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ON THE STABILITY OF A POPULATION GROWTH MODEL

WITH SEXUAL REPRODUCTION ON Z¢, d>2

By HwA-NIEN CHEN

Purdue University, Calumet

We continue our study on the stability properties of a population growth
model with sexual reproduction on Z¢,d > 2. In the author’s previous work,
it was proved that in the type IV process (the two-dimensional symmetric
model on Z2), the vacant state @ is stable under perturbation of the initial
state (the first kind of perturbation), and it is unstable under perturbation
of the birth rate (the second kind of perturbation). In this paper we prove
that in the type III process on Z2, the vacant state @ is stable under the
second kind of perturbation, and in three or higher-dimensional symmetric
models, the vacant state @ is unstable under the first kind of perturbation.
These results, combined with the results obtained earlier, provide a fairly
complete picture concerning the stability properties of these models.

0. Introduction. We consider a population growth model on Z¢ which is a
Markov process whose state space S is the set of all subsets of Z<. Let ¢; denote
the state of the system at time ¢ > 0, which is the set of sites (points in Z¢) that
are occupied at time ¢. Sometimes we will also treat ¢; as a function from Z? to

{0,1}, with

1, ifxe & (xis occupied),

ft(x) = {

0, ifx¢¢& (xisvacant).

Therefore, the state space can also be expressed as S = {0, l}zd.
The system evolves according to the following rules:

occupied sites are vacated at a constant rate § > 0, that is, if

0.1) x €&, thenP(x & &4 | &) =bs+0(s)ass — 0;

vacant sites become occupied at rate b,(), that is, if x ¢ &,

(0.2) then P(x € &as | é,}) =b(&)s+o(s)ass — 0,

where o(s) - 0ass — 0.

As usual, b,(¢) and 6§ are called the birth and the death rates at x, respec-
tively. In particular, the death rate in the systems under our consideration is
identically 1; that is, § = 1. Depending on the different definitions on the birth

rates b,, we will get different systems.
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ExaMpPLE 1. The threshold contact process on Z? (an example of an asexual
contact process). Let

A, if any site in {x + ey, x £+ ey} is occupied,
0, otherwise,

b«(&) = {

where ey = (1, 0),e5 = (0, 1) denote the standard basis vectors in Z2.

In this example, in order to produce a child particle at a vacant site x, only
one site in its neighbor needs to be occupied by a parent particle.

ExAMPLE 2. Five types of sexual contact processes on Z2.

Forx € Z?, welabel its neighboring sites {x—e;,x—eg} aspair 1, {x +e;,x—es}
as pair 2, {x +e1,x +eg} as pair 3 and {x —e1,x + ez} as pair 4. The birth rates
b,(&) for each type of process are defined as follows:

Type I: b,(&) =X if pair 1is occupied;

Type II(a): b,(&) =X if pair 1 or pair 2 is occupied;

Type II(b): b,(£) =X if pair 1 or pair 3 is occupied;

Type III:  b,(£) = A  if any one of the pairs ,i = 1,2, 3 is occupied;
Type IV:  b,(£) =)\ if any one of the pairs i,i = 1,2, 3,4 is occupied;

and for all of the above types
b.(£) =0 otherwise.

In all these five types of birth rates, in order to produce a child particle at a
site x, a pair of neighboring sites needs to be occupied by parent particles. That
is why they are said to have sexual reproduction. The type IV system is often
called the symmetric model.

The above rules (0.1) and (0.2) specify a unique Markov process [see Liggett
(1985), Chapter 1]. Furthermore, all processes can be constructed explicitly by
using a graphical representation that goes back to Harris (1978). A detailed
construction which is well suited for our purpose can be found in Durrett and
Gray (1990). (We will give a brief description of this construction at the end of
this section.) It is a consequence of this construction that there exists a single
probability space (2, F, P) such that all the growth models under consideration
in this paper can be defined jointly on (2, F, P). This fact enables us to make
comparisons between processes with different rates and different initial states.
For example, for any given set of rates described by the above statements (0.1)
and (0.2), if we use £ and &2 to denote the states of the system at time ¢ when
the initial states are A and B, respectively, we can define the processes ¢4 and
¢B on (Q, F,P) in such a way that if A C B, then & C ¢8 for all ¢ > 0. Also, if &
is a process with birth rates 6,(¢) and death rate 4, and if {; is another process
with death rate 6* > ¢ and birth rate b3(¢) < b,(¢) for allx € Z? and ¢ € S, then
& and (; can be defined in such a way that {; C & for all ¢ > 0, provided both
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processes have the same initial state. In this case we often simply say that ¢
dominates (;.

A system is called attractive if the birth and death rates b, and d, satisfy
the condition that b,(§) > b,(n) and d,(¢) < d.(n), whenever n C ¢ C Z2. In
the systems described in Examples 1 and 2, the death rates are identically 1
and the birth rates b, are nondecreasing functions of the number of occupied
sites in the set {x + e;,x + ey}, so the above condition is satisfied. It was first
shown by Holley (1972) that systems with attractive rates have certain useful
monotonicity properties. Let ¢ and ¢} denote the state of the system at time
¢t when the initial states are @ and Z2, respectively. Then, for all A ¢ Z2 and
0<s<t<oo,PE)NA#P) 2 PENA#P)and P} NA#P) < PEINA#P).
Thus £ and ¢} converge weakly (=) as ¢ — oo to stationary distributions which
we denote as ¢2 and ¢, respectively. For the processes in Examples 1 and 2, we
have ¢ = @ for all £, hence £, = 64, (the point mass concentrated on the state
@). Thus 4 is a trivial equilibrium. Let p()) = lim; _, o, P(0 € §t1) =P00 e fcl,o). If
p(A) =0,then ¢l =¢0 = 84, and, by attractiveness, it follows that, for all initial
configurations, & = 6, as ¢t — co. On the other hand, if p(\) > 0, then ¢, # ¢2.
Let . = inf{\: p(\) > 0}. Then €1, = €%, = 6, if A < A and €L, # €% if A > A.. In
both Examples 1 and 2, it was proved that 0 < A\, < oo. [See Durrett and Gray
(1990).] Therefore, we know that, for both Examples 1and 2, ¢%, = 04 is atrivial
equilibrium for the systems regardless of the value of \, whereas there exists a
critical value ), € (0, c0) such that ¢1 is nontrivial and distinct from ¢, when
A > .. Besides the behaviors of ¢ and ¢! as t — oo, it is also interesting to
investigate the behavior of ¢ as ¢t — oo, when A > )\, and & starts from simple
initial distributions other than the ones concentrated at @ or Z2. In particular,
we may consider the process & whose initial distribution & satisfies the con-
ditions that {x € ¢}, x € Z2, are independent, and V x € Z2, P(x € &) = p. This
initial distribution can be considered as a perturbation of the absorbing state
D.If & = b6, ast — oo, we say 8, (or the vacant state @) is stable under per-
turbation of the initial state, otherwise it is unstable. This kind of perturbation
and stability will be called the first kind of perturbation and stability, respec-
tively. Another kind of perturbation that interests us is to add a small quantity
B > 0 to all birth rates (“spontaneous births at rate” 3). Namely, for each pro-
cess described in Examples 1 and 2, the birth rates for the corresponding new
system are equal to b,(¢) + 3. Let §t0 '# and ftl’ # denote the states at time ¢ for
the system with spontaneous births at rate § and initial states @ and Z2, re-
spectively. It is clear that the new systems are still attractive. As we mentioned
above, the monotonicity properties of systems with attractive rates imply that,
as t — 00,£)” and ¢'? converge to stationary distributions (denoted as) ¢%,°
and ¢1, 8, respectively. The objective is to study the behavior of ¢%7 as 3 — 0. If,
as 8 — 0, %P = €3, = 64, then we say 6, is stable under perturbation of the
birth rate, otherwise it is unstable. This kind of perturbation and stability will
be called the second kind of perturbation and stability, respectively.

It is known that, in the asexual contact process, d, is unstable under either
kind of perturbation. [See, e.g., Durrett and Gray (1990) or Durrett (1985).]
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For the systems with sexual reproduction, the results concerning the above
two kinds of stability of ¢, were first studied in Durrett and Gray (1990). They
proved the following two results for the type I system.

1. There exists a p* € (0, 1) that is independent of )\, such that if p < p*, then
& = 64 ast — oo.
2. For any A > 0, ¢%# = 64 as 8 — 0.

These results mean that in the type I system, ¢, is stable under either kind of
perturbation, which is contrary to what happens in the asexual contact process.

All sexual contact processes in Example 2 have an important feature that
is quite different from the asexual contact process. A sexual contact process
starting with any finite set will die out almost surely. That is, if we let A\s =
inf{\: P(¢} # @ for all #) > O for some finite set A}, then )\ = co if & is a sexual
contact process, and \r < oo if ; is an asexual contact process. Based on this fact
and the above results 1 and 2 obtained by Durrett and Gray, one may naturally
raise a more general question: can we conclude that in a population growth
model as described in the beginning of this paper, 6, is stable under either
kind of perturbation if and only if As = co? As discussed above, as far as the
asexual contact process and the type I sexual contact process are concerned, this
speculation seems plausible. However, in Chen (1992) the two kinds of stability
problems were further studied for the other types of sexual contact processes
in Example 2, and we will see soon that the criteria speculated are not valid
in general. By applying a new method called successive block renormalization,
the following two results were proved in that paper.

THEOREM 1. Let & denote the state of the type IV process at time t with initial
distribution f‘g described as follows: the events {x € {;‘g },x € Z2, are independent,
andVx € Z?, P(x € 8) = p. For any X\ € (1,00), if p > 0 is sufficiently small (p
may depend on \), then, for large t,

P(O e ff) < t—CIng,\(l/P),

where c is a positive constant independent of A and p.

THEOREM 2. Let §to '8 denote the state of the type IV process at time t with
spontaneous birth at rate 3 > 0 and initial state ¢. Let £%:° denote its limiting
stationary distribution as t — oo. Suppose that ) is sufficiently large. Then

. O’ﬁ
lim P(0 € £°) > 0.

Theorems 1 and 2 show that in the type IV system, 6, is stable under the first
kind of perturbation, but it is unstable under the second kind of perturbation.
Theorem 2 proves that the “if part” of the criteria speculated previously is false
concerning the second kind of stability. Since the type IV system dominates all
other four types of systems, it follows that in all other four types of systems, 6, is
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also stable under the first kind of perturbation. Thus, to offer a complete picture
regarding the two kinds of stability properties for all five types of systems
described in Example 2, we only need to determine the second kind of stability
of 64 in the type II and type III systems. This is the first objective of this
paper. The second objective of this paper is to study the first kind of stability
properties for a system with symmetric sexual reproduction on Z¢, for d > 3.
This system is analogous to the type IV system on Z2. Its birth rates b,(¢) are
defined as follows:

A, ifx has two occupied neighbors of the form
b.(§) = {xte,xte}, i,j€{1,2,...,d}, i#),
0, otherwise,

where e; = (1,0,...,0),e5 = (0,1,...,0),...,e4 = (0,0,...,1) denote the stan-
dard basis in Z¢. Notice that, when d > 3, X is still equal to co. We intend to
prove that when d > 3, in the system with symmetric sexual reproduction on
Ze, 84 is unstable under the first kind of perturbation and thus the “if part”
of the criteria speculated previously is also false in regard to the first kind
of stability.

The paper will consist of two sections. In Section 1 we will prove that in the
type III system &, is stable under the second kind of perturbation. The result
is formulated as the following theorem.

THEOREM 3. Let 5? '# be the state of the type III process on Z2 at time t with
spontaneous births at rate (3 and initial state ¢. Let ¢%° denote its limiting
stationary distribution ast — co. Then ¥V \ € (0, 00), £%P converges weakly (=)
to by as f— 0.

In Section 2 we will prove that when d > 3, in the symmetric model on Z¢, by
is no longer stable under the first kind of perturbation. The result is formulated
as the following theorem.

THEOREM 4. Let &t > 0, denote the system with symmetric sexual repro-
duction on Z%,d > 3, described in the preceding paragraph, with initial distri-
bution & defined as follows: for all x € Z?, the events {x € &} are independent
and P(x € &) = p. Suppose ) is sufficiently large. Then ¥ p > 0, lim, _, .o P(x €
&) >o.

A crucial difference between the type III and the type IV systems on Z2? can
be illustrated heuristically as follows. When ) is sufficiently large, in the type
III system, an isolated finite region occupied by individuals will die out much
more quickly than that in the type IV system. For instance, consider that an
N x N square region is entirely occupied but all remaining sites in Z2 are vacant.
Then, as we have already shown in the proof of Theorem 2 in Chen (1992), in
the type IV system, with probability greater than 1 — exp{—a(\)N}, the region
can sustain a high density for exp{CN} time units, where o(\) > 0 when ) is
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sufficiently large. However, as we will prove in subsection 1.1. of this paper,
in the type III process, the region will be wiped out by death at a linear rate
even though ) is large. Therefore, when spontaneous births 8 > 0 are added to
the birth mechanism for each type of system, the consequences are drastically
different. In the type IV system, the isolated islands of occupied sites can sustain
long enough so that the spontaneous births occurring at their boundaries will
have plenty of time to accumulate and produce children to make them continue
to grow. In contrast, in the type III system, those isolated islands of individuals
are wiped out too rapidly so that the spontaneous births will not have a chance
to help them to survive.

For the symmetric system & on Z¢, d > 2, described in Theorems 1 and 4,
a necessary condition for a particular occupied island to continue to grow is
that there are always individuals attached at the boundaries of the growing
island in question. Loosely speaking, when A\ is sufficiently large, the average
amount of time for a typical growing island to fill a d-dimensional box with
edge length n is at most n?/), and an isolated occupied d-dimensional box with
edge length n can survive about exp{Cn?~ !} time units with large probability.
Let us use a specific scenario to visualize the way that the population evolves
in the system & on Z¢. Suppose that a population island has already filled a
box with edge length N centered at the origin (we call it the “main island”).
By the argument given above, the “main island” will have a good chance to
continue to grow, if each of its two-dimensional faces of boundaries (it contains
N?-1 sites) contains a box with edge length at least C~1(log(N¢\~1))1/(@ -1,
which is “well structured” initially (we will call such a box a “minor island”).
When the dimension d increases, the number of sites contained in the main
island’s two-dimensional faces of boundaries also increase, and the minimum
size required for the minor islands decreases. Based on an intuitive observation,
a lower-dimensional well-structured subset in a d-dimensional box will have
a good chance to produce offspring to fill the entire box. Thus the probability
that a particular d-dimensional box is initially well-structured is nondecreasing
with respect to the dimension d. Also, this probability increases when the edge
length of the box decreases. This crude analysis suggests that the probability
the main island will continue to grow is expected to be an increasing function of
the dimension d. Hence it is not unreasonable to predict that there is an integer
dy > 2, such that, when d > dj, the behavior of the symmetric system & on Z¢
will change drastically. In other words, when d > d, in the symmetric system
on Z¢, 84 will become unstable under the first kind of perturbation. Theorem 4
proves this prediction is indeed correct and actually dy = 3.

The method employed in the proof of Theorem 3 is a successive block renor-
malization procedure. By applying the block renormalization scheme induc-
tively, we will obtain for each 2 = 1,2,..., a new level £ discrete-time process
that has much simpler birth and death mechanisms. The procedure allows us
to study the asymptotic behavior of the original process by studying the level
k processes. The method of block renormalization is a powerful tool for inves-
tigating the asymptotic behavior of a large class of processes. For a survey of
this method, see Bramson and Gray (1992). The method applied in the proof
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of Theorem 4 is quite similar to what was used in the proof of Theorem 2 in
Chen (1992). We will first define a specific kind of configuration structure and
prove that the probability that the initial configuration & is such a structure is
very large. Then we will use a coupling argument to prove that, when ) is suffi-
ciently large, if the system starts with one such configuration, then, with large
probability, it will be quickly filled by occupied individuals. Combining these
two steps, we know that as the system & evolves, with large probability, it will
quickly posses a high density. An inductive procedure will prove that, with large
probability, the system ¢ will sustain a high density and thus survive forever,

Combining the results obtained from Theorems 1 to 4, the stability properties
concerning the population growth model with sexual reproduction on Z¢, d > 2,
can be summarized as follows.

1. In the systems of type I, II or III on Z2, the vacant state @ is stable under
either the first or the second kind of perturbation.

2. In the type IV system on Z2, the vacant state @ is stable under the first kind
of perturbation but is unstable under the second kind of perturbation.

3. When d > 3, in the system with symmetric sexual reproduction on Z?, the
vacant state @ is unstable under either the first or the second kind of per-
turbation.

The rest of the paper will be devoted to the proofs of Theorems 3 and 4.
Throughout, we will construct the process under consideration &, ¢ > 0, and
all other processes on the same probability space (2, F, P) by using the same
construction of the graphical representation as introduced in Section 0 of Chen
(1992). Details can be found, for instance, in Durrett and Gray (1990). To make
reference easier, we recall the construction briefly as follows.

For each x € Z%, let S, (x) and T, (x),n > 1, be independent Poisson processes
with rate 1 and ), respectively. We label certain points in the space—time graph
Z2 x [0, o) using the Poisson processes:

1. Mark the points D, = {(x,S,(x)): n > 1} with §’s (for death), and interpret
the 6 as to vacate site x at time S, (x), if x is occupied.

2. Mark the points B, {(x, Th(x)) : n > 1} with X’s (for life), and interpret the A
as a birth at site x at time 7',(x), provided the necessary conditions are met.
That is, x & &r,9- and bx(é7,(x) = A, where &7, ,)- denotes the limit of ¢ as
t 1 Thlx).

Having marked the space—time graph, we can compute the evolution of the
process according to the rules for interpreting the é’s and \’s given in rules
1 and 2. Notice that this construction takes care of all the processes without
spontaneous births under our consideration. For the processes with sponta-
neous births at rate 3 > 0, we need to augment the construction to allow for the
spontaneous births. For each x € Z¢, we let U,(x), n > 1, be a Poisson process
with rate 3, independent of the processes S, (x) and T}, (x). There is now a third
rule (rule 3) in the description of the process, corresponding to spontaneous
births at rate 8 > 0:
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3. Mark the points B} = {(x, U,(x)): n > 1} with f’s (for birth), and interpret
the 3 as a (spontaneous) birth at site x at time U, (x) if x is vacant.

It is also guaranteed that the process constructed by using graphical repre-
sentation is unique [for details, see Durrett and Gray (1990)].

1. Proof of Theorem 3. To prove Theorem 3, it is necessary and sufficient
to prove that, Vx € Z2 and X € (0, o),

(LD lim P(x € %) = 0.

By translation invariance, to prove (1.1), it suffices to prove that
(1.2) }imoP(O e e2f) =o0.

Since &, t > 0, is attractive, for each 8 > 0 and A € (0,00), P(0 € ¢'P) <
P(0 € 5?"’ ) if s < t. Hence, to prove (1.2), it suffices to prove that there is a
sequence {t;}£2 ;, t, — oo as k — oo, such that

(1.3) Jim P(0€ &) =p(8) and  lim o(8)=0.

The main weapon to prove (1.3) is the procedure of block renormalization.
The proof consists of three parts: subsections 1.1 to 1.3. Subsection 1.1 con-
cerns some preliminaries. We will prove that an occupied isolated N x N square
will die out at a linear rate. In subsection 1.2 we will apply the procedure of
block renormalization. We will first partition the Z?2 lattice into square regions
(blocks) and rescale the Z2 lattice by regarding each block as a “site.” We will call
the original lattice the level 0 lattice and the rescaled lattice the level 1 lattice.
The time units will be rescaled accordingly. We will then define a discrete-time
process that has much simpler birth and death mechanisms. The new process
will be called the level 1 process. Roughly speaking, the birth and death mecha-
nisms of level 1 process will be defined based on the following guidelines. For a
particular partition block described previously, we will regard its corresponding
site at level 1 as occupied at level 1 time ¢[1] = m, provided that any of the fol-
lowing three things happens in that block in the mth time interval: (b.1) at least
two spontaneous births occur at two different sites; (b.2) although only a single
spontaneous birth occurs at a certain site, the resulting new particle survives
too long; and (b.3) significant amounts of particles spread from the neighboring
blocks. After the meaning of birth is defined at level 1, we will regard a level 1
site that is occupied at £[1] = m as vacated (by death) at ¢[1] = m + 1, provided
both of the following, (d.1) and (d.2), happen in its corresponding block at level
0 in the (m + 1)st time interval: (d.1) none of the above (b.1) to (b.3), occurs; and
(d.2) the corresponding block at level 0 is wiped out by level 0 death. We will
repeat this same procedure inductively and obtain for each £ = 1,2,... a new
level % process. In subsection 1.3 we will conclude our proof by examining the
relationship between the level 0 process and the level % process and obtain the
desired estimate formulated in (1.3) from the level & process. To implement our
scheme, we first introduce the following preliminaries.
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1.1. Preliminaries. Some useful facts concerning the type III process. Let
A(N) denote the square region (—-N/2, N/2]? and let ¢ denote the type III
process with initial state A(V). (For simplicity, in what follows we will often omit
“N Z?” in the description of a Z2 region, unless such a distinction is necessary.)
By the nature of the birth mechanism, ¢*™ will always be confined to A(N).
That is, {¢*™ = @} = {2V NAW) = @} for all ¢ > 0. Let ¢; = Z2\¢, t > 0. Then

for any set A C Z2, x ¢ ¢4 if and only if x € (jtz2\A, forallx € Z2 and ¢ > 0.

Let T(AN)) = inf{t: &2V = @} = inf{t: 2™ N AW) = @} = inf{t: AN) C
Ctz 2\A(N)}. We want to study some important properties concerning T(A(N)). In
words, T(A(N)) is the first time that the initially occupied region A(N) is “wiped
out” by death of the individuals. Notice that, although ¢A™) ¢ A(N) for all £ > 0,
it will eventually die out; how long it can survive is really vital in this study. For
instance, in the type IV system, the relation §tAW ) AWN), t > 0, still holds, but,
as mentioned in Section 0, P(T(A(V)) > exp{CN}) > 1 — exp{—a(\NN}, where
a() > 0 when X is sufficiently large. In the type III process ¢2 ¢t > 0, the
nature of the birth mechanism is quite different. In this case, if a death occurs
at the site (V/2, —N/2), it will be permanently vacant. In general, suppose that
x € A(N) and x + e1,x — eg have both been permanently vacated. Then x will be
permanently vacated if a death occurs at it. Thus, if we let 7;,¢ > 0, denote the
type I process with death rate identically 0 and birth rate b,(¢) as follows:

1, ifx+e; and x — ey are occupied,
b.(&) = .

0, otherwise,
then (jtz “AM Gominates ntz A for all ¢ > 0in the sense described in Section 0.
The type I process has been studied in Durrett and Gray (1990). From a result
included in their proof of Theorem 1 [which is quoted as Lemma 6 in Chen
(1992)], it follows that we can find a constant u € (1, 00), 4 independent of A,
such that

(1.4) P(T(AQV) > uN) < exp{~C(N},

where C(u) > 0. From (1.4) we know that the type III process has drastically
different behavior from the type IV process.

1.2. The procedure of block renormalization. In terms of the process §t° A
(8 > 0, sufficiently small), we will define for each 2 = 1,2,... a new discrete-
time process ¢ [k]?[’k?", tlk] = 0,1,..., using the following procedure of block
renormalization.

STEP 1. Fork = 1, we consider the Z2 lattice as a subset of R? and partition
R? into a lattice of Ly x Ly squares, where Ly = 2|1/(28%)] — 1,a is a fixed
constant such that 0 < @ < 1/8 and |x| indicates the greatest integer less
than or equal to x. The squares are so situated that one of them is centered
at the origin. That is, the level 1 origin O[1] corresponds to the level 0 region
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(=Lg/2,Lo /212, which is denoted by A(O[1]). We obtain the level 1 lattice Z2[1]
by regarding each square as a site. We will define a new level 1 process £[1];1; on
Z2%[1]. The time parameter ¢[1] of the level 1 process is discrete, t[1] € {0,1,...}.
We scale time so that one time unit at level 1 equals 7 level 0 time units, where
70 = uLg and p is the same constant introduced in (1.4). Since the original level
0 process starts with @, it is natural to choose @ as the initial state of £[1];
also. That is, {[1lp(y = @. Now let us define the birth and death mechanisms
for £[1];11). We want them to be translation invariant, so we will specify a set of
rules to define the meaning of birth and death for the level 1 origin O[1] and
then apply them to other sites in Z2[1] in a translation-invariant manner. To
begin with, we introduce the following definitions.

DEeFINITION 1. The event A™[1],m =0,1,....

Form=0,1,..,let 5;&;3";) denote the state of the type III system at ¢(m) +u,
assuming the state of the system at ¢t(mm) is A, where t(m) = mry, A = A(O[1]).
Let T = inf{u > 0: £/"" = ¢}. Define A™[1] = {T™ < 1}.

DEFINITION 2. The event G™[1],m = 0,1, ..., is defined as follows.

Atlevel 0, there are (at least) two sites x” and x” in A(O[1]), such that (x,#) €
B} and (x"',t") € B}, for some¢',t" € (mry,(m+1)7]. Here the space—time set B}
is defined in the description of graphical representation at the end of Section 0.

DEFINITION 3. The event G*™[1], m =0,1,2,..., is defined as follows.

There is (at least) on site x € A(O[1]) such that (x, s) € B} for some s €
(m7o, (m + 1)70], and x remains occupied for all £ € (s,s + 37°], where b is a fixed
constant and 0 < b < a/2.

DEFINITION 4. The event H™[1],m =0,1,....
To define the event H™[1], we let R;, i = 1,2,3, 4, denote the four border
strips with width 2 of A(O[1]) described as follows:

Ry = (Lo/2 — 2,Lo/2] x (~Lo/2,Lo/2)],
(~Lo/2,Lo/2] x (Lo/2 — 2,Lo/2),
(=Lo/2,-Lo/2 +2] x (—Lo/2,Lo/2],
(~Lo/2,Lo/2] x (~Lo/2, —Lo/2 +2).

R,
R;
R,

Form =0,1,..., we define the events Hﬁ"”[l],i =1,2,3,4, as follows:

H(l’”)[l] : R, is crossed by the spreading of individuals from the region(L,/2,
3Ly/2,3Lo/2] x(—Lo/2,Lo/2] during the time interval (my, (m +1)7,].

The rest of the events HE’")[I], i =2, 3,4, are defined accordingly. Finally, we
let H™[1] = (., H™[1D).
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We are now ready to define the meaning of birth an death for the level 1
origin O[1]. For each m = 0,1, ..., we first suppose that O[1] is vacant at time
t[1] = m. We say that O[1] is occupied at time ¢[1] = m + 1 if the event B™[1] =
G™[1] U G*™[1] U (A™[1])* U H™[1] occurs.

Next, we suppose that O[1] is occupied at [1] = m. We say that O[1] is vacated
at time ¢[1] = m + 1 if the complement of B"™[1], that is, A™[1] N (G"™[1] U
G*™[1])¢ N (H™[1])¢ occurs.

After the birth and death mechanisms of the level 1 process are defined, we
want to evaluate, for each site x[1] € Z2[1], the birth probability 3; and the
death probability §; = 1 — 3; for the process ¢ [1]?{6’ !, Actually, we wish to show
that when § is sufficiently small, 5; < 31*" for some constant v > 0. But we
will first apply our procedure of block renormalization successively to obtain a
level & process for each k£ = 2, 3,. .., which is illustrated as follows.

STEP 2. After the level 1 process is defined, we repeat the same procedure
to define the level k& processes (k = 2,3, ...). The strategies are essentially the
same except for some minor adjustments. Suppose that §[k]?[’k]ﬂ" has been well

defined on the level & lattice with 3, < ﬂ;il, where v is the same real number

asin Step 1 and é, = 1 — 3. To define [k + 1]?[’15 11> we rescale the level £ lattice
and level % time once more. That is, we partition the level % lattice Z2[%] into
Lj, x Ly square regions with L, = 2|1/(26¢)] — 1 (level & units). Each square
region is regarded as a site of the level & + 1 lattice. The square regions are so
situated that the level £ + 1 origin O[k + 1] corresponds to the level 2 square
region (—L;/2,Ly; /212, which is denoted by A®(O[% + 1]). Moreover, we let one
time unit at level £ + 1 equal 7, level & time units, where 73 = L;. The constant
a is the same as in Step 1. The initial state of the level £ + 1 process is chosen
to be £[k + 1]?)’[5’?1‘] = @, just as the initial state of the level k process.

To define the birth and death mechanisms of the level % + 1 process, we first
introduce the following definitions, which are parallel to Definitions 1 to 4.

DEFINITION 5. The event A™[k+1],m =0,1,....

The event A™ [k + 1],m = 0,1,..., is defined in much the same manner as
the event A™[1]. With a little abuse of notation, let 5;&;:"3) denote the state of

the type III system at t(m) + u, assuming the state of the system at ¢(m) is A,
where #(m) = m7, 7, _1...70, A = AO[k +1]). Let T = inf{u > 0: &/ = ¢},
Define A™[k+ 1] = {T"™ < 77 _1...70}.

DEFINITION 6. The event G™[k +1],m =0, 1, ..., is defined as follows.

At level & there are (at least) two sites x’[k] and x” [k] in A®(O[% +1]) at which
the level & births occur at time # [k] and #'[k], respectively, where ¢'[k] and #[k]
are some integers in the interval (mm,,(m + 1)7;].

DEFINITION 7. The event G*™ [k +1],m = 0,1, ..., is defined as follows.
At some site x[k] € A®(O[k + 1]), a birth occurs at ¢[k] € (m7, (m + 1)7;], and
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the resulting occupied site remains occupied for longer than one level £ unit
of time.

DEFINITION 8. The event H™ [k +1],m =0,1,....

To define the event H™[k + 1], we consider the region A(Olk + 1]) = (-M,,/2,
M, /21?2, where M), = Hf= o Li, which is the corresponding region of the level 2 + 1
origin O[k + 1] at level 0. Let R, ;,i = 1,2, 3,4, denote the subset of A(O[k + 1])
described as follows.

Ri,1 = ((1— 6% My/2, M /2] x (~Mi/2, My /2],
Riz = (—M/2,M/2) x ((1 - 8% My /2, My/2],
Ris = (—M/2,—(1- 0%) My /2] x (- Mi/2, M3/2],

Ry s = (—My/2,M}/2] x (—Mk /2,—(1 - g2\ M, /2].
Form =0,1,..., we define the event HE'”)[k +1],i=1,2,3,4, as follows.

H (1’”) [ +1]: Atlevel 0,R; ; is crossed by the spreading of individuals from the
region (M} /2,3M} /2] x (—M},/2,M},/2] during the time interval
mnm_1...70,(m+ V1 _1 ... 70l

The rest of the events H f"‘) [k+1],1=2,3,4, are defined accordingly. Finally,
we let

4
H™[E+1] = < UHE™k+ 1]> N (G™ [k + 11U G*™[k + 11)°.

i=1

We are now ready to define for each £ = 1,2,..., the meaning of birth and
death for the level £ + 1 origin O[k + 1] in the process £[k + 1]?[’,sz1*]1.

For m = 0,1,..., we first suppose that O[k + 1] is vacant at time ¢[k + 1]
m. We say Olk + 1] is occupied at t[k + 1] = m + 1 if the event B™[k + 1]
G™[k + 1] UG* ™[k + 11 U(A™[E + 1])° U H™[k + 1] occurs.

Next, we suppose Ok + 1] is occupied at time [k + 1] = m. We say it is vacated
at time ¢[% + 1] = m + 1 if the complemented of B™ [k + 1] occurs.

From the above inductive procedure, we obtain for each 2 = 1,2,..., the
level % process &[k], tlk] = 1,2,..., with birth probability 3;, death proba-
bility &, and initial state @. This completes our procedure of successive block
renormalization.

REMARK. Thefactthat,foreachk =1,2,...,thelevel &£ processis a discrete-
time, simple birth—death process is the reason why in Definition 8 we consider
the spreading of individuals at level 0 only.

We are now going to evaluate the birth probability 3, and death probability
bp=1-p0,foreachk =1,2,.... We will first obtain the evaluation in the case & =
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1 and then carry out the results in general by induction. Notice the probability
that a birth occurs at a certain site in A(O[1]) for some ¢ € (mry,(m + 1)71y] is
equal to 1 — exp(—f7y), and the total number of sites in the region A(OI[1]) is
equal to L2 < (87%)% = 3~2%. Hence, by virtue of 1 —e™* < x, we have

P(G™[1)) < ((1 - exp(—ﬂro))ﬂ—%f

(1.5) < (Brof™™) < (upep' =%y’
- MZﬂZ - 6(1.

Furthermore, the probability that the occupied site resulting from a single
spontaneous birth remains occupied for longer than 5% time units is equal
to exp(—3~?). It follows that

P(G*™11]) < (1 - exp(—~Br0)) 5~ exp(~6*)
(1.6) < uB~B =% exp(—47°)
= ppB' =3 exp(—p70).

Therefore,
(1.7 P(G(m)[l] U G*(m)[ll) < M2,32 —6a ,u,@l —3a exp(—ﬁ_b).

To evaluate P(A“™][1]), we notice that, by the Markov property, the distribu-
tion of 7 is the same as the distribution of T(A(O[1])) defined in subsection 1.1.
By (1.4) (replacing N by Lg), we obtain

1 ——P(A(m)[l]) = P(T(m) > 7.0)

(1.8) = P(T(A(O[l])) > uLo)
< exp(—CLg) = exp(—CB379).

We emphasize that, for convenience, here and in what follows, C always denotes
a positive constant whose value may change from line to line.

To deal with H™[1], we first make some observations about the level 0
process in the region A(O[2]), the corresponding region of the level 2 origin
OI[2] at level O, for ¢ € (0,7y]. Since the process starts with @, it is easy to
see that for each square region A(x[1]) in A(OI[2]), if it becomes a source of
spreading, then x[1] must be occupied at level 1 at time #[1] = 1. In general for
t € (mry,(m + D1gl,m = 1,2,..., if A(x[1]) is a source of spreading, then x[1]
must be occupied at level 1 at time #[1] = m + 1. Therefore, in the considera-
tion of H™[1], we do not have to consider the situation in which individuals
spread into A(O[1]) in ¢ € (m7y, (m + 1)7p] due to the combined effect of any two
neighboring regions (because this implies there are at least two occupied level
1 sites at time ¢[1] = m + 1, in the corresponding region of O[2] at level 1, and
thus implies that O[2] is occupied at level 2 at the respective time). We may
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modify the definition of H™[1] by interpreting it as “exactly one of the events
Hgm)[ll,i =1,2,3,4, occurs.”

After this modification it is easy to observe that, according to the nature of
the level 0 process ¢>?, H™[1] c G™[1] for each m. It follows from (1.5) to
(1.8) that

B = P(G™IIU G U (A™(]) U™
< P(G™11]) + P(G"™(1]) + P((A™[11)°)

< p?B2 0%+ Bt 3% exp(—70) + exp(—~CB ).

Since a € (0,1/8) and b € (0,a/2), when g is sufficiently small, §; < 8'*” for
some vy > 0.

The death probability for each level site is §; = 1 — 5.

When % > 1, for each level & + 1 site x[k + 1] € Z?[k + 1], the birth probability
B +1 and the death probability 8 . in the process £[£+1] f[’,ﬁ’ i}l can be evaluated
as follows.

To evaluate P(A™ [k +1]), we apply once again the result of (1.4) (replacing N
by M}, this time). Notice that M}, = Hf‘= okiand 7,7, _1... 70 = ,qu'=0Li = uMy.
It follows then that

1-P(A™[E+1]) =P(T™ > 7 _1...70)
(1.9 = P(T(’") > uMy) < exp(—CMy)
= exp{—C(BpBp-1... /1) "}
A very similar argument to that applied in the evaluation of P(G"[1]) yields
(1.10) P(G™[k+11) < p2=5,

Next, G*™ [k + 1] occurs means a single level % birth occurs at some x[%] €
A®(O[k + 1]) during the time t[k] € (mm,,(m + 1)1,), and the corresponding
region of x[%] at level 0 survives longer than 7, _ 17, _5 ... 7 level O time units.
Therefore,

P(G*(m)[k+ 1]) < ﬂ;-&zP((A(m)[k])c)

(1.11) -
< By~ *exp{-C(Br-1...-/rH)~*}.
The evaluation of P(H™[k+1]),m = 0,1, ...,is given by the following lemma.

LEMMA 1. There exist constants C1,Cy € (0,00), such that, for each k =
1,2---and m=0,1,...,PH™[k+1]) < Crexp{~Co(Befr_1-..518)"*}.

To prove Lemma 1, we need first to introduce the following definition.
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DEFINITION 9. Let Zf denote the finite subsets of Z? and let A,B ¢ ng. A

function 7 from [s, ] to Z2 is said to be an occupancy path from (A, s) to (B, t) if
« is right continuous, has a finite number of discontinuities and satisfies:

(1.12) n(s)=A and =(t) D B;
(1.13) if s <u <wv <t then &;u, m(w)) D ();

7 is minimal [i.e., if 7/(w) C (u) for all u € [s,] and if ’/

(114 Sotisfies both (1.12) and (1.13), then ' = ];

where £(v; u, m(u)) denotes the state of the process at time v when its state at
time u is 7(u).

ProoFr oF LEMMA 1. It follows from Definition 8 that

4
P(H(m)[k + 1]) - P(UHi(M)[k +1]1Nn (G(m)[k +1JUG* ™[k + 1])c>

i=1

4 -
= P(UHg'")[k + 1]}(G("‘)[k + UG ™[k + 1])”)
i=1
x P((G("‘)[k +1JUG* ™[k + 1])”)

4
< P(Uﬂgw[k + 1]}(G("‘)[k + UG ™k + 1])”)

i=1
< 4P(H{™[k+ 11 (™l + 11U G*™lk +11)°).

To bound the probability involved in the last inequality, we label the verti-
cal strips with unit width (measured in level 0 units) that partition the region
Ry 1 from right to left as Sy,Ss,...,S,x), where n(k) = 3*/2M},/2. Consider
the space-time region A*(O[k + 2]) = A(O[k + 2]) x (nTy,(m + 1)T}], where
AOIEk+2]) = (~M} 1 1/2,M}, +1/21% = (=L 1M}, /2, Ly, . 1M}, /2]%, which is the cor-
responding region of the level £ + 2 origin at level 0, and T}, = 7,7 _1 ... 7. Let
R; | =Ry, 1 x(mTy,(m+1)T,]. Forj = 1,2,...k+1,if alevelj site x[j] is occupied
at level j time ¢[j] = n, we will regard the region A(x[;]) x (n1j_17j_9...70,(n +
1)7j_17j_2 ... 7ol entirely occupied at level 0. (As usual, A(x[,j]) denotes the cor-
responding region of x[j] at level 0.) For convenience, a region with the form
A x (n7j_175_9...70,(n+ 1)7;_17j_ 2 ... 7o] contained in A*(O[k +2]) will be
called a basic j-box. We may rule out the situation in which A(O[% + 2]) contains
two or more level % + 1 sites that are occupied at time ¢[k + 1] = m. For if this
happens, it will imply O[% + 2] is occupied at a certain level & + 2 time corre-
sponding to ¢[k + 1] = m. Without loss of generality, we may assume that the
site (1, 0) at level & + 1 is occupied at ¢[k + 1] = m, and all other level & + 1 sites
are vacant at ¢[k + 1] = m. Notice that when 2 > 1, even under this assumption,
the relation H™ [k + 1] € G [k + 1] is no longer true. That is because the level
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0 spontaneous births that result in the spreading may not necessarily be abun-
dant enough to trigger the higher level births. For example, the spreading may
be initiated by a single short-lived level 0 birth in S;, and it can invade into S,
by another single short-lived level 0 birth in S,. These two level 0 births will
not result in any level 1 births if they belong to two different basic 1-boxes.
Let us first consider a special case in which H. ('")[k + 1] occurs but R; | con-
tains no occupied basic j-boxes for j = 1,2,...,k. In this case the spread-
ing of individuals can only be initiated from the sites in S; by the occur-
rence of the level 0 spontaneous births. The spreading will take place in a
strip-by-strip fashion. After part of S; is invaded, the individuals can spread
into S;,; if a spontaneous birth occurs at a site in S;,; adjacent to the oc-
cupied area of S;. Let 7 be an occupancy path from (A;,u) to ({x},v), where
= (Mp/2,3M},/2] x (-M},/2,M},/2], the corresponding region of the level
k + 1 site (1,0) at level 0,x € S, and mT, < u < v < (m + 1)T}. For each
i =1,...,n(k), let (x;,%;) € Uicmr,,m+r () N S;) x {¢t}) be the first point
at which a spontaneous birth occurs. Then #; < --- < #,@), and the sequence
(x1,%1), - - -, (enr), Enr)) describes the route and timetable of the spreading path
as it crosses the region Ry, ;. Since R ; contains no occupied basic j-boxes,
the points (x1,t1), ..., (), tne)) must belong to different basic 1-boxes. Let d},
denote the distance traveled by individuals spreading from S; to S,;). Then
dp > |xe — x1| + -+ + [%n@) — %n) — 1]- Since the heights of Rk 1 and each of the
basic 1-boxes are Tk and 7y level 0 time units, respectively, it follows that, for
each region A(x[1]) C Ry, i, the rectangular cylinder A(x[1]) x (mT},(m + 1)T}]
contains T} /7y basic 1-boxes. Let j be an index in {1,2,...,n(k)} such that
(xj,¢;) and (x;41,%;+1) belong to two different basic 1-boxes that are located in
the same cylinder, say, A(x[1]) x (mT},(m + 1)T,]. Then, since t; < --- < @),
this can only happen for at most T} /7 many j’s. Hence there are at least
n(k) — Ty /7o many sites among {x;, ..., %, } which belong to different regions
of the form A(x[1]) contained in R}, ;. Note that n(k) = %/2M,/2 = f*/2T}, /2u
and Ty /70 < 821+ o(B)NTh /1 < 2(1 + 0(6%)3*?n(k); we get n(k) — Ty /179 >
(1 - 2(1 + 0(8))8*%2n(k). This means that

dp > Lo (1 - 2(1 +0(8*))n(k)

1
= 2 ﬂa/2 (1 3'8a/2)
1
> gpars (1= 38°7%) tugy = 0.

The speed of the spreading from (xq,¢;) to (x,z), tne)) is dominated by a one-
dimensional asexual contact process with death rate 1 and birth rate \. We
have just shown that when 3 is sufficiently small, there is a sufficiently small
positive constant ¢ such that Az, — t1) < cdg. It follows from Lemma 9 of
Durrett (1988) that there exist constants C1,Cs € (0, c0) such that

P(H(l’") [k + 1] |R;;’1 contains on occupied basic j-boxes for j =

1.15
( ) . ,k) < Cl exp(—Czdk) < Clexp{—Cz(ﬂkﬂk 1. .ﬂlﬂ)_a}.
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In general, under the condition (G™[k + 1] U G*™[k + 1]), R} ; contains
at most one occupied basic k-box. Consequently, for each j = 2,3,...,k — 1,
every basic j-box in R} 10 excluding possibly one exception, can contam at most
one occupied basic (j — 1)-box. Therefore, if we denote V = vol(R; ,), V; = total
volume of all occupied basic j-boxes in R} , that are not contained in an occupied
basic (j+ 1)-box, then V = 18%/2M2T), = i ﬂ“/ 21%_, L?7; (level 0 units). The total
number of basic (j+1)-boxes in R; , is V(H’ LG) ! whichis 15/211%_. i+ L7
One of them is (possibly) entlrely occupled each of the others can contain at

most one occupied basic j-box. Thus the total number of all occupied basic j-boxes
contained in R; , Which are not contained in an occupied basic (j + 1)-box, is

1p*/211%_;, |L27; — 1. Since each basic,j-box has volume I, _ | L?7;, it follows that
Jj-1
V= ( 11 L%—l) 1L
i=j+1

I /\

ﬂ"/z H L7 =V/L}7; < 26%V.
i #J
By the induction hypothesis, forj = 1,2,... &, §; < ﬂl "7, where 3, is interpreted

as § and v > 0 is the same as in Step 1. It follows that [313“ < ﬁfﬁ 1/2, when (3 is
sufficiently small. Hence

k
V1+V2+'--+VkS2VZﬂjaa
(1.16) ‘g =1
3a 3a __ a
< 2Vp ZE<2Vﬂ =o(BY)V.

Jj=1

Now we may apply the same argument as in the special case discussed pre-
viously to the region R} 1\Q(k) where Q(%k) denotes the union of all occupied
basic j-boxes in R} , for j = 1,2,...,k. By the estimate we just obtained in
(1.16), we know that in this case the dlstance traveled by spreading is equal to
(1 — o(B%))d},. Therefore the arguments that carried out (1.15) still apply, and
we obtain

P(H(l”‘) (& + 1| (G™ [k + 11 UG ™[k + 1])°)
< Crexp{—Co(Bfr-1... /1A ~"}.
Hence
P(H™[k+1]) < Crexp{—Co(Bifs_1...518) "} o

It follows from (1.9) to (1.11) and Lemma 1, that, when 3 is sufficiently small,
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Brer = PG+ UG ™+ 11U (A +11)  UH™ ke + 11)

< By %+ 8, Yexp{-CBr-1... 5107} +exp{-C(BB - 1. .. H18)7*}
+Crexp{—Ca(BiBi-1...518) "}
< ﬂ1+'y’

where v > 0 is the same constant as in Step 1.
The death probability for each level & + 1 siteis 8.1 =1 — Fr41.

1.3. The conclusion of the Proof of Theorem 3. We are now in a position to
complete our proof of (1.3). We will consider the level 0 time sequence {#;}72;,
where t; = pand ¢, =7, _ 17, _o ... 70,k = 2,3,.... The sequence is chosen such
that ¢ = ¢;, corresponds to ¢[k] = 1 at level k. We wish to establish an upper bound
of P(0 € ft(:ﬁ ) by using the results that can be obtained readily from the level j
processes, j > 1. To illustrate the idea, we use ¢; = 79 as our example. Suppose
that the origin O is occupied at time ¢;. Then the cause of the occupation can
be divided into four cases as follows: (i) a spontaneous birth occurs at O at
time s € (¢; — 87,¢1], and O remains occupied up to time #;; (ii) a spontaneous
birth occurs at O at time s € (0,¢; — 3~?), and O remains occupied up to time
¢1; (iii) O is invaded by individuals inside the region A(O[1]) by time ¢, and it
remains occupied up to #1; (iv) O is invaded by individuals outside the region
A(O[1]) by time ¢, and it remains occupied up to ¢;. The probability involved in
case (i) is easy to evaluate directly. We will show that either (ii) or (iii) implies
O[1] € f[l]o 101 for ¢[1] = 1, and (iv) implies that O j] € €[ j];’ %% for some j > 2.
Consequently, the probability involved in cases (ii), (iii) and (iv) can be assessed
easily as well. To apply this idea to the general case and make the argument
more rigorous, we introduce the following notation. Denote

E(k,0) = {at level 0,(0,s) € B for some s € (¢ — ﬁ‘b,tk]},
E(k,1) = {O[1] € €113 for t[1] =t /70 }.
For j=2,3,...,k—1,let
E(k,j) = {OLj] € €Ll for t{j] = ta/(rj _17_5...T0) = Tk 17h—3-- - Ty }-
Forj=1,2,...,denote
A(j) = {OLjl € €lT7}.
Let E*(k) = (U2, Ek, /) U (U24AC))).

We are now going to prove the following lemma.

LEMMA 2. Foreach k=1,2,...,let Ek,j),j=1,2,...,k — 1, and E*(k) be
defined as above. Then {0 € ﬁg’ﬂ } C E*(k), and therefore

W1 POeg?) SPE®)<F ) <B4,

j=1
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where 0 < b < a/2 < 1 as defined in Definition 3.

Since the right-hand side of the last inequality in (1.17) is independent of %,
(1.3) follows from Lemma 2 immediately.

PROOF OF LEMMA 2. Suppose 0 € §t '#_ Then there is an occupancy path =

from ({x},2) to ({0},2,) for some x € Z2 and ¢ < t,. We can find the smallest j
such that 7 is contained in A(O[j]) x [t,¢;].

Case 1. Supposej=1.

I(a). Ifx = 0, then the occupation of the origin at time #; is due to a sponta-
neous birth that occurs at the origin at some time ¢ < tk and the origin remains
occupied during the time period (¢,#]. If ¢, — ¢ < 87°, then E(%,0) occurs. If
t, —t > 7, then, by Definition 3, G*™[1] occurs for m = 7,_17 _5... 7 — 1.
Therefore, O[1] is occupied by f[llfmﬁ‘ at t[l] = _1mh_9...T1 = 13 /7'0; thus
E(%,1) occurs.

I(b). Ifx#0 and ¢ — ¢ < 79, then, by Definition 2, G™[1] occurs for m =
Th-1Tk —2 - .. T1—1; hence E(k, 1) occurs. If xqéOand tp—t > 79, then, by Definition
1, (A(’")[I])” occurs for m = 7, _ 17, _o. — 1. This again implies that E(k, 1)
occurs.

Case II. Supposej € {2,3,...}.

I(a). Ifj<kandt, —¢<7_17_35...70, then A™[;]N(G™[j]UG*™[j])
occurs for m = 7, _17,_o...7; — 1. Then the only possibility that there exists
such an occupancy path as 7 is that the individuals spread from one of the
neighboring regions of A(O[j]), after A(O[j]) is wiped out by deaths (due to
the occurrence of A™[j]). By Definition 8, this implies that H™[;] occurs for
m=T,_1Tk_2...7; — 1, which in turn implies that O[] is occupied by the level
J process at time £[j] = 7, _ 17, _ 2 ... 7;, and thus E(%, j) occurs.

II(b). Ifj<kandty—t>71_17_ To Then, by Definition 5, this implies
that (A™[}])* occurs for m = 7, _ 1Tk 2. — 1. Hence it again implies that
Ol;] is occupied by the level j process at tlme tljl = 17 -2 ... 7, and thus
E(k, j) occurs.

II(c). Ifj>k,thent, —t <7 _1m_g...79 < Tj_ 17— 2 ... 7. The arguments
are essentially the same as II(a). Suppose AO[ J] n (G‘O)[ J] U G*O j])¢ occurs,
then, by Definition 8, the existence of such as occupancy path as 7 must imply

that H®[ j] occurs. Hence Ol j] € ¢[ ]]1 % and thus A( j) occurs.

From the above analysis, we conclude that {0 € §t Py C E*(R). Tt is fairly
straightforward that

k-1
P(E*(k)) = ( U E®, ju UA(J))

Jj=0 Jj=k

=) k
_ _ 1
SETIY G<BTIHBY o
j=1 j=1

<pUh B
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This completes the proof of Lemma 2 and thus the proof of Theorem 3. O

2. Proof of Theorem 4. Inthissection we will prove Theorem 4 in the case
d = 3. The conclusion holds also for all d > 3 . Throughout this section &, ¢ > 0,
represents the three-dimensional symmetric system with initial distribution

2, which is described in Section 0. In several places of the proof, the birth rate
A of the system is required to be sufficiently large. We assume that ) is fixed
but large enough to make the proof work. Since P(x € ¢F) is increasing with
respect to p, we need only to prove Theorem 4 in the case that p is sufficiently
small. We will always assume that A\ < (log(1/p))~1.

Briefly, the main ideas of the proof can be illustrated as follows. First of
all, we will define a class of configurations with special structures on the cube
A = (=L/2,L/2]3, where L will be specified later. For simplicity, we will call
a cube with such a configuration a ¥-cube. The definitions can be applied to
other cubes centered at x € Z3 in a translation-invariant manner. Second, we
will prove that the probability that Ay, is a U-cube initially is close to 1. Namely,
the probability that Ay N & is a ¥-cube is close to 1. Third, we will prove that
if the initial state of the process is 1 such that Ay N n is a ¥-cube, then, as
the process evolves, Ay will quickly become completely filled by the system,
except for some isolated, short-lived holes resulting from the constant deaths.
Combined with the second and third steps described above, we know that if
we partition Z?® into cubic regions with edge length L, then, as the system ¢/
evolves, each of them will have large probability to become completely filled.
The last step of the proof is to apply an inductive procedure that will conclude
that, with large probability, the system & will survive for all ¢, as desired.

The rest of the paper will be devoted to implementing the ideas described
in the preceding paragraph. In subsection 2.1 we will define the ¥-cubes, in
subsection 2.2 we will evaluate the probability that Ay N ¢ is a W-cube, in
subsection 2.3 we will study the behavior of the process when its initial state is
a U-cube and, finally, in subsection 2.4 we will conclude the proof by an inductive
procedure.

2.1. Defining the U-cube. We will introduce a set of definitions the will even-
tually give us ¥-cubes. For simplicity, in what follows when we say “T" is an
I x w x h box region,” we always mean that it is of the form (m — 1/2,m — 1/2 +
Nx(n-1/2,n—-1/2+w] x(q—1/2,q —1/2+h], where m,n, and q are integers.
Moreover, T could be either an R? or a Z? region. In the latter case it should be
interpreted as I' N Z3.

As indicated in Section 0 of Chen (1992), for d > 2, the d-dimensional sym-
metric system &, ¢ > 0, has a close relationship with the bootstrap percolation
models on Z?. One can find certain similarities between the structures being
defined in the following definitions and the structures of the “critical droplets”
described in Aizenman and Lebowitz (1988).

DEFINITION 10. Let D be the principal diagonal of Az and let S be the right
circular cylinder whose central axis is D and cross-sectional area is L%, where
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a € (0,1/4) is a fixed constant. For a given configuration 7, we say that Ay N ¢
is a A-cube if Ap N1 NS is entirely occupied.

DEFINITION 11. Suppose that exp(1/p) < L < exp{exp(2/p)}. Let L, =
exp(1/p). For a given configuration 7, we say that Ay, N7 is a ©-cube if Ay,
is a A-cube and, for 2 = Ly + 2,L; +4,...,L, each of the six planes of A\A;_2
intersects at least one A-cube with edge length [ > A(log k)!/2.

DEFINITION 12. Let L = exp{exp(2/p)} and M = exp{exp((2 — a)/p)}. Parti-
tion Ay, into M x M x M blocks. Let 3 denote the collection of all M /2 x M /2
planes contained in Az that are parallel to one of the coordinate planes. For a
given configuration 7, we say that Ay N7 is a ¥-cube, if the following conditions
are met:

For every plane in 3}, it intersects at least one A -cube with
edge length [ > Aexp(1/p).

Ar, contains a ©-cube that is a translate of A;;, located on one
of the M x M x M blocks. .

(2.1)

- (2.2)

2.2. The evaluation of the probability that Ay, N €5 is a V-cube. To evaluate
the probability that A N ¢f, L = exp{exp(2/p)}, is a U-cube, we need first to
evaluate the probabilities that A,N&), L € {1,3,...},isa A-cubeand Ay, ngs L =
exp{exp((2 — a)/p)}, is a ©-cube. It follows directly from Definition 10 that

(2.3) P(A\Né& is a A-cube) > Pt = exp{—L'**log(1/p)}.
In particular, for L = exp(1/p), this yields
P(Ar N & is a A-cube) > exp{ —exp((1 + a)/p) log(1/p) }.

Let A be the event that Az N ¢ is a ©-cube, Ay be the event that Az, N&f is a
A-cube and A;, be the event that each of the six planes of Ap\A; _ o intersects at
least one A-cube with edge length I = A(logk)'/2, fork =Ly + 2,L; + 4,...,L.
Then A D Ay NA; N ---NAL. Moreover, since the events Ay,Aq,...,Ar are
positively correlated, we have

L
PA) > P(AyNA N---NAL) > P(Ay) H P(Ap).
k=L,

Applying (2.3) and using 1 — x < e™*, we obtain
P(Ay) > (1 (1= pA gk ey RO logk>)6

(2.4) 1 1/2+0/2 6
> (1 _ exp{—(kz/()\2 logk))p)‘ *(logk)l/2+ e/ }> )
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Therefore, by (2.3) and (2.4),
P(Ar N & is a ©-cube)

L
>PA) [ P@Aw

k=L,

> exp{—exp((l +a)/p) log(l/p)}

exp{exp(2/p)}
<A

6
1- exp{_(kz/(A2 logk))p*“"ﬂogk)"“‘*/z}) .

k=exp(l/p)

As assumed in the beginning of this section, A < (log(1 /p))~! whenk > exp(1/p)
and a € (0,1/4),

(B2 /(2 10gk))p)\“"(logk)”2+“/2
= (K2/(\* logk)) exp{—)\l““"(logk)l/z‘“"‘/2 log (l/p)}
> k2= for some o* € (0,1/2).
Hence

P(Ar N & is a ©-cube)
exp{exp(2/p)} L6
> exp{—exp((1+a)/p) log (l/p)} H (1 — exp(—k?~ ))
k=exp(1/p) ,

= exp{—exp((l + a)/p) log (l/p)}

exp{exp(2/p)}
X exp{ﬁ H log<1 —exp(—kz“"*))}.

k=exp(1/p)

Notice that, for x < 1/2,log(1 —x) = —x — x2/2 —3/3 — -+~ > —2x. Thus
log(1—exp(—k2~"))>—2 exp(—k2~2"), when p is sufficiently small. So we obtain

P(A; N €& is a ©-cube in &
0 0
exp{exp(2/p)}

25) = exp{—exp((1+a)/p) log (l/p)}exp{_]_z Z exp(—kz'a‘)}

k=exp(1/p)
> (1-o(p)) exp{—exp((l +a)/p) log (l/p)}

for all L € (exp(1/p), exp{exp(2/p)}]. Here and in what follows o(p) represents
a positive constant whose value may vary from line to line, and o(p)/p — 0 as
p—0.

Let A;, A, be the events that the conditions (2.1) and (2.2), respectively, are
initially satisfied. Then, by the bound given in (2.3), we know that for each
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plane in ¥, the probability that it does not intersect any A-cubes with edge
length I > Xexp(1/p) is bounded above by the quantity (1 —exp{—A1** exp((1+
a)/p) log(1/p)})M/@Xexp1/p)* anq the total number of the planesin 3 is at most
6L3. Therefore,

(M /(2 exp(1/p)))?
2001 {5 s )

Note that M = exp{exp(2 — @)/p)},0 < a < 1/4. Thus (M/(2\ exp(1/p)))? =
M?/(4)\% exp(2/p)) > M, where > means “much greater than.” It follows from
the inequality 1 — x < e~* that

P(A) < 6L3 (1 — exp{ ~A\!*exp((1 + a)/p) (log 1/p) })M
<6L3 exp{—Mexp{ — A" eexp((1+a)/p)(log1/p) }}
- 6L° exp{ —exp{ (1~ o(p)) exp((2 — a)/p) }}
- exp{ ~exp{ (1 - o(p)) exp((2 - a)/p) }}

(2.6)

To bound P(A%), we observe

b @L/M»®
P(43) = (1 ~PAyngisa @-cube)) )

Applying (2.5), and again by the fact 1 — x < e~*, we obtain

€& /My»
P(A3) < (1 — (1-o(p)) exp{—eXP((l +a)/p) log (1/p) })
< exp{—(L/M)3(1 - 0(p))exp{—€‘XP((1 +a)/p) log (1/p) }}

Note (L/M)? = (exp{exp(2/p)}/ exp{exp((2 — a)/p})? = exp{(3 — o(p)) exp(2/p)}.
Hence

2.7 P(A3) < exp{—exp{(3 —o(p))exp(Z/p)}}.

Therefore, by (2.6) and (2.7), we obtain that, for L = exp{exp(2/p)},

p(ApN&lis a U-cube) = 1 - P(AS UAS) > 1 — P(Af) — P(A3)

28) >1- eXP{_eXP{ (1~ o(p)) exp((2 - a)/p) } }
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2.3. The behavior of the process starting with a U-cube. We are now going
to study the behavior of the three-dimensional symmetric system in which the
initial state 7 is such that A N nis a ¥-cube, where A is a cube with edge length
L = exp{exp(2/p)}. In what follows, for a cubic region A that is described in
Definitions 10 to 12, we will denote A(A) = {n: A N nis a A-cube}, ©(A) = {n:
A N nis a®©-cube} and ¥(A) = {n: ANnisa P-cube}.

To accomplish our goal, we will apply a method that is very similar to the
method employed in the proof of Theorem 2 in Chen (1992). First, we let n®, ¢ >
0,i =1,2,...,8, be the processes with death rate identically 1 and birth rate
bg)(é ), forx € Z3, defined as follows:

bP(€) = A if one of the pairs {x —e;,x — ez}, {x —e;,x —e3} or
{x — eg,x — ez} is occupied;

bgf)(ﬁ) = A if one of the pairs {x +e;1,x — ea}, {x +e1,x —e3g} or
{x — eg,x —e3} is occupied;

b®(€) = A if one of the pairs {x +ej,x +e2}, {x +e1,x —e3} or
{x + eg,x — e3} is occupied,; "

b;“)(ﬁ) = )\ if one of the pairs {x —ej,x +eg},{x —e;,x —e3} or
{x +eg,x — ez} is occupied;

bP(€) = A if one of the pairs {x —ej,x —ep}, {x —ej,x +e3} or
{x —eq,x + e3} is occupied;

bff)(f) = A if one of the pairs {x +e;,x — ey}, {x +e1,x +e3} or
{x — eg,x +e3} is occupied;

b"(¢) = A if one of the pairs {x +e1,x +ey}, {x +e1,x +e3} or
{x +eq,x + e3} is occupied,

b®(£) = A if one of the pairs {x —e1,x +es}, {x —e1,x +e3} or
{x +eq,x +e3} is occupied.

Otherwise
b9(¢)=0,vi=1,2,...,8.

The initial state n’ is Z%,Vi=1,2,...,8.

Fori=1,2,...,8, let Q@) denote the ith octant of R3 as in the conventional
manner. Our strategy is to compare the process §t , where ¢ € ¥(Az) and L =
exp{exp(2/p)}, with the process 7\’ in the region Az N QG),i = 1,2,...,8. We
will prove that Vi=12,...,8, w1th large probability, after a relatlvely short
time period, {t will start to dommate n:(@) 1 1n Az N Q@). By a result proved in
Durrett and Gray (1990), when ) is large, 7, ¢ > 0, is completely filled except
for some isolated, short-lived holes. Thus the process §t ,t > 0, has the desired
behavior.

To implement our strategy, we define, Vi =1,2,...8 and ¢ > 0, the coupled
process ) = ({, N i)), where ¢ € ¥(Az) and L = exp{exp(2/p)}. Weregard a site
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x € Z3 as occupied by x?, if x?(x) = (1, 1),(1,0) or (0, 0) and x is not occupied by
xgi) , if xgi)(x) = (0, 1). For convenience, we will also use the notation x € Xf) and
x ¢ X,@ to describe these two cases, even though xgi) is not a set in Z3. Using
this interpretation, the initial state of X,Ei) ,i=1,2...,8,1is the same as ¥. We
are going to prove that, Vi = 1,2,...,8, the probability that Az N Q@) will be
entirely occupied by x\ for ¢ € [L3,L9] is very large.

It follows from Definition 12 that Az, contains a ©-cube which in turn contains
a central A-cube. Since the arguments are essentially the same regardless of
the location of the ©-cube contained in Ay, we may assume, without loss of
generality, that Ay N ¢ is a ©-cube and thus Ag N ¢ is a A-cube, where M =
exp{exp((2 — a)/p)},a € (0,1/4) and K = exp(1/p). Let N = max{n: A, N is
entirely occupied by 5,’(’}, then N > bK*/? = b exp(a/2p) for some b € (1/2,1),
due to the fact that A, N4 is a A-cube. The desired results can be carried out
through the following three steps:

1. We begin by investigating the behavior of the process X in Ay N QG),i =
1,2,...,8. At time ¢ = 0, Ay is entirely occupied by Xff),‘v’i =1,2,...,8. We
will prove that the probability that it will remain entirely occupied for all
¢t € [0,N8] is close to 1. This will be formulated as Lemma 3.

2. Now suppose Ay is entirely occupied by X?) forallt € [0,N8],Vi=1,2,...,8.
We will prove that, with large probability, Ay will continue to grow, and,
by the time ¢ = (N + 2)%, Ay .2 N Q@) will be entirely occupied by X;”,w =
1,2,...,8. Thus, by repeating the argument employed in step 1 above, we
know that, with large probability, Ay, 2 N Q@) will continue to be occupied
by X for all £ € [(V + 2)%, (N + 2)°]. This will be formulated as Lemma 4.

3. We then apply mathematical induction and extend the above results to n =
N+4,N+6,...,K (Lemma 5), thenton = K+2,K +4,...,M (Lemma 6)
and finallyton =M +2,M +4,...,L (Lemma 7). The reason for dividing the
inductive procedure into three stages is due to the structure of the ¥-cube
under consideration.

It should be noted that in steps 2 and 3 above the cause of the continual
growth of the process x\ N A, is different from the process studied in Chen
(1992). In that case, the growth is due to the spontaneous births occurring on the
boundary of A, NQ(), but now it is due to the islands that are occupied initially
and can survive long enough (such as A-cubes) to merge into the main island.
This difference makes the technicalities in the proofs of the following lemmas a
bit easier than those in the proofs in Proposition 6 (and the subsequent inductive
procedure) in Chen (1992). We are now ready to present the Lemmas 3 to 7 as
follows.

LEMMA 3. Let Xﬁi) and N be defined as in the preceding discussion. Then
P(Vi=1,2,...,8andt € [0,N°], Ay N QG) is entirely occupied by xgi))

> 1 - CN®vol(Ay)exp{—a(\)N} = 1 — CN°exp{—a(\N}
> 1 - exp{-3a(\N},
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where a()\) is an increasing function of A independent of N, and, for sufficiently
large \,a()\) > 0.

The method employed in obtaining the consequence (2.3) (Lemmas 5 and 6
and Corollaries 6 and 7) in Chen (1992) can be readily generalized to apply to
this three-dimensional symmetric model case. We are not going to reproduce
the proof here.

Based on Lemma 3 and a similar but simpler argument compared to that
used in Chen (1992), we can obtain the following lemma which is parallel to
Proposition 6 in the cited paper.

LEMMA 4.
P(vi=12,..,8 andte [V +2)°, (N +2)°],
An+2 N QQE) is entirely occupied by xgi))
> (1- CN®exp{-a(ON} ) (1 - OV +2Pexp(~aNN +2)?) )

x (1 - exp(~C(N +22) ) (1~ CQV +2)°exp{ ~a(NWV +2)} )

> (1 - exp{ - %a(A)N}) (1 - exp{~%a(>\)(N+ 2)}).

Proor. Let
AWN,T)={vVi=1,2,...,8and ¢ € [0,T], Ay N Q@) is entirely
occupied in xgi) ,

B(N +2,T) = {Ay+2\Ay is completely vacated in ¢¥ for some ¢ € [0, T1}
and

T(N+2)=inf{t:Vi=1,2,...,8,Ay,2 N Q@) is entirely occupied by ft(i)}.
We first claim that
P(T(N +2)> (N +2)° | AV, N®) N B (N +2,(N + 2)3))

(2.9)
< exp{-C(N + 2)%}.

Under the condition AUV, N®), we only need to prove that

2.10) P(T*(N+2) > (N +2)3|A(N,N®) N BS(N + 2,V + 2)3))
' < exp{—C(N +2)?},
where

T = inf{t: Vi=1,2,...,8, (An.+2\An) N Q) is entirely occupied by xﬁi)}.
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An+2\An consists of six planes with edge length N + 2. Under the condition
B¢(N +2,(N +2)%), each of the six planes contains an island that is occupied not
only by x{ but also by 5,‘/’ for all ¢ € [0,(IV + 2)3]. We will focus our discussion
on one of these six planes, say, the top face of Ay, which will be denoted by
3. The same reasoning can be applied to the other five planes equally well. Let
x € €t¢ NY,t € [O,NSl,y; =x —es+ej,ys = x —e3+ey,y3 =x—e3 —e; and
¥4 =x —e3 —eg. Theny; € Ay, j=1,2,3,4, so x(y,) = (1,1),(1,0) or (0, 0) for
t € [0,NS]. Hence, if we denote P(x{"(y;) = (1,1) or (1, 0) for all j) by p(\), then, at
rate Ap()\), x produces a &-birth at its vacant neighboring sites. The £-death rate
is identically 1. Therefore, the growth of the occupied island §t¢ ny,t e [0,N9],
dominates an asexual contact process on Z? with birth rate Ap(\) and death
rate 1, described in Example 1 of Section 0. By Theorem 1 of Durrett and Gray
(1990), Vx € Z3, when A — oo,P(n}i)(x) =1) — 1 for all £. Thus we may choose
A such that A\p()\) is sufficiently large. As a consequence of the shape theorem
concerning the contact processes due to Durrett and Griffeath (1982), under
the condition BS(W + 2, (IV + 2)%), xgi) Ny, t € [0,N8], will grow at a linear rate.
This implies (2.10) and thus (2.9).

By the Markov property, we may apply the same argument as in Lemma 3

to Xff) in the region Ay, 2 and obtain

P(vi=12,..,8and¢ e [V+2),(V+2), Ay.2NQG)
is entirely occupied by x{’ | A(N,N®) N B°(N +2,(N + 2)3))
> (1 — exp{ — C(V + 2)2}) (1 — C(N +2)%xp{ — a(\(N + 2)}).

Since S N Ak is entirely occupied by ¢ at ¢ = 0, each of the six planes of
An+9\Ay contains a cross section of S that has area greater than N. It fol-
lows from Lemma 6 in Chen (1992) (with appropriate modification regarding
dimensions) that

P(B(N +2,(N +2)%)) < vol(Ay +2XN +2)*exp{ —a((N +2)°}
= (N +2)%exp{ —a(VWV +2)%}.
Therefore,
P(vi=12,..,8andte [(N+2° (N +2)],
Ax+2 N QG) is entirely occupied by Xg”)
> (1 - CN?exp{-a(ON}) (1 - OV +2)° exp{-a(VQV +2)*})
x (1= exp(-CV +2) ) (1 - CV + 2)° exp{ ~a()WV + 2)} )

> (1 - exp{~aOON}) (1 - exp{ - JaO&V +2)}). O

By iterating the above arguments inductively, we can further obtain the
following lemma.
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LEMMA 5. Foralln=N+4,N+6,... K,

P(Vi=1,2,...,8 and t e [n® n®, A, NQG) is entirely occupied by X?’))

> H <1~exp{—§a()\)j}>,
JEJ(N,n)

where J(N,n) is defined as the integer set {N,N +2,... ,n}.

Proor. The arguments employed in Lemma 4 still apply without requir-
ing any modification due to the fact that S N Ag is entirely occupied by §}[’ at
t=0. 0O

Applying the inductive procedure repeatedly (with slight modification), we
can further extend our results for n = K + 2,K +4,...,M and then for n =
M+2,M +4,...,L. This is formulated as the following lemmas.

LEMMA 6. Foralln=K+2 K +4,...,M,

P(Vi=1,2,...,8 and t € [n® nb], A, N QG) is entirely occupied by xgi))

> H (1 - exp{—%a(k)j}), H (1 — exp{—a(M)A logj}\),

JEJWN,K) JEJEK +2,n)

Here and in what follows, J(-,-) has the same meaning as in Lemma 5.

ProOF. We are not going to present every detail of the induction. Rather, we
will only illustrate the key ingredients that are different from those employed
in the proof of Lemma 4. The modification needed here is that in this case we
will use the fact that each of the six planes of A, \A, _ o intersects at least one A-
cube with edge length at least A(log n)1/2. (See Definition 11.) Define the event
B(n,T) in much the same manner as BV, T); that is,

B(n,T) = {(An\An _ 2) is completely vacated in f;” for some ¢ € [0, T }
It is easy to check that
P(B(n,n%) < vol(A,)n3 exp{ —a(/\)()\(logn)l/z)z}

< nSexp{—a(M)A? logn}
= exp{—a(\)A*logn + 6logn}.

When ) is sufficiently large, %a(A))\z > 6. Therefore,

P(B(n, n3)) < exp {—%a(/\))\2 logn}
< exp{—a(M)Alogn}.
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The rest of the proof is essentially the same as in Lemma 4. O
LEMMA 7. Foralln=M+2,M +4,... L,

P(Vi=1,2,...,8 and t € [n3n®), A, N Q@) is entirely occupied by xﬁi))

> H <1 - exp{—%a()\)j}) H (1 —exp{-a(M)A logj})

JEIWN,K) JEJEK +2,M)
x H (1 —exp{ — a(M)A logj})
JEJM+2,n)
3 . .
= H (1 - exp{—za(/\)J}> | H (1 - exp{—a()\))\log]}).
jEJWN,K) JEJ(K +2,n)

PrRooF. Again, we are not going to present the complete inductive proce-
dure. We will only illustrate the key ingredients to the success of the induction
as follows. In this case we use the fact stated in (2.1) of Definition 12 that each
of the six planes of A,\A, _ 5 intersects at least one A-cube with edge length at
least A exp(1/p). Thus

2
P(B(n,n%) < vol(An)n3exp{—a()\)</\exp(1/p)) }

< n6exp{ —a(MX%exp(2/p) }
Note that n < L = exp{exp(2/p)}, so exp(2/p) > logn. Hence
P(B(n,n%) < nSexp {-a(M)A?logn} < exp{—a(\)A\?logn +6logn}.
When ) is sufficiently large, % a(A)A? > 6. Therefore,

P(B(n,n%) < exp{-2a(\\? logn}
< exp{—a(MAlogn}.

The rest of the proof is essentially the same as in Lemma 4. O

2.4. Conclusion of the Proof of Theorem 4. It follows directly from
Lemma 7 that, for L = exp{exp(2/p)},

P(V i=1,2,...,8andt e [L3 L], AL N Q@) is entirely occupied by xﬁi))

> JI (1 —~ exp{—%a(A)j}) 11 (1 — exp{—a(M)A logj})’

JjEJWN,K) JEJK+2,L)
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Recall that K = exp(1/p),N > bK*/2 = b exp(a/2p), for some b € (1/2,1). We
have

3 . 4 3
H (1 - exp{—za(A)J}> >1- o exp {—Za()\)N}

Jj€JWN,K)

>1- exp{—%a()\)N} >1- exp{—ga()\)exp(aﬂp)}

and

H (1 —exp{—a(M)A logj}) > (1 - exp{—%a(/\))\ logK})

jEJK+2,L)
=1- exp{—%a(/\)/\%}.
Therefore,

P(Vi=1,2,...,8and ¢ € [L® Lf], AL N Q() is entirely occupied by x{°)

(2.11) b 3 1
> (1 - exp{—ia(/\)exp (a/2p) }) (1 - exp{—za(A)A;})

Consider the coupled process Xff’ B = (€ 0, t>0,i=1,2,...,8. The mean-

ing of occupancy and vacancy for x; 'Y is defined in the same manner as for Xf}').
Combining (2.8) and (2.11), we obtain that

P(Vi=1,2,...,8and ¢ € [L® L°], AL N Q() is entirely occupied by x¥'?)
> (1 - exp{—exp{ (1 -o(p)) exp((2 — a)/p) } })

x (1 - exp{—ga(A)eXP(a/ZP) }) (1 - exP{‘%“(’\)’\%D

>1- exp{—C’()\);l;},

(2.12)

where C()\) = %(1 —o(@P)a(A)X. We may choose A so that C(\) > 4. Thus, if we
denote the probability in the left-hand side of (2.12) by P(L, p), then P(L,p) >
1 - exp(—4/p).

Now let us consider a sequence {p,},n = 1,2,..., such that, for each n,p,
is defined as p, = p(1 + (p/2)log(n + 1))~1. Define the 1(p,)-cube by using the
same definitions in subsection 2.1 (replacing p by p,). For each n, we repeat
the arguments applied in subsections 2.2 and 2.3 without any change except
for replacing p by p,. Therefore, we obtain that P(L,,p,) > 1 — exp(—4/p,) for
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each n. Here L, is the size of the y(p,)-cube specified in Definition 12. That is,
L, = exp{exp(2/p,,)} = exp{exp(2/p +log(n + 1))}
(n+1)
= exp{(n+ 1)exp(2/p)} = (exp{exp(Z/p) }) =L+t

Note that p > p,, for all n, and, for fixed L, P(L, p) is an increasing function of
p. Hence

P(L,,p) > P(Ly,p,) > 1 — exp (—4/pn)
=1- exp{—(4/p +2log(n + 1))} =1-(n+1)"%exp(-4/p).

That is, for everyn =1,2, ...,

P(\/i =1,2,...,8and ¢ € [L3®*D, L5+ D],
(2.13) A(L™*1) N QG) is entirely occupied by x!*’ i))
>1-(n+1)%exp(—4/p).

Denote the events described in (2.13) by E,,,n = 1,2, . . ., then {E,, } are positively
correlated. Note that, for each fixed n, 6(n+j) > 3(n+j+1),j=1,2,.... It follows
from (2.12) and (2.13) that, for everyn = 1,2, .. .,

P(vi=1,2,...,8and¢ e [L**7,00),
2.14) A(L"o‘;l) N QG) is entirely occupied by xi*'")

> H (1 —(n+ 1)‘2exp(—4/p)) > 1 - 2exp(—4/p).
n=0

We are now ready to carry out the final step of our proof. For any given x € Z3,
thereis an Ly € {L,L2,...} such that x € A(Ly) N Q) for some i € {1,2,...,8}.
Without loss of generality, we may assume i = 1. It follows from (2.14) that

P(x e X" forall¢ € [L3,00)) > 1 - 2exp(~4/p).
That is,

P((gf(x), nfl)(x)) =(1,1),(0,0) or (1,0) for all ¢ € [L}, oo))
> 1 - 2exp(-4/p).
By Theorem 1 of Durrett and Gray (1990), for all x € Z3 and ¢ > 0, when ) is

sufficiently large, lim; _, ., P(x € nﬁl)) > 0. Hence lim; _, o, P(x € &) > 0. This
completes the proof of Theorem 4. O
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