§~1—¢, 6"+ ¢] around L,
[note that L, ~ 8~ asn — oo by (1.26)]. This will be needed later in subsection
2.5 in order to be able to apply standard large deviation arguments.

For ¢ > 0 define

HZ’R = {y = (1a 1,3’1, v ayKn—37 17 1) S [laR]KN+1:

(2.51) e
7 Y h-1+ym—-De [9_1—6,9_1+€]},
" k=0

(2.52) SSF(K,) = E(exp[Fu(¥) + PO 1{Y € Y5 R}).

PROPOSITION 7.

(2.53) lim lim —|logSR(Kn,Ln)—logSE R(K, )| 0 w-as.

e—0n—oon

ProoOF. The assertion follows from the following lemma.

LEMMA 5. For every 6 € (0,1] there exists C(0) such that for every e: N — Z
satisfying |e(n)| < en for € sufficiently small,

e(n)

6(n)

(2.54) —|1ogsR(K,,,L +e(n)) —log SE(K,,L,)| < -C@)|—
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Proor. This is the analogue of Lemmas 7 and 16 in Greven and den
Hollander (1992). The proof carries over even though we there had a func-
tion of the form f((,p),( j,q)) = G +j — 1)logq instead of f((,p),( j,q) =
(i — Dlog(1 —q) + jlogq appearing in F,(y) [recall (1.27) and (2.5)]. All that
was used about f is that there exist 0 < m < M < oo such that i +j — 1)logm
< f(G,p), (j, @) < (i+j—1)log M, which holds here with m = ming ¢ supp(a)(q, 1 —q)
and M = maxy Gsupp(a)(q7 1-¢).

2.4. Eliminating the w-dependence. In this section we make two important
steps: (i) the growth rate is w-a.s. constant; (ii) integrate over w w.r.t oZ.

PROPOSITION 8.

(2.55) nlim %| log S5, (K,) — logSj;,R(Kn)| =0 foras allwandw'.

ProOF. This is the analogue of Lemma 17 in Greven and den Hollander
(1992). Again the proof carries over. The idea is to divide space into blocks of
size N and to construct a map T acting ony € [1, R]% which permutes the blocks
in such a way that (y,w) imitates (Ty,w’) as much as possible; that is, Ty sees
the same environment in w’ as y in w except at the boundaries of the blocks.
For N — oo the boundary effects vanish. An important fact that is used in the
proof is that the block statistics of w and w’ are the same, that is,

(2.56) ﬁ]I}’n(w) € BSN w-as. forn >nygw,5,N)and all § > 0 and N € N,

where
/N —
-~ N
(2.57) W) = 5 Z U
(2.58) BN = {ﬁe fP([supp(a) ) |5 - || < 6}

In (2.57) we use periodic boundary conditions of the same type as in (1.24)
(i.e., p1 = px,)- For the asymptotic statements below it suffices to consider K, a
multiple of N.

Define

(2.59) SoN.eR(K,) = / SERE){E () € BSY }aP(dw).

PROPOSITION 9.

(2.60)  Jim  lim —IlogS‘sN =R(K,) —log S5E(K,)| =0 w-as.

—ooh—00 N
6-—»0
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Proor. This is the analogue of Lemma 18 in Greven and den Hollander
(1992). The proof follows from Proposition 8 and (2.56), with the additional
observation that the 1.h.s. of (2.55) is uniformly bounded for all w,w’ such that
fig (W), ¥ (W) € B&N "and the bound goes to zero as N — oo, § — 0 [see the
proof of Lemma 17 in Greven and den Hollander (1992)].

2.5. Large deviation analysis. The nice fact about the quantity defined in
(2.59) is that it can be viewed as the expectation of a functional of the empirical
N-block distribution ‘

K./N -1
> N _ v
(2‘61) 'LLKn(y’w) - Kn Z fs(ymN+kypmN+k);zv=—()l

m=0

w.r.t. the double layer process (Y, w). Let
1Nt
(2.62) g (y,w)= 7 Z 20t (LR (y,w)),
[=0

]l//:fgif'e’R ={pe fP(([l,R] X supp(a))N):
(2.63) L N-1
<N lz: 7r2ol(u),a> €0t —c 0 4e], Pue B‘S’N},
=0

where o is the cyclic shift, 72 is the projection on ([1, R] x supp(a))?, {-,-) is the
inner product on ([1,R] x supp(a))?, a is defined in (1.28) and 7V denotes the
projection of x on [supp(a)]V.

ProprosITION 10.

n n

) 59 < B o[ (PO 4 PUAD Y € 32 ).

with E expectation w.r.t. (Y,w) and

(2.65) Fw) = (f,v),
(2.66) P(v) = (log Py, v),

where log Py is viewed as a function on [N x supp(a)]? and f is defined in (1.27).

Proor. Use (2.5), (2.6), (2.51)? (2.52) and (2.59). Note that (2.57) is the pro-
jection of (2.61) on [supp(a)IV.

The r.h.s. of (2.64) is ideally suited to a large deviation analysis of the classical
type, as it involves the empirical distribution of an i.i.d. process with finite state
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space ([1,R] x supp(a))V. Therefore we can now immediately write down the
following result.

PRroPOSITION 11.

lim 1ogs5 N.eRK,)

n—o0on
(2.67) ~ ~ 1
=60 sup [F 72u) + P(n2p) — —?cva(,u)],
o [P P - g
where
M6 N.eR _ {u € iP(([l,R] X supp(a))N>:
(2.68)

ou=p, (TPu,a) €01 -0 t+el, Wpe B‘S’N},
(2.69) ’I\clf’a(u) = relative entropy of p w.r.t. T Ge, o,

where G, , is the i.i.d. process with one-dimensional marginal (1 — ¢)c/ ~'a(q)
and 7 denotes the N-dimensional marginal.

Proor. This follows by applying Varadhan’s theorem to (2.64), because the
family (VN ) (with K, a multiple of N) satisﬁes the large deviation principle

on P(([1,R] x supp(a))V) with rate function IV (1) [see Deuschel and Stroock
(1989), Theorem 3.2.17]. It is important, in order for Varadhan’s theorem to
be applicable, that © — F(n? W, P(n? w1 N _(w) are bounded and continuous [see
Deuschel and Stroock (1989), Theorem 2.1.10]. It is also important that the
large deviation principle carries over to the subset Mg:Z’E’R (by a standard
argument). We may finally use that all quantltles are o-invariant in order to
reduce the supremum to My’ SN.eR _ M 5N.eR {u: op = p} [compare (2.63) and
(2.68); see Greven and den Hollander (1992) Section 3.2].

2.6. Proof of Theorem 3. Recall that in (2.9) we had expressed the expec-
tation in (2.1) via the function S, (K,,L,) in (2.10). The latter has a growth
rate that is the limit of the growth rate of the function S%:%£(K,,) in (2.64) as
6§ =0, N> oo, e — 0, R — 00, as can be seen by tracing back Propositions
6, 7,9 and 11. The proof of Theorem 3 will now proceed in two steps: Step 1:
calculate the limit of the variational expression in (2.67) of Proposition 11; Step
2: rewrite the result and combine with (2.9) to obtain the variational expression
in the r.h.s. of (2.2).

Step 1. The specific relative entropy of a stationary process @ on state space
Nx supp(a) w.r.t. the i.i.d. process G, . is defined by [see Georgii (1988), Sections
15.1 and 15.2]

(2.70) I(Q|Ge,a) = Jim_ J%,.Tga(wNQ).
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PROPOSITION 12.

. . =~/ 9 5 9 B lAN
Jim Jim sup () +Plrt) ~ TN
(2.71) 5 0 R
= sup [F(W2Q) +P(r2Q) —1(Q| Gc,a)]
QEM;:ﬁ
where
€, R Z
My, = {Q € ?(([I,R] x supp(a)) ): oQ=Q,
(2.72)

(r?Q,a) € [671 —¢,67 1 +¢], 72Q = az}.

PrOOF. Since y — f‘(ﬂzp),ﬁ(wzu),ﬂ‘,’a(p) are continuous on the set Us ¢
Mg: 5 & F (because [1, R] x supp(a) is finite), we can first take § — 0 and let the
supremum run over the set MJO\{’Z’R =Ns> oMg:]Z’ &R Next we can use (2.70) and

the fact that F(r? 1) and P(r? 1) only depend on the two-dimensional marginal
of u. We then obtain the r.h.s. of (2.71) as N — oo noting that M/ ;:ﬁ is the closure

of Uy < ooqﬁNM]eV ' ;’R, where ¢y is the periodic extension operator.

PROPOSITION 13.

lim lim sup [F(r°Q)+P(r°Q) ~1(Q|Ge,a)]
R-—voos-»OQGMe,R
(273) 0,

= sup [F(rQ) +B(x*Q) ~1(@| Gu,a)],

QEMy, o

where My , is the set defined in (0.12).

PROOF. Since @ — F(n2Q), P(n2Q) are continuous and @ — I(Q | G, ) is
lower semicontinuous on the set U, - 0M§:§ , we can first take the limit e — 0
and let the supremum run over the set Mﬁ o = Ne> 0M§:§- Next we observe

that @ — F(r2Q), P(r2y) are continuous on M, [see the proof of Lemma 10 in
Greven and den Hollander (1992)], which is the closure of Ug, ooMf{ o Therefore
the claim follows by letting R — oo and using the following property: For every
@ there exists a sequence (Qg) such that

(2.74) QR(([l,R] x supp(a))z) =1,
(2.75) limsupl(Qr | Ge,o) <I(Q | Ge,a)-
. R — o0

The proof of this property is similar to that of Proposition 16.34 in Georgii
(1988). The idea is to pick R = R(n) and to pick for @g:,) the [—n,n]-block
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marginal of the process @ conditioned to stay below R(n), that is,
(2.76) w[—"’"]Q<- l ([1,R(n)] x supp(a)) = "’"]>,

periodically repeated to form a stationary process. One easily shows that (2.74)
and (2.75) hold when R(n) — oo sufficiently fast as n — oo.

Step 2. We shall need the following representation for the specific relative
entropy of a stationary process @ w.r.t. a stationary Markov process R with
kernel Pg:

(2.77) I(Q | R) = —(n*Q,log Pg) — HQ),

with H(®) the Kolmogorov—Sinai entropy of @ [see Ellis (1985), page 24, and
Georgii (1988), Theorem 15.12].

Combine (2.9) of Proposition 5 with Propositions 6, 7, 9 and 11-13, use (2.77)
and note that K,, ~ 6n, to get that J(#) in Theorem 3 (2.2) is given by

J(0) = —0log(1 —c) — 2(1 — O)loge
2.78 ~ ~
(2.78) +60 sup [F(W2Q) +P(n*Q) + (n*Q,logPg, ) +H(Q)] ,
QeMy,
where Pg, ((,p) — (j,9)) = (1 — ¢)c/ ~ Lalqg) is the kernel associated with the
ii.d. process G, .. Next note that (72Q,a) = ! and 0@ = @ imply [use (0.11)]

S ¥ in2Q (i), (@) = %
(2.79) LP Jq Lo
ZZ(J_ I)WZQ((l,p);(]:Q)) = "—2—0——

LP Jq

From the latter identity together with (2.66) we have
13(7T2Q) + <7r2Q,10gPGm>

2.80) =D {10gPo(i,j) +log [(1 - o)e’ ~alg)] }wzQ((i,p), (J, )
Lp J,q 1-6
26

where Pg, . denotes the kernel Py(Z, j)a(q) of the Markov process Ry, defined
in (2.3). After substitution of (2.80) into (2.78) the c-dependent terms cancel
[recall that (2.7) and (2.8) were auxiliary objects]. Insert now (2.65) and use
(2.77) to obtain (2.2) in Theorem 3.

The last claim in Theorem 3 is an immediate consequence of (2.54) in Lemma
5, since this shows that perturbations of K,,, L, of order o(n) do not affect the
limit [see also the remark below (1.20)].

= log(]. — C) + IOgC + <7r2Q;10gPRo, u>?
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2.7. Proof of Theorem 1. Combine (1.25) in Proposition 4 with (2.1)~(2.3) in
Theorem 3, using (1.5), to get for the rate function I

16) = lim % log C;1(6) + J(8)

(2.81) 1 1 1 1
= —-2—(1 —0)log [5(1 - 0)] - 5(1 +0)log [5(1 + 0)] +J(6)..

Next use (2.77) and (2.79) and substitute (1.22) and (1.27), to obtain [recall the
definition of A,4(,/) in (0.14)]

(f,m*Q) —I1(Q|Ry,a)

—ZZ{log (1-9' 1]

Lp J,q

i+j—2\[1 i J-1
(2.82) +log[< i-1 )[5(“0)] [5(1_0)] a(q)}}
Q(G,p), (j,)) + HQ)
1+6. [1 —9 1
+ 303" {10gAq ()] }r°Q (6,2, ().
iLp J,q

After substitution of (2.82) into (2.2), and the resulting expression for J(6) into
(2.81), we arrive at

(2.83)I1(0) =0 sup [ZZ{log q(J,z)a(q)]}w2Q((i,p),(j,q)) +H(@)|.

Lp J,

The last step is to observe that My , is invariant under time reversal of the
top layer; that is, if @ € My o, then @™V € My , where Q™' is the law of the
process with the projection on NZ reversed [see (0.11)]. Since H(Q) = H(Q™)
when 72Q = o (because o is time-reversible), we may replace @ by @™ under
the sum in (2.83), which is the same as replacing A4(j,i)a(q) by A4 (i, j)a(q). The
latter is a transition kernel on N x supp(«) and is the one appearing in (0.14).
Finally, again apply (2.77) to obtain (0.17).

This completess the proof of Theorem 1 for 6 € (0,1].

Reversing space, we have that I(—6) equals I(6) but with A, replaced by A; _.
Since

Ar_ (i) = —;ﬁAq(i,j),
we get from (2.83)
(2.84) I(—6) = I(8) — 6(log p), 6 € (0,1],
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using that ¥ ; ,72Q((,p), (j,q)) = alg) and p = p(g) = (1 — q)/q. This identifies
I(#) for 6 € [—-1,0) as in (0.18).

The value I(0) is obtained by continuity via a perturbation argument applied
directly to the random walk. Indeed, since supp(a) is bounded away from 0
and 1 (see the remark at the end of subsection 0.3), it is trivial to see, via a
Radon-Nikodym argument, that I(0) = limg _, o 1(6).

3. Solution of the variational formula. Recall (0.22)—(0.26). In this sec-
tion we show that for every 6 € [6.,1) the infimum in Theorem 1 (0.17) is
attained at a @, € My ,. It will turn out that @, is a Gibbs measure with a
nearest-neighbor potential and with an external field. The potential is random
and the external field is -dependent. The boundary case § = 1 is degenerate
because M , = {[61 x a]?} is a singleton.

We proceed in two steps. In subsection 3.2 we define a one-parameter family
of processes (Q,) >, and show that there exists an invertible function § — r(6)
from [6,, 1) to [rc, co) such that @, € My, . In subsection 3.3 we show that @,
is a minimizer of (0.17) and we evaluate the minimum. In subsection 3.1 we do
some preparations. The proof of Theorem 2 comes in subsection 3.4.

3.1. Maps and continued fractions. The key to the construction in subsec-
tion 3.2 is the following property of the matrices A,(Z, j), g € (0, 1), defined in
(0.14).

LEMMA 6. For ¢ € [0,00) let x¢ be the vector with components x¢(i) = g-1
i € N. Let p(q) =(1 —q)/q. Then

(3.1) Aqx§ = Sp(lI)(g)xSp(q)(ﬁ)’
(3.2) xeAq = p~ g )§P<4>(€)x§,,(q><o’
where
1

3.3) S,(6) = Trp- ¢

~ 1
(3.4) SeQ) = T
(3.5) ¢ =8,(5,18) =S,(S; ).

[S51(8) = 1/8,(¢) and p~1(q) = 1/p(q), not the inverse.]
ProoFr. Use (0.14) and the identity
Z(H-J—z)aj'l:(l—a)‘i for a € [0, 1). ]

, i—1
JEN

Define the matrices
(3.6) Ay G, ) =e"DAG, ), T qe(0,1), reR.
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Crucial is the action of A , on x¢ as we shall see in the following result.

LEMMA 7.
8.7 Ay rxe = Tp(q),r(g)pr(qxr(ﬁ)’
(3.8) xgAg,r = P'l(q)Tpuz),r(f)xT,.m,,(e)’
with 1
3.9 Ty ()= —r—,
(3.9) pr®) e"(1+p) — p

~ 1

(310) Tp,r(g) - e’(1+p—1) _ p_1§’
(3.11) €71 =T, (To19) = T, (T, 39).

PRrROOF. Same as in Lemma 6 with g, 1 — g replaced by e™"q,e™"(1 — q).

Lemma 7 says that the family of matrices A, ,,q € (0,1), r € R, has the cone
of vectors {cx¢: ¢ > 0, ¢ > 0} as an invariant set both from the left and from the
right. On this cone therefore the actions of A, , can be represented by the maps

E-T,,(§and — ?p, ~(€). The latter satisfy a duality relation given by (3.11).
Let w = (px)kez and p, = (1 — p,)/py. Define the forward and backward
continued fractions

1 pl  pl

ler(1+p0) | +p1) |-
1| I N
er(1+(p_1)-l) |er(1+(p_2)-l) | :

(3.12) fr,w) =

(3.13) fr,w) = |

The basic properties of these objects will be derived in subsection 4.1.
PROPOSITION 14. Let o be the shift defined by (cw), = wy+1. Then

(3.14) Apo,,xf(,, ow) = f(r, w)xf(r, w)»
(3.15) X Apo,r = P T, 0L o0

Proor. Use (3.7) and (3.8), together with the observation

(3.16) Ty, (f(r,ow)) = f(r,w),
(3.17) T, - (F(r,w) = f(r,ow),

following from (3.9), (3.10) and (3.12).
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3.2. Ansatz for a minimizer. In this subsection we construct the process @,
that will later turn out to be a minimizer for a value of r depending on 6.

In view of the restriction 72Q, = o%, we consider the law of @, given w, written
as

Qr,w(') = Qr( I w),

3.18
8-18) Qr,w € P(NZ) for all w.

Next, we define the process @, ., for fixed r,w by specifying its marginals on
blocks [—M, N] as follows:

Qr,w ((lx)x € [—M,N])

1 . . . .
(319) = [—T,N]xf(r, a_Mw)(I’_M){ H AP:— l,r(l’x -1, Lx)}xf(,, an)(l'N)y
Zrw x €(=M,N]

with Zﬁ,_f,” "M the normalizing constant.

LEMMA 8.

ZEMN - L Fr,o*w)
1—f(r,oMw)f (r,c~Mw) xe[gl,zv)
(3.20) ) R
= H P;E L fr,d%w).

1 —f(r, ‘TN‘*’)?(’» oNw) x €(—M,N]

Proor. The two expressions for Zﬁ,_f,” 'M are obtained by summing out the

coordinates from the left resp. the right, applying (3.14) resp. (3.15).

From the structure of (3.20) together with the rules (3.14) and (3.15), we
immediately see that (3.19) defines a consistent family of finite-dimensional
distributions. Hence, by the Kolmogorov extension theorem, @, ., is uniquely
defined as a process on NZ, Inspection of (3.19) shows that @, ., is a Gibbs
measure of the type introduced in subsection 0.3, (0.25) and (0.26).

PROPOSITION 15. (a) 72Q, = oZ.
(b) Q. is stationary.
(c)

E,q,(a) = / aZ(dw)[M]
1 _f(r,w)f(r,w)

= /aZ(dw) [—-(8—/;%‘2,]—0%&)—)] = /aZ(dw) [—(—a/;—(:)é—;ﬂ]

(d) Qo = R, defined in (0.14) and (0.15).

(3.21)
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ProoOF. (a) Obvious from (3.18).
(b) From (3.19) we see that @, ,.(c-) = @, ,,(-). Use (a) to get the claim.
(c) Pick M = N = 0in (3.19) to see that

(3.22) Qrwlio) = [1— Flr,w)f(r, )]z, (o) Xfr,un i)

which is a geometric distribution with parameter }?(r, w)f(r,w). Now use (b) and
recall (0.11) to compute

E‘II‘ZQ,.(a) = /aZ(dw) Z(io +17— l)Qr,w(iO, il)

ig,i1

(3.23)

iy { / aZ(dw)EioQ,,w(io)} 1
and
(3.24) S i0Qr, o) = !

1—f(r,w)f(r,w)

ig
This gives the first expression in the r.h.s. of (3.21). Alternatively, pick M =0
and N = 11in (3.19) to see that

(8.25) @y u(io,i1) = [ fa, w):le(r’w)(iO)Apo,r(iO,il)xf(r, ow)(i1)-

_1
flr,w)
By direct computation, using the explicit form of x; and A, , [see (3.6)], we get

(8/0r)f(r,w)

0 .. .. .
—E;Qr,w(lo,ll) = {(lo +i1 -1 —(Go—-1) o)

(8/0r)f(r,ow)
f(r,ow)
[(0/6r)F(r,w) + £2(r, ) (8 0r)F(r, )]
fr,w)[1 - fr,w)f(r,w)]

(3.26) (@1 —-1

} @r, (o, 11)-

Using (3.24), it follows that

_ .. (8/or)f(r,ow)
Z —%Qr,w(io)il) = Z(io +i1 — D@, (o, i1) + (_/~f(z‘7'),]cm’;—)aw

. { (6/87)f(r,w)
L fr w1 = Flr,w)f (r,w)]
(8/0r)f(r,ow)
- f(r,ow)[1 ~ f(r, ow)f(r, ow)] }

(3.27)
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Since @, is a probability measure for all r, the Lh.s. of (8.27) is 0. Substitu-
tion into the first integral in (3.23) gives the second expression in the r.h.s. of
(3.21). [The contribution of the term between braces in (3.27) cancels by shift
invariance.] The third expression is derived analogously after picking M = —1
and N = 0in (3.19).

(d) Compare (0.14) and (0.15) with (3.18) and (3.19). Recall (3.6).

PROPOSITION 16. For every 6 € (6., 1) there is a unique solution r = r(6) of
the equation

(3.28) E,q,@) =671
The function @ — r(6) is strictly increasing and continuous on [0, 1), with

lim r(0) = re,
616,

(8.29) lim r(6) = oo.
611

Proor. From (3.12) and (3.13) we see that r — f(r,w) and r — ?(r, w)
are strictly decreasing and continuous for all w. Hence the first integrand in
the rh.s. of (3.21) has the same property. This proves that r — E ¢ (a) is
strictly decreasing and continuous, which implies the claim in (3.28). To get
the ﬁrsE limit in (3.29), see (3.42) and (3.43) below. The second limit uses that
f(r,w), fr,w) — 0 as r — oo for all w [see Lemma 10(c) in Section 4.1].

3.3. Identification of minimizer and minimum. The key to the solution of
the minimization problem in Theorem 1 (0.17) is the following property. Re-
member that R, = Q.

PROPOSITION 17. For every @ € My, o, and r > rq,

T ()
(3.30) I(QIRa)_I(QlQr)——E—IOgm,
with \(r) given by
(3.31) log A(r) = / oE(dw)log f(r,w).

PRrOOF. Pick Q € My o, and Q, € My, for some 6,6'. Let @, Qr,, € P(N?)
denote the corresponding laws given w. We start with the following property. De-
fine r

[-N,N]
(332) I(Q.1Q.) = Jim o 3 QL—N,M(Z)log(Qw (z)))

[_N)N]
ZENZN*I Qr,w (Z)
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that is, the specific relative entropy of @, w.r.t. @, .,. The limit in (3.32) exists
w-a.s. and in L(a%), and moreover

(3.33) 1Q1Q) = / aHdw) (Qu | Qr,)-

The proof of this property is straightforward. Indeed, the analogous statement
holds for H(Q), the Kolmogorov—Sinai entropy of @, by applying the subadditive
ergodic theorem together with the fact that the f-restriction in M, _, implies that
71Q has finite entropy [see the proof of Lemma 10 in Greven and den Hollander
(1992)]. For r = 0 one has that @ = R,, is Markov and then the claim follows
almost instantly from (2.77). For r#0, on the other hand, @, is not Markov
but one can appeal to its Gibbs structure [see (3.19)] and get the claim after
inserting a Radon-Nikodym factor. The reader can easily work out the details.
We want to compute

(330 1(QIR.)-1(Q1Q) = [ o*@)[I(Qu | Ra) ~1(@u1 Q1))

Now, by (3.32) and (3.33) we have
I(Qw I Ra,w) - I(Qw | Qr,w)

(3.35) ) 1 _ QLN (z)
= lim ——— =N N(z)log | <2 ).
N~°°2N+126§HQ *\REYMG)
From (3.19)
QYN Z5NM (F(roNu) T
ag Tl @ ZdV\FO.07N)
. ZN — 1
y H o142 = 1) f(’"7 ON“’) .
x € (=N, N] f(O, UNw)

Substitution into (3.35) gives four terms. Two of these, coming from the second
and the fourth factor in (3.36), are boundary terms and vanish in the limit as
N — oo [use (3.24)]. The remaining two terms can be computed as follows.

By (3.23) and stationarity,

/az(dw) > QL‘N*N](z)log< I e_r(zx—1+2x—1)>

zENN+1 x €(—N,N]

=2N(-rE 2¢(a)),

which accounts for the first term in the r.h.s. of (3.30) because E,2q(a) = 671.
Finally,

(3.37)

- Z([)—N,N]
] /aZ(dw) E QL—N,N](z)IOg <—Z_[—;‘1‘JVW)
(3.38) zEN+1 rw

- / o(dw)[log Z5 NN — log ZEN M)
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and by (3.20)

. 1 [_N,N] _
(3.39) ngnoo N1 logZ,7)»™" =log \(r) w-as.,

which accounts for the second term in the r.h.s. of (3.30).
PROPOSITION 18. Fix 0 € (0,1). If there exists r(0) such that Q.p) € My, o,
then

()
0)

(3.40) 1(6) = —r(0) — O log
and Q@) is a minimizer of (0.17).

Proor. By substituting (3.30) into (0.17), we get the identity

1) = i o
©)=6,inf 1(@|R)
(3.41) D10e X0 Lo e g Q18
=-r— —+ ).
d Og )\(0) QelMt‘),a (

Since this identity holds for every r, we may pick r = r(6) so that @, € My . In
that case the infimum is taken at the point @ = Q. because I(Q,@) | @.9)) = 0.

Suppose that @' € My, ., is another minimizer of (0.17). Then by (3.41) we have
I(Q' | @.s) = 0. The solution of this equation is the class of Gibbs measures
Sr8),« N My, as was mentioned in subsection 0.5.

3.4. Proof of Theorem 2. In subsection 4.2 we shall see that A\(0) = 1. Propo-
sition 18 therefore proves Theorem 2 for all 8 € (0, 1) such that there exists
r = r(f) with @, € My, . From Proposition 15 and the definition of My . in
(0.12), we see that the latter amounts to the condition

_ d/or)f(r,w)
(3.42) 0! = Eragu = [ adw) [ ) (TZT_} |
where we pick the middle one of the three expressions in (3.21). The r.h.s. of
(3.42) equals —(d/dr) [ o(dw)logf(r,w), which is —(d/dr)log A(r) by (0.21). This
identifies () as the solution of

A(r)

-1_ A\
(3.43) 0~ = OR

In subsection 4.2 we shall see that r — —\(r)/\(r) is strictly decreasing. This
means that (3.43) has a unique solution when 0 > 6., with 6, defined by (0.22).

The case 6 € (0,6,) is different. We can no longer use the minimizer @,
because (3.43) fails to have a solution [see (0.22)]. What in fact happens is
that r(9) sticks at the value r, [see (0.23)] because the variational problem in
Theorem 1(0.17) does not achieve a minimum : More precisely, one can show that
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for every 0 € (0, 6,) there exists a sequence () in My, o such that @, converges
to @, € My, o, and I(Q, | R,) converges to I(Q;, | R,) asn — oo [see Greven and
den Hollander (1994), Section 2.4]. Rather than giving an explicit construction
of this sequence (which turns out to be rather tedious), we prefer to cut short
the proof by appealing to the argument that was given below Corollary 1 in
subsection 0.4. Here we argued that the flat piece in Figure 2 (corresponding to
case A) can be easily understood in terms of the random walk losing time in long
stretches where the local drifts point to the center. All that is needed to make
this argument rigorous is a proof that the probability for the random walk to
spend a time of order n inside such a stretch of length NV equals O(exp(—cyn))
with ¢y — 0 as N — oo. But this is straightforward [ef. Sinai (1982)].

To get the linear piece in Figure 3 (corresponding to case B), the trick is to do
a transformation of the environment. Let us define a new process R as follows.
For Ra w, the law gwen w, we specify the marginals on blocks [-M,N] to be
the same as for @, = Rq,., in (3.19) except that the matrix A,J 0= A . [recall

(0.14) and (3.6)] is replaced byA (v (018 the shift) with
~ y_ € "Po
(3.44) plw) = row)

In other words, the local step probability p, is replaced by p(c*w) [which depends
on the forward environment]. Note that from (0.20) we have [recall that py =

(1 —po)/pol

e~"*po - e (1 —
(3.45) f(rc,w) 1—e (1 —po)fire,ow)

so that py(w) € (0, 1) for all w. Comparingﬁ’m »withR, ., we find, forz € N2V+1,

EL—,’X%)_( 1 )"-"
RENMG) ~ \f(re,07Nw)

(3.46) ( 1) i 1
e TelZx —1+2x — in =
X (x H f(rc, o-xw) ) (f(rw UNLU)) )

€(-N,N]

where we use (3.45) to cancel telescoping factors. Now, (3.46) is the same kind
of expression as (3.36). Therefore, doing the same kind of computation as in
(3.34)—(3.39) we get the analogue of Proposition 17, namely, for every @ € My .,

(3.47) I(Q | Ra) ~I(Q | Ra) = % — log A(re).
Substitution of (3.47) into (0.17) yields [compare with (3.41)]

10 =0, 3 1@IR)
= —r. —0logAr)+0  inf 1(Q|Ra).

() @

(3.48)
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The first part in the r.h.s. of (3.48) is precisely the linear piece in Figure 3. The
second part is the same as (0.17) but with R, replaced by ft’a.

Now, IA%a corresponds to the random walk with local step probabilities p(c*w).
In case B the maximal value of py = (1 — pg)/po is strictly smaller than 1.
However, the maximal value of

_1-pw)

(3.49) plw) = —W = po f(re,w)f(re, ow)

is precisely 1. Indeed, by picking w such that p, = pmax for x € [0, N] and
substituting the definition e = 2p,1n/82x /(1 + pmay) into the formula for f(r;,w)
[see (0.19) and (0.20)], one easily checks that f(r.,w) can be made arbitrarily
close to its maximal value 1/ p,ln/azx by picking N large [see also (4.3) and (4.4) in
subsection 4.1] and hence p(w) arbitrarily close to 1. What this says is that the
transformed environment just falls under case A. We can therefore repeat the
argument of the random walk losing time in long stretches (consisting now of
points where p; = pmax), even though the transformed environment is no longer
ii.d. The result is that infg ¢ 7, , I(Q | Ro) = 0 for 6 < 6,.
The boundary cases 6 = 0, 1 are treated in subsection 4.3.

4. Proof of Corollaries 1 and 2. In subsections 4.1 and 4.2 we first col-
lect some elementary properties of f(r,w), A(r) and r(6) defined in (0.20), (0.21)
and (0.23). These will be used in subsections 4.3 and 4.4 to prove Corollaries 1
and 2.

4.1. Elementary properties of f(r,w). The first question to be addressed is
the convergence of the continued fractions in (3.12) and (3.13). The answer
depends on r and a.

LEMMA 9. Let r, be given by (0.19). All statements below hold w-a.s.

(a) f(z,w) converges if Rez > r,.
(b) z — f(z,w) is analytic on {z: Rez > r.} if (logp) < 0.
) fry,w) eRY ifr>r,.

Proor. (a) Sufficient criteria for convergence of continued fractions are
given in Perron (1913), Chapter 7. In particular, according to Theorems 7.53.24
and 7.53.29 in that volume,

ag| = ai

(41) —+_+"',aiabi€(c7
lbo b1

(1) converges if |b;| > |a;| + 1 for all i, .
(ii) converges uniformly on any domain where %92, I1:_,(|;| — 1) diverges
uniformly [under (i)]. .



1422 A. GREVEN AND F. DEN HOLLANDER

To apply (4.1), rewrite (3.12) as

(4.2) fz,w) = P(;l‘ 3 p1—1| _
’ |e2(1+pgl) Iez(1+p1'1)

Then from (4.1) (i) we see that f(z, w) converges if Rez > 0. This settles case A
[see (0.19)] for which r, = 0. Case B can be handled by the same criterion after
the following transformation of (4.2):

2 -1 2 -1

(4.3) of2,w) = —20 |_1 S |_1 oy e>0
lce(1+pg")  |eer(1+p7)
Indeed, from (4.1) (i) we now get the condition
pi +c? .
(4.4) le?] > for all i.
C(pi +1)

The r.h.s. of (4.4) is minimal when ¢ = p; and maximal when ¢ = p,ln/azx or plln/li If

pmax < 1, then (p; + pmax)/ put(p; + 1) is maximal when p; = pmax. Hence z should
satisfy Rez > log[Zp,In/azx /(pmax + 1)]. The rh.s. is r, in case B.

(b) Let f™(z,w) be the continued fraction in (4.2) or (4.3) truncated after the
nth term. Note that z — f™(z,w) is analytic on {z: Rez > r.} for all n > ny(w)
(because convergence excludes the occurrence of infinitely many zero denomi-
nators). It follows from the Weierstrass theorem for normal families of analytic
functions [Behnke and Sommer (1955), Theorem 2.7.42] that z — f(z,w) is an-
alytic on {z: Rez > r.} if f™(z,w) converges uniformly. But the latter follows
by applying (4.1)(ii) to (4.2) (case A) or to (4.3) (case B). In case A the criterion
(4.1)(ii) requires (log p) < 0.

(c) According to Theorem 7.52.22 in Perron (1913), the continued fraction
in (4.1) is strictly positive when a;, b; € R, ag > 0 and b; > |a;| + 1 for all i.

REMARK. Note that f®(r,w) = Ty, r...T,,,-(0) with T, , the map defined
in (3.9). By a closer analysis of the fixed points and the poles of T, ,, it can be
shown that o%(w: limsup, _, ., f™(r,w) < 0) > 0 when r < rc. This means that
Lemma 9(c) fails when r < r., so that the Ansatz in (8.19) becomes meaningless.

The following lemma lists some relevant properties of f(r,w).

LEMMA 10. All statements below hold w-a.s.

(a) r — f(r,w) is strictly decreasing and continuous on [rc, o).
(b) Case A: f(0,w) = 1if (logp) <0,
f(0,w) < 1if (logp) > 0.
(¢) lim, _, o f(r,w)=0.
(d) r — logf(r,w) is strictly convex.
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(e) Case A: hm —2 log fryw)=1+ 2 }: H pj, which is finite if (log p) < 0
i=0j=0
and Lnﬁnzte if (logp) = 0.

(f) lim, _, oo —(8/0r)log f(r,w) = L.
(g) Case B: f(rc,w) < l/pmax,

hm——logf(r w) < 1+2ZH

i=0j= opmax

PROOF. (a) Straightforward.
(b) From the definition of f(r,w) in (3.12) we have

1
e"(1 + po) — pof (r,ow)’

with o the shift. Pick r = 0 and rewrite as

(4.5) flr,w) =

(4.6) [1—£0,w)] " =14+ p51[1 —£(0,00)] "
to get
4.1 [1-7£0,w)]” LH

i=0j=0

The r.h.s. diverges iff (logp) < 0. (Note that logp; — (logp) > O infinitely
often.)

(c) Obvious from (4.5).

(d) From (4.5) we have

(4.8) —f(r w) = —f(r, w)[ "(1+ po) — po f(r aw)]

Use (4.5) once more to write e”"(1 + pg) = 1/f(r,w) + pof (r, ow). Substitution into
(4.8) gives

(8/0r)f(r,w) (8/0r)f(r,ow)
(49) —W————1+p0f(r,w)f(r,aw) 1—W—— .
Iteration of (4.9) yields
(4.10) - w = lﬂ-ZEHpjf(r, cIw)f (r, 0/ 1w).

fr,w)

i=0j=0

Now use (a) to get the claim.
(e) Letr | 0in (4.10) and use (b).
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(f) Let r — 0o in (4.10) and use (c).

(g) According to Theorem 7.53.24 in Perron (1913), the continued fraction
in (4.1) is bounded by 1 in absolute value under (4.1)(i). Now use (4.3) with
c= p}n/fx to obtain the first claim. The second claim follows after substitution of
the first claim into (4.10).

4.2. Elementary properties of X(r) and r(f). From Lemmas 9 and 10 follow
some necessary properties for the quantity \(r) defined in (0.21), which plays
the key role in the solution of I(9) in Theorem 2 (0.24).

LEMMA 11.
(@) r — M) is strictly decreasing and continuous on [r.,o0), analytic on
(r¢, 00).
(b) Case A: X(0) = 1if (logp) <0,
M0) < 1if (logp) > 0.
(e) lim, _, o M) = 0.
(d) r — log AX(r) is strictly convex.

1+(p)
(e) Case A: lim—dilog)\(r) = m, if (p) <1,
e 00, if (p) > 1, (logp) < 0.

(f) lim —ilog)\(r)= 1
r— oo dr

(g) Case B: \(r;) < l/pxln/az)h

lim — 4 log AM(r) < 1+ {p)/pmax

< 00
rn dr = T=(0)/ praa

ProoOF. Immediate from Lemmas 9 and 10. Note that in Lemma 10(e) the
limit is finite iff (log p) < O but that in Lemma 11(e) we need integrability of
the limit, which requires the stronger restriction (p) < 1.

The analyticity of r — A(r) is proved as follows. By Lemma 9(b) and (c),
z — logf(z,w) is w-a.s. analytic on {z: Rez > r.}. It follows from Fatou’s Lemma
and Lemma 10(d) that

b} d\*
(4.11) / aZ(dw)[—g;logf(r,w)] < _<Zl?) log A(r),

where (d/dr)* denotes the right derivative. The r.h.s. of (4.11) exists and is finite
for all r > r., because A(r) < A(r.) < co and r — log A\(r) is convex [Lemma 11(a)
and (c)], and so the same is true for the L.h.s. of (4.11). Now, from (4.5), with r
replaced by z, we have by a straightforward induction argument

(4.12) Ref(z,w) < f (logRe(e®),w).
Using (4.5) and (4.12), we can deduce

(4.13) |f(z,w)] < f(logRe(e),w).



LARGE DEVIATIONS FOR RWRE 1425

It follows from (4.13) and Lemma 10(g) that (4.10), with r replaced by z, is
integrable on

(4.14) D = {z: Re(e®) > &’ }.

This in turn implies that log A\(z) is complex differentiable on D [cf. Behnke and
Sommer (1955), Theorem 1.11.62], that is, analytic. Since (r;, c0) C D the claim
follows.

Lemma 11(e)identifies lim, | ¢ —(9/0r)log A(r) as 1/6* with 6* defined in (0.27).
Lemma 11(d) shows that r — — X (r)/A(r) is strictly increasing, with limits ;!
and 1 asr | r. resp. r — co. Hence the equation #—! = —)\'()/A(r) has a unique
solution r(9) for 6 > 6., as claimed in (0.23).

LEMMA 12. 6 — r(0) is strictly increasing and analytic on (6., 1).

ProOOF. Obvious by the implicit function theorem. Use Lemmas 11(a) and

(d).

4.3. Proofof Corollary 1. To get (a)—(d), combine (0.22)—(0.24) with Lemmas
11 and 12 and the identities

(4.15) I'(6) = —log A\(r(8)),
(4.16) 1) = ’”'g)).

The latter follow from (0.24) by twice differentiating w.r.t. § and using (0.23) to
cancel terms. The continuity of § — I(#) has been explained in the last para-
graph of subsection 2.7. The value I(0) = —r, follows from (0.24) by continuity
at 6 = 0. The value I(1) = (log(1 + p)) follows straight from (0.17) because
M, o = {[61 x a)?}. To get (e), let 6 | 6, in (4.15) and use the continuity of A(r) at
r=r, =r(6,). To get (f), note that by (a) we only have to check that I is convex
in § = 0 [recall (0.18)]. This is obvious in case A. In case B, on the other hand,
the right slope at 6 = 0 is — log A(r.) and the left slope is log A(r.) + (log p). Now
use Lemma 11(g), which implies that 2log A(r;) < —10g pmax < —(log p).

4.4. Proof of Corollary 2.
LEMMA 13. Let n = exp(logp). Then, forall r > r,,

N(r) S 1+922%(r)

(4.17) CAP) T 1)’

with equality iff o is a point mass.
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ProoF. Use (4.10), Jensen’s inequality and (0.21) to compute

o) _ 1+2Z/az(dw)npjf(r,ajw)f(r,aj”w)
i=0 j=0

G
>1+2 i exp{ i /aZ(dw)log [pjf(r, ajw)f(r, aj“w)]}
j=0

i=0

(4.18) =1+2 Z exp{(i +1)[(log p) +2log A(7)] }
i=0

1+23 (n%)} !
i=0
_ 1+92%(r) . O
1—nX2(r)

Let A, (r), r,(6) and I,,(6) be the quantities corresponding to the homogeneous
medium with p, = 7.
LEMMA 14. Let n = exp(log p). Then, for all > 6.,

(4.19) A(r(®) < Ay (rn(9)),
(4.20) I'o) > 1,(0),

with equality iff o is a point mass.

Proor. Use (4.17) and (0.23) twice to write

1+0A2(ry(0)) Ay (@) -1 N (r®) S 1+ nA2(r(6))
L-nX2(rg(0) ~ M(ra®) ~ AEO) T 1—nx2(r(9))

This proves (4.19). Substitution of (4.19) into (4.15) proves (4.20).

(4.21)

Corollary 2(a) follows from (4.20). Indeed, in the recurrent case where (log p)
=0wehaven=1and§, = 6* =0, so I'(§) > I1(6) for 6 > 0. Since I(0) = I;(0) = 0
it follows that I(9) > I,(9) for 6 > 0.

Corollary 2(b) is nontrivial only for case B where ppa.x < 1 and r, < 0.

LEMMA 15. Forallr,<r <0,

NG 1+ (p)N0)
Mr) T 1= {(p)A2(r)’

with equality iff o is a point mass.

(4.22)

Proor. First we observe that e” — f(r,w) < 0 for r < 0, because r — " —
f(r,w) is strictly increasing by Lemma 10(a) and crosses the value 0 at r = 0 by
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Lemma 10(b). Next, by differentiating (4.5) w.r.t. p;, we get

0 _ £2 r
(4.23) a0 =1 (ryw){ = (e = fr,ow) },

0 o] .
(4.24) 5{)—if(r, w) = fz(r,w){po—a—p;f(r, Uw)}, 1> 0.

It follows from (4.23) and (4.24) that w — f(r,w) is increasing in p; for alli > 0
when r < 0. Finally, we use (4.10) and (0.21) to compute

__/\_I(ﬂ = - Z i . ] i+ 1
o 1+2§) / a (dw)jl})pjf(r, oIw)f (r,07* W)

(4.25) >1+2) [] { / az(dw)pj} { / o dw)f (r, o/w)f (r, o7 “w)}

i=0j=0

= 1+2§: [(p){/aZ(dw)f(r,w)f(r,aw)}}i+1’
i=0

where we apply the FKG inequality [see Georgii (1988), pages 445 and 446] for
correlations of increasing functions of (p;); > o. Since by Jensen’s inequality

(4.26) / O dw) F(r, ) f(r, ow) > N2(r),

the claim follows.
LEMMA 16. Forall 6, < 0 < 6*,

(4.28) I'6) > I,,(6),

with equality iff a is a point mass.
PROOF. Same as that of Lemma 14.

Corollary 2(b) follows from (4.28) because I(6*) = I,,(6*) = 0 (6* being, by
(0.5) and (0.27), the typical speed of the random walk and a function of (p)) and
6 — 1,(9) is strictly convex.

In subsection 0.5 we raised the question whether the reverse of (4.22) holds
for r > 0 (note that equality holds at r = 0), as this would imply the conjectured
upper bound in Figures 5 and 6.
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