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CRITICAL PHENOMENA FOR SEQUENCE MATCHING
WITH SCORING

By AMIR DEMBO,! SAMUEL KARLIN?2 AND OFER ZEITOUNI®

Stanford University, Stanford University and Technion

Consider two independent sequences X, ..., X, and Y7, .. ., Y,. Suppose
that X;,...,X, are i.id.'ux and Y3,...,Y, are iid. uy, where puxy and
py are distributions on finite alphabets x and Xy, respectively. A score
F: x xZy — Ris assigned to each pair (Xj, Y;) and the maximal nonaligned
segment score is My =maXo<; j<n-A,A>0 {EZA= 1FX; 41, Yj4 )} Our re-
sult is that M, /logn — v*(ux, py) a.s. with v* determined by a tractable
variational formula. Moreover, the pair empirical measure of (X;.;,Y;,;)
during the segment where M, is achieved converges to a probability mea-
sure v*, which is accessible by the same formula. These results generalize
to X;, Y; taking values in any Polish space, to intrasequence scores under
shifts, to long quality segments and to more than two sequences.

1. Introduction. Our motivation derives from biomolecular sequence
comparisons. In DNA and protein sequence matching, segment scores are of
the form ¥5 F(a; 4, a;,;), where g; is the ith letter in the first sequence, a’ is
the jth letter in the second sequence and F(x,y) is the score for the letter pair
(x,y). For the longest perfect match and the longest quality ¢ match (percent
of matching exceeding q), the formulas of Karlin and Ost (1988) and Arratia,
Gordon and Waterman (1986, 1990) determine the asymptotic distribution of
the maximal intersequence segment score for matching with few errors, at least
when the laws of the sequences are similar enough.

This paper is inspired by the critical phenomena in sequence matching in-
troduced in Arratia and Waterman (1985) and Arratia, Morris and Waterman
(1988). It is important to seek a generalization of this phenomena to the context
of general scoring systems. Thus, consider two sequences of length n, X;, ..., X,
and Y;,...,Y,, where the letters X; take values in a finite alphabet Yy and
the letters Y; take values in a finite alphabet Zy. A real-valued score F(-,-) is
assigned to each pair of letters (X;,Y;). The maximal segment score allowing
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shifts is

A
M, = oo EX {ZF(Xi+l:I,j+l)}'

<i,j<n-—
’Azo =1

Suppose the two sequences are independent: X3, ...,X, ii.d. following the dis-
tribution law px and Y7, ...,Y, ii.d. uy, where ux and uy refer to probabilities
on Sy and Ty, respectively. Of primary relevance is the case where the ex-
pected score per pair is negative and there is positive probability of attaining
some positive pair score. So we assume

(H) EuxuyF)<0,  px x py(F >0)>0,

in which case M,, — oo corresponds to rare events.

The hypothesis (H) is in force throughout this paper, and it is also assumed
that py and uy are strictly positive on £y and Xy, respectively. The growth
asymptotics of M,, under (H) are characterized in the following theorem.

THEOREM 1. There exists a finite and positive constant v*(ux, uy) depending
on ux and py such that

M, /logn — v*(ux,py) a.s.

(throughout this paper log means the natural logarithm).

The constant v* is expressed in terms of relative entropy functionals detailed
in formula (1).

Vital for applications is the precise limit distribution of M, centered at
~* log n. This would provide the means for rigorous assessment of statistical sig-
nificance in sequence comparisons with general scoring schemes of paramount
relevance to the BLAST programs [e.g., Altschul, Gish, Miller, Myers and Lip-
man (1990) and States, Gish and Altschul (1992)] and for algorithms founded
on information (likelihood ratio) scoring matrices as in Stormo and Hartzell
(1989) or Henikoff and Henikoff (1992). In the case of either perfect matching
of similar sequences or maximal segmental score for aligned sequences, the
limit distribution is an extremal distribution of type I [cf. Arratia, Gordon and
Waterman (1986), Karlin and Ost (1988), Karlin and Dembo (1992)]. Under
conditions related to (E) in Theorem 4 below and relying on the results of this
paper, we prove in a companion paper [Dembo, Karlin and Zeitouni (1994)] that
the limit distribution is again an extremal distribution of type I. The relevant
mean displacement constant is then tractable based on sums ofi.i.d. fluctuation
theory identities.

The following notations are used. Let ¥ = Zx X Iy be the (finite) alphabet
of letter pairs, let M;(X) denote the set of all probability measures on ¥ and
let M#(X) be the subset of probability measures v satisfying E,(F) > 0. The
relative entropy of v € M,(X) with respect to u € M;1(X) is denoted by H(v | ),
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and for ¥ = {b,..., by} is given by the formula

Y ub;)
H(V | N) = Z v(b;)log m,

i=1

with 0log O interpreted as 0.
The function J: M1(X) — [—00, 00) is defined via

E,(F)

T = )
) H*(v| px, py)

where
H*(v|px, py) = maX{%H(Vlux x py),H (vx | ux), H (vy Iuy)}

and vx and vy denote the marginals of » on £y and Xy, respectively. We shall
write H*(v) for H*(v | ux, py), where no ambiguity concerning the measures py,
py is likely. Note that J(v) is finite except for v = ux x py, in which case owing
to (H),J(v) = —oco. The constant v*(ux, py) is proved (Theorem 3) to be

1) Y(ux,puy)= sup Jw)= sup J),

vE Ml(ZJ) vVE MF(S)
where the last equality is a consequence of (H). With px x uy strictly positive
and ¥ finite, it follows that H*(v | ux x py) is continuous with respect to v and
by (H), so is the extended real-valued function J(v). In particular, v*(ux, puy) is
finite, the sets {v: J(v) > (8} are compact for all 3 > 0 and the compact set

M= {I/: J(V) = 7*(I‘LX’ I‘LY)}

is nonempty. Let A denote the length of any segment where M, is achieved
and let v be the empirical measure of pairings (X;.;,Yj.;) over this segment.

The asymptotic properties of A% and v, are described in the following
theorem.

THEOREM 2. All limit points of v;; belong to the set M a.s. and all limit points
of A%/ logn belong to the set {1/H*(v): v € M}.

Both Theorems 1 and 2 are corollaries of the following more general result
about the growth asymptotics of the maximal score among all segments of spec-
ified empirical measure of the pairs (X, Y +7).

THEOREM 3. For any U C M1(T) let Jy = max{sup, ¢ yJ(v),0} and
A ‘ o
MU = max{ N F(Xiu1, Y A 0,6, <n-A LT *TY e U},
=1 .

where T'X = (X;+1,X;+2,...),TY = (Yj41,Yj42,...) and L(gix’ ™D is the empir-
ical measure of the pairs {(X; ,+1,Y;.1)}is 1. Then:
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(a) limsup, _, . MY /logn < Jya.s.
(b) liminf, , o MU/logn > Jy. a.s. (where U° denotes the interior of the
set U).

Theorem 1 follows by applying Theorem 3 with U = M;(Z), in which case
Ju, ) = 7v*. Theorem 2 follows by observing that M,, = AZE,.(F'), and comparing
Theorem 1 with the upper bound (a) of Theorem 3 applied to U, which is the
complement of the §-sphere blow-up of the set M.

Examination of the proof of Theorem 3 reveals that the set U° in part (b) of
Theorem 3 can actually be replaced by any subset of V—the set of all limits
of sequences {1} C U for which the vectors k1, have integer coordinates for
k =1,2,.... Theorem 3 is thus useful in accommodating scoring schemes in
which some pair letter combinations are forbidden, that is, when —co is in the
range of F. For example, Theorem 1 is then deduced by applying Theorem 3
withU =V = {v: E,(F) > —oc}. The sequence matching problems discussed in
Arratia and Waterman (1985) and in Arratia, Morris and Waterman (1988) are
examples of such schemes.

Of particular interest are the conditions under which M = {v*} is unique
[for then Theorem 2 states that v} — v* a.s. and A}/logn — 1/H*(v*) a.s.], as
well as providing simpler characterizations of both v* and v*. Along these lines,
recall that (H) entails the existence of a unique positive value 6* satisfying

Epx x uy [exP(O*F)] =1
and let o* € M;(X) denote the conjugate measure associated with 6*, that is,

da*

_— = 6*F).
T <)~ POF)

Henceforth, aj and o} denote the marginals of o* on Xy and Xy, respectively.
The maximal segment score without shifts is

A
By = OSIi%anX—A {ZF(Xi+laYi+l)}.
A>0 =1

It is not hard to check that (H) implies that R,/logn — 1/6* a.s. and, as
shown in Dembo and Karlin (1991a), the pair empirical measure of (X;,;,Y; ;)
over the segment where R, is achieved converges a.s. to o*. Intuitively, one
might expect M, to be comparable to R, and concomitantly that v* = 2/6* and
v* = a*. Although in general this is not the case, the following theorem states
an accessible necessary and sufficient condition for v* = 2/6* and v* = a*.

THEOREM 4. Always ~v*(ux,py) <2/6*. The following conditions are
equivalent:

(a) v*(ux, py) =2/6* and M = {a*}.
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(b) (ux, py) satisfy the inequality
(E) H(o" | px x py) > 2maX{H (o | mx), H(oF | uy)}~

In particular, for identical alphabets and symmetric scores (F(x,y) = F(y,x)),
condition (E) holds whenever ux = py, and unless F(x,y) is of the form F(x)
+F(y), condition (E) also applies to all ux x py in some open neighborhood of
the diagonal {p x p: p € M1(Ex), p x p satisfying (H)}.

REMARK. If F(x,y)is afunction of x only, then M,, = R, and hence v*(ux, py)
= 1/6* for any px, uy satisfying (H). This shows that some symmetry condition
on F(x,y) is needed for (E) to hold. Another example concerns £x = Sy = {—1,1}
with F(x,y) = F(x) + F(y) = x +y. Then (H) is satisfied as soon as 0 < ux(1)
< 4 and 0 < py(1) < 1. On the other hand, because o* is a product measure,
it follows that H(a* | px x py) = H(o | ux) + H(a3 | py) and (E) holds iff H(o | px)
= H(oy | py). Letting p = px(1) and 7 = py(1), one finds that

L1, (A-pXl-m

With p fixed, define f(7) = H(oj | px) — H(a} | py). One finds directly that f(p)
=0 and when p < 3, we have f"(y) < 0 for ally < 1 and f(}) > 0. Thus, f(r) = 0
iff 7 = p, that is, (E) holds iff ux = uy.

Even when (E) fails, uniqueness of the measure v* yielding the value v* is
assured in the following case.

THEOREM 5. Let Gx(x) = max,{F(x,y)} and Gy(y) = max,{F(x,y)}. Then
M = {v*} when the following conditions hold:

(a) Either E,,(Gx) > 0 or Gx(x) = F(x,y) has a unique solution y(x) for all x.
(b) Either E,,,(Gy) > 0 or Gy(y) = F(x,y) has a unique solution x(y) for all y.

REMARKS. (a) Suppose F(x,y) = F(x) is a function of x only. Then o} = py
and it is not hard to check that M contains all measures of the form v = o} x vy
with vy € M1(Zy) such that H(vy | py) < H(aj | px). In this example M contains
infinitely many probability measures, whereas Gx(x) = F(x) and because of (H),
condition (a) of Theorem 5 is violated.

(b) The conditions of Theorem 5 are trivially met in matching problems when
F(x,x) > 0 and F(x,y) < 0 for x #y.

(c) Let S be any closed set of strictly positive measures uyx x uy satisfying
(H). Because y*(ux, py) is positive throughout the compact set S, it is not hard
to check that there exists § = §(S) > 0 such that for all ux x py € S,

v (px, py) =. sup JW).
{v:H(Ww | px x py) > 6}

With ¥ finite and F(x,y) bounded, the function J(v) is (uniformly) continuous
jointly in v and ux X py, on the set {(v, ux x py): Hw | px x py) > 6, ux x py € S}.
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Therefore, v*(ux, uy) is continuous on S and if M = {v*} for every ux x py € S,
then v* = v*(ux, uy) is also continuous on S.

The next two sections are devoted to the proofs of Theorems 3, 4 and 5. They
are followed by several extensions. In biomolecular sequence analysis, the two
(or more) sequences often have very different lengths. Sequences of possibly
different lengths are the focus of Section 4, whereas scores for more than two
independent sequences are considered in Section 5. Theorems 1-5 are shown
in Section 6 to apply for intrasequence scores with shifts, that is,

A
M = 0<ibien_a {ZF(Xi+l)Xj+l)})
A>0 =1

encompassing the context of significant repeat segments. The asymptotics of the
longest quality ¢ match are considered in Arratia and Waterman (1989) and
Arratia, Gordon and Waterman (1990). In Section 7, we present this problem
and its extension to a vector-valued scoring system, and relate them with the
results of Sections 3.2 and 5.5 of Dembo and Zeitouni (1993). Section 8 concerns
extensions of Theorems 1, 2, 4 and 5 to infinite alphabets. Under appropriate
modifications, such extensions apply also to the formulations of Sections 4—7.
By fixing the alphabet of the second sequence to be a singleton, the theory is
specialized to a one sequence setting, in particular providing an alternative
simpler proof of the strong laws of Dembo and Karlin (1991a).

When the i.i.d. assumption is generalized to Markov dependence, the cor-
responding results for long segments of perfect matching or of quality ¢ are
reported in Arratia and Waterman (1985, 1989), in Karlin and Ost (1988) and
in Arratia, Morris and Waterman (1988) and Arratia, Gordon and Waterman
(1990), whereas for general scoring systems with aligned sequences, such re-
sults are given in Dembo and Karlin (1991b).

2. Proof of Theorem 8. The proof of the theorem starts with the following
simple lemma, which allows us to restrict attention thereafter to segments of
length at most O(log n).

LEMMA 1. There exists co large enough, such that for all n,

A

P| sup D F(Xi,Yju) p 20| < 1/n2
0<ij<n-a | 17
A >cologn

PROOF. Because there are at most n® possible choices of i, j, A, by the union
of events bound (and stationarity of the processes {X;} and {Y;}), the lemma
will follow from the tail estimate’

A
(2) sup P(ZF(Xz,Yz) > 0) < 1/nb.

A>cologn =1
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Let
AQN) =10g By 4y [eXp(AF)).
Then, for A > 0, by Chebychev’s bound,
A A
P( > FX,Y) > o) < E[exp (A ZF(XI,YI))}
=1 =1
A
= (BlexpO)]) " = exp(AAMV).
From (H), E,,; x ,,(F) = A’(0) < 0 and, therefore, there exists Ao > 0 (in fact for

all 0 < A\ < 6*) such that —A(\g) > 0. By choosing A = A\g and ¢g = 5/(—A()\g)),
(2) ensues. O

Whereas Lemma 1 applies to any alphabet ¥, we shall hereafter exploit
finiteness of ¥ and predicate the proof of the theorem on the method of types.
For a full account of this method and its applications, see Csiszar and Korner
[(1981), Chapter 1], Cover and Thomas [(1991), Chapter 12] or Dembo and
Zeitouni [(1993), Section 2.1]. We recall here only the results needed. Let L,
be the set of probability vectors v on X for which all the coordinates of kv are
integers. With LEX’Y) denoting the empirical measures of pairs {(Xl,Yl)}fﬂ,
the following estimates are easy consequences of the attendant multinomial
probabilities:

(b + 15121~V exp(~RH (v | x x py))
3 <PLFY =v)
Sexp(—kH(umxx,uy)) Vv e Ly,

with |2| denoting the cardinality of the set X.
Similar estimates hold for L¥ and L}, the empirical measures of {X;}*_, and
of {Y;}}_,, respectively. Specifically,

(@) b+ 1)~1%1 = exp(—kH (v | ux) ) < P(LF = vx) < exp(—kH (vx | ux) )

and

(5) (k+1)~®~Dexp(—kH(vy | uy)) < P(L} = vy) < exp(~kH (vy | uy))
Finally,

(6) Lk < R+ DIF-T

and for all v € My(%), '

@ Jinf | = Flar < [SI/E.



2000 A. DEMBO, S. KARLIN AND O. ZEITOUNI

[With m;/k < v(a;) < m;/k+1/k, we have ¥;m; < k. Let ¥(a;) = m; /k, adding at
most 1/k to each coordinate until 33;7(a;) = 1.]
We turn now to prove the upper bound on MY.

LEMMA 2. LetM ,f, denote the value of MY confined to segments of length at
most ¢ log n (with ¢y as determined by Lemma 1). Suppose that Jy > 0. Then,
forallt > 1,

(cologn + 1)I=!

P(M, > tdylogn) < LT

PrOOF. Forv € Ly, k < cologn, we consider the events
8) A, ={3i,j: 0<i,j<n—Fksuchthat LTX TV =},
(A, is the event that there exists a segment of length % in which the empirical
measure of pairs {(X.;, Y}, l)}§= 1 is v). Applying the union of events bound with
respect to the valuesof 0 <i,j<n -1,
P(A,,) < min{n?P(L{"" = v), nP(L = vx), nP(LY = vy), 1},
and by the upper estimates of (3)-(5),
P(A, 1) < min{n2 exp(—kH (v px x uy)) n exp(—kH (x| ux)),
nexp(—kH(l/y | p,y)), 1}.

Consequently, using the inequality min{a?, 1} < a, for a > 0, and the definition
H*(v) = max{%H(u | px X py), Hvx | ux), Hvy | py)}, we have
P(A, ) < nexp(—kH*(v)).
Hence,
9) EH*(v) >tlogn = P(A,;)<n"¢" D

We partition the event {H,f] > tJylogn} according to the pair empirical mea-

sure v on the segment in which the score M, f is obtained, observing that the
score is ¥¥_ F(X;11,Yj+1) = kE,(F). Thus,

(M7 > tdylogn) = U A

k<cologn
veL,,velU
RE (F)>tdJylogn
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Because Jy > 0, kE,(F) > tJylogn for v € U implies that kH*(v) > tlogn.
Thus, with i < ¢ logn| L] < (cologn +1)I7I, the proof of the lemma is completed
by applying the union of events bound in conjunction with the estimate of (9). O

Turning now to the lower bound on MY, we first prove the following estimate
on the basic events A, ;, [see (8)].

LEMMA 8. Foranyv € Ly and any n > k,
1- P(A,,) < 40+ 1™+ Pn 2 exp (BH (v | ux % py) )
(10) + (e + DIPn] exp (RE (i | ) )
+(k+1)%In"texp (kH(yy | uy)),
where n, = k|n/k| is the largest integer multiple of k not exceeding n.

PROOF. Because P(A, ;)is monotone increasing with n, without loss of gen-
erality, we may assume throughout that n = n, is an integer multiple of 2. Divide
the sequence X, . . ., X, into n/k disjoint successive segments of size & each and
let Nx count the number of segments with empirical measure vy. Similarly, let
Ny count the number of corresponding segments from the sequence Yy,...,Y,
of empirical measure vy. Conditioned on Ny and Ny, let B;; be the event that
the ith segment in the X sequence with empirical measure vy and the jth seg-
ment in the Y sequence with empirical measure vy are arranged in such a way
that their corresponding letter pairs (X, Y) empirical measure is precisely v.

Clearly, B;j,i = 1,...,Nx and j = 1,...,Ny are events of equal probability.
Therefore, with W = 2?2‘1 EJN:YI 1p,; and p = P(B;;), we have

E[W|Nx,Ny| = pNxNy.

Now, given a segment in the X sequence of empirical measure vx and a segment
in the Y sequence of empirical measure vy, the probability of associated letter
pairs having empirical measure v is independent of the precise order of the
X-segment letters. Consequently, conditioned on Ny and Ny the events {B;;}
are pairwise independent and, in particular,

Val'[Wle,Ny] =NXNyVar(13ij) < pNxNy.

Thus, by a Chebychev type bound,

1

(W—_E[W[NX,NY])2
< .
~ pNxNy

2 NXyNY
E[W| Ny, Ny]

P[W= 0|Nx,Ny] <E
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Hence, also
PW=0] < E[P[W =0 |NX,NY] leZl]-NyZl] +P(Nx = 0) + P(Ny = 0)

1
E[ 1Nx>11Ny>1] +P(Nx =0)+ P(Ny = 0)

NeNy
- lE[lNXZI]E[lNYZI] +P(Ny = 0) + P(Ny = 0),
P Nx Ny

where the equality is due to the independence of Ny and Ny. By definition
Nx ~ Binomial(n/k, px) and Ny ~ Binomial(n/k, py) with px = P(Lf =vx) and
py = P(LY = vy). Hence, by direct computation,

E[——lez—l] SE[ : Lz(l—(l—px)"””l) <2k
Ny Nx+1 pX(n/k+1) npx

with the analogous bound for E[1y, > 1/Nyl. Therefore, because ay(1 — a)? < 1
forally >0,0<a<1,

2 2
PW=0)< o o (1-pp s (L pyytic —H _  k k|
n°ppxpy n PPXP Y npx npy

Because {W > 1} C A, 3, we have 1 — P(A, ;) < P(W = 0). Consequently,
observing that ppxpy = P(L;ex’ =), we get

4k2 . E E
n2P(LEY =v)  nP(LE = vx) nP(Lk = vy)

1-P(A,) <PW=0) <

and (10) follows by utilizing the lower bounds of (3)—(5). O
The estimates of Lemma 38 are combined next to achieve a lower bound on MU

LEMMA 4. Suppose that Jy. > 0. Then, for each t < 1, there exists an n(t)
such that for n > ny(t),

1
11) P(M] <tdy. logn) < na-o/2

Proor. Fixt < 1. Set 7 = (1+2¢£)/3 < 1 and note that (7 +¢£)/(27) < 1.
Determine v € U° with J(¥) > ((7 +t)/27)Jye. Let k, = [tlogn/H*(¥)] and
recall that there exist 7, € Ly, with |V — 7, ||var < |Z|/k, [see (7)]. Hence, with
F(.,-) bounded, it follows that for some C < oo independent of n,

E;,(F) EyF) |
o) 8" 2 TH() |

> <T+t)JUo logn - C.

EnEs(F) > 7 ogn — C = 1J(7)logn — C
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Because v € U°, so is ¥, for n large enough and, moreover,
knE;,(F) > tJyo. logn

(because 7 > ). Consequently, for n large enough, the event {MY < tJy. logn}
is contained in the complement of A; ;.

Thus, in view of the bound of (10) and the definition of H*(v) it suffices to
show that

I, =n =92k, + 1)®In~'exp(k,H*#)) - 0 asn — oo.

As n — oo, I, — v and, consequently, H*(Z;,) — H*(7). Therefore, the term
I, is of order n(™—(1+8/2+eM) The proof of the lemma is complete because
r<(l+8)/2. O

PrROOF OF THEOREM 3. (a) Assume first that Jy > 0. Then, combining
Lemmas 1 and 2, it follows that for any 1 < ¢ < 3 and all n > ng(¢),

1
(12) P(M; > tJylogn) < ——;75.

Fixt = 1+¢, e > 0. Applying the Borel-Cantelli lemma along the skeleton
n; = e*, it follows that a.s. M,?k < (1 +¢e)Jyk for all & > ko(w). Increase ko(w)

such that ko(w) > (1/e + 1).
Because M,l,] is monotone in 7, for all n > ny(w) = k@),

M,t[ <A +e&)dy[logn] < (1 +2¢)Jylogn
and, consequently,

limsupMY/logn < (1+2¢)Jy as.
With € > 0 arbitrarily small, the proof is complete.

If Jy = 0, then for all v € U, E,(F) < 0 and trivially MY < 0 for all n.

(b) There is nothing to prove when Jy = 0. For J. > 0, the proof is based
on Lemma 4, paraphrasing the argument of part (a) above, while changing ¢ to
—e, Jy to Jyp, reversing direction of all inequalities involving MU and replacing
[logn] with |logn|. O

3. Proofs of Theorems 4 and 5. In the proofs of Theorems 4 and 5, we
shall use the well known information inequality

(13) H(v|px x py) > H(vx | px) + H(vy | py)

with equality iff v = vy x vy [considering H(vx | ux) + H(vy | uy) — H(v | ux x py),

(13) is an immediate consequence of the concavity of the function logx].
PROOF OF THEOREM 4. Recall that o* is defined via da* Jd(ux x py) =e®F

Hence for any v € M(%),

H(v|px x py) —0*E,(F)=H(v|a*).
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Of course, H(v | o*) > 0 with equality iff v = o* and, consequently, for all v #a*,
H(v|px x py) > 0*E,(F),

implying that J(v) < 2/6*. Moreover, H(o* | ux x py) = 6*E,+(F) and thus con-
dition (E) is necessary and sufficient for J(a*) = 2/6*. Consequently, v*(ux, py)
= 2/6* iff (E) holds, in which case M = {a*}; otherwise, v*(ux, Hy) < 2/6*,

Suppose now that £y = £y and F(x,y) = F(y,x). Then, when ux = uy, it
follows that o} = o} and, in particular, H (% | ux) = H(o} | py). In this case,
applying (13) for v = o* yields (E). Moreover, (E) holds with equality only when
a* = ay x ay. If this is the case, then setting Fy = (1/6*)log(dej/dux) and
Fy =(1/6*)log(doy /duy), it follows that F(x,y) = Fx(x) + Fy(y) and, further-
more, by the symmetry of F, necessarily Fx = Fy.

Assume now that F(x,y) is symmetric, but F(x,y)#F(x) + F(y), so that (E)
holds with strict inequality for ux = uy. Because F'is bounded, 6* is a continuous
functional of ux x uy and letting

Oux x py) = H (o | px x py) — 2max{H(a}} | #X),H(a§|MY)},

it follows that ® is also a continuous functional of ux x uy.

Because ®(u x p) > 0, it follows in particular that ®(uy x py) > 0 [i.e.,
(E) holds] for some open neighborhood of the diagonal {u x u: p € Mi(Sx),
u x p satisfying (H)}. O

The proof of Theorem 5 is based on the following lemma.

LEMMA 5. Let Jx(v) = E,(F)/H(vx | ux) and Gx(x) = max, F(x,y).

(a) IfE,,(Gx) > 0, then Sup,, ¢ p, () Jx (V) = 0.
(b) IfE,,(Gx) < 0 and for every x € x, Gx(x) = F(x,y) at a unique y(x), then
Jx(v) has a unique global maximum.

PRrOOF. Observe first that for a fixed o € M;(Zyx),
(14) sup Jx(v) = E,(Gx)/H (a | ux).

Vx=0
(a) When E,, (Gx) > 0, the right-hand side of (14) is infinity at o = ux. When
E ,4(Gx) =0, let o, be given by
do.
dig -t +e(nlgy>0 ~ lax <o)

with 7 = ux(Gx < 0)/ux(Gx > 0). Then E, (Gx)/H(o. I/.Lx) —ooase— 0.
(b) Let 0% denote the unique positive solution of E,,, [?®*] = 1. Define ay ¢

M1 (Zx) via day /dux = %% Then, for any o € My(Zx),
H(o |px) — 03E-(Gx) = H(o|ax),
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where H(o | ax) > 0 with equality iff o = ax. Hence, the right-hand side of (14)
attains a unique global maximum at o = ax. The existence of a unique y(x) for
which Gx(x) = F(x,y(x)) requires that the unique global maximum of Jx(-) is at
the measure v characterized by v(A) = ax({x: (x,y(x)) € A}) for everyA C £. O

Let Jy(v) = E(F)/H(vy | py) and Jxy(v) = 2E,(F)/H(v | ux X uy). Lemma 5
has a counterpart statement in terms of Jy(-), E,,(Gy) and the solutions x(y) of
Gy(y) = max, F(x,y) = F(x(y),y). Thus under the conditions of Theorem 5, Jx(:)
and Jy(-) are either unbounded or have, respectively, unique global maxima.

PROOF OF THEOREM 5. For any distinct v and v, with E,,(F') > 0 and E,,,(F)
> 0, let vy = Ay + (1 — Mg for 0 < A < 1. The linearity of the map v — E,(F)
and the strict convexity of H(-| ux X uy) lead to the quasiconcavity of Jxy(.),
that is,

2)\E,,(F)+2(1 - \E,,(F)
v1lux X py) + (1 — NH (vg | px ¥ py)
> min{Jxy(v1), Jxy(ve)}.

J
(15) xy(vy) > N

Similarly, it follows that

(16) Jx(vx) > min{Jx(11),Jx(vp)},
with strict inequality provided Jx(v1) #Jx (%), and
am Jy(v) > min{Jy (1), Jy(re)},

with strict inequality provided Jy(v1)#Jy(v3). Now suppose that there exist
distinct v1 and v, in M, that is,

(18) Y (ux, py) = J@;) = min{Jx(v;), Jy(v), Jxy(v)},  i=1,2.

Recall that v*(ux,py) > 0, which implies that E,,(F) > 0 and hence also
E,,(F) > 0. Comparing (18) with (15) it follows that Jxy(vy) > v*(ux, uy). Of
course, J(vy) < v*(ux, uy), implying that Jxy(vy) > J(vy), for all 0 < X < 1.
By (13), this requires either Jx(vy) < Jxy(vy) < Jy(vy) or Jy(vy) < Jxy(vy) <
Jx(vy). Moreover, from (16) and (17) we must have either:

(6] Y (ux, py) = JIx(wy) < Jxy(vy) < Jy(vy) forall0 <A <1,
or
(ii) Y (ux, py) = Jy(wy) < Ixy(vy) < Jx(vy) forall0 < A < 1.

Suppose that (i) holds. In particular, Jx(v,) is finite and independent of X
for 0 < A < 1. Therefore, by Lemma 5 [either part (a) or part (b)] there exists
o € M(X) with Jx(o) > Jx(v)) = v*(ux, uy). Consider the probability measures
7y = (1 — Mg + Ao. By the quasiconcavity of Jx(-) [see (16)], it follows that
Jx(T)) > v*(ux,py) for all 0 < A < 1. Because H(o | ux x uy) < oo for every
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o € M1(X) (by finiteness of ¥ and positivity of ux x uy), it is not hard to check
the inequalities

liminf ey (@) 2 Jxy(v/2) > 7" (ux, py)

and

li/{n_'i](-')lfJY(v)\) > Jy(vie) > 7" (ux, py).

Consequently, for A small enough, J(7)) > v*(ux, uy), in contradiction with
the definition of y*(ux, uy) = sup, J(v). The same argument applies to case (ii)
with the roles of Jx(-) and Jy(-) interchanged. O

4. Sequences of different lengths. We consider next the more general
setup with ny the length of the {X;} sequence and ny the length of the {Y;}
sequence, where ny and ny can differ. Then M, is replaced by

A
M, = max F(X;,,Y;
nx,ny 0<i<ng—A Z ( i+ J+l)
0<j<ny—-a ‘=1
A>0

andwedefine Ay, vy, and MU correspondingto A%, v; and MU, respec-
tively. Suppose that nx — oo and ny — oo in the manner that logny/log(nxny)
— X € (0,1). It is not hard to check that all the previous results obtained for
nx = ny remain valid provided ) = %, in particular accommodating the case of

nx/ny bounded away from 0 and co.

The extension to A\#3 is quite routine [cf. Arratia and Waterman (1985),
Section 6]. For completeness we state the counterparts of Theorems 1-5, omit-
ting all proofs. The hypothesis (H) is unaltered. However, H*(v | ux, py) is now
modified to the form

H*(v|px, py) = %—max{H(l/LuX x py),H(vx | px) /N H(vy | py) /(1 — )\)}.

Letting J(v) = E, (F)/H*(v), the definition of v*(ux, py) is unchanged and Jy
remains as described in Theorem 3. Theorems 1, 2 and 3 persist with M,/ logn,
A /logn and MU /log n replaced, respectively, by My, »,/log \/nxny, Ay, ../
log \/nxny and Mgmy / log /nxny. Both 6* and o* are unchanged and the nec-
essary and sufficient condition for v* = 2/6* and M = {a*} is now

B H(o"|ux x py) > max{H(ag | ux) /N H(og | ) /(1= ) }.

With regard to Theorem 4, even for the case of identical alphabets, symmetric
scores (F(y,x) = F(x,y)) and pux = uy, the condition (E)) holds only for A €
Ders 1 — Aerl, with Ar = 2 when F(x,y) = F(x) + F(y) and, in general, A =
H(oy | px)/0*Eqo-(F) satisfying 0 < A < %.‘The statement and the proof of
Theorem 5 are unchanged.
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5. More than two sequences. Another extension concerns scores atten-
dant to multiple > 2 independent sequences. Accordingly, consider X7, ... ,X,{j
i.i.d. governed by the law u; € M(%;), respectively, and independent processes

{Xij }22 - The scoring function F now depends on a configuration of r letters, one
per sequence, that is, F: £ =II;_,%; — R, with

(H) E#lxﬂzx"'xﬂr(F)<O’ (ﬂlXMzX'x/—l/r)(F>O)>O.
The maximal segment score allowing shifts is now

_ r
Mnl,...,nr = O<tj<nj {ZF zl+la 2+l> Xir+l)}.

Jj=l..,1

With logn;/log(ning - --n.) — Aj, Aj € (0,1), the relevant function H*(v | p,
.., 4r) becomes

H*(v|pt,... pr) = (l/)Sc{l { (I/S

)/ 5 uf

JES JjES

where vs denotes the marginal of v € M1(2) on the subspace [];c s %;. With
J(v) and v* defined following (1), Theorems 1, 2 and 3 carry over W1th the
normalization factor being (1/r)log(ning - - - n,).

The only proof whose extension may not be straightforward is Lemma 3. To
ease the exposition, we sketch the proof of Lemma 3 for the case = 3. Fix v
and k and let NJ, Jj =1,2,8, be the number of segments of size £ with empirical
measures v, j = 1,2,3, in the first, second and third sequence, respectively.
Conditioned on {N; } _ 1, 1et By, 5,1, be the event that the /; segments among those
with empirical measure v; in the jth sequence, j=12, 3 are arranged such that
their joint empirical measure is v. Now, pairs of these equally probable events
are independent as long as they have at most one common index. Consider
W=xyL 50 5%, 1p,,, and designate p = P(By,y,4), p1z = P(Biz| Biw),
p13 = P(B121|B111) andpzs = P(an | B11)- We have E[W | {N;}] = pN1N;N3 and

Var[W|{N;}] <pNiNzNs [1+ (N3 — 1)p1z + Ny — Dp1g + (N1 — 1)pas].

By similar arguments as in the proof of Lemma 3, we deduce

1 P12 P13 P23
P(W=0|{N; + + +
(W=0UNY) < SR NN, * 5., * pViN; * pNoNs
and
3 2 2 2
P(W =0) < 8k . 4k*p1p N 4k“p13 N 4k“po3 +i L+L

~ n3pp1p2p3 nzpplbz n2pp1ps n?ppeps np1 npz np3

where p; = P(Lk = vj),j = 1,2,3. With the right-hand side of (10) modified
following the preceding inequality, the proof of the lemma is completed by
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observing that

1 2 1 3
pp1P2ps = p1epsP(LE ) = v(1,2}) =p13p2P(L§ex X - v{1,3})

= paptP(LE ™ = vp 5) = PLE %) = ).

With E, « ... x 4 [?F] = 1 and da* /d(uy x - -+ x ) = e?'F, the condition

.
Hm) ZSCIPI?{,}H(% Hu,->/(ZA,->
i=1 JES JjES

is necessary and sufficient for v* = r/6*, M = {a*}.

In particular, (E,) holds when ); = 1/r for all j, all sequences have iden-
tical alphabets and identical laws and the score F' is symmetric (i.e., invari-
ant under permutations). To see this, observe that then o* is invariant un-
der permutations. Hence, o depends only on |S| = £ and condition (E,) fol-

lows from the monotonicity in % of HkE) = (1 /G )/ Eis1=x(1/R)H(a3), that is,

H(r) <H(@r—1)<--- < H(1), where H(a*) = ¥,0*(x)log(1/a*(x)). For a proof of
this well known property, see Han (1978) or Dembo, Cover and Thomas (1991).

E») H (a*

REMARK. In the case of s identical alphabets (¥; = £,,j = 1,2,...,s), and
r-letter scoring function F:(X;) — R, many scoring systems focus on maximal
intersequence segment score involving any subset of r out of the s given inde-
pendent sequences, that is,

A
_ my ma mr
Mnhm»na = max {ZF(XiIH’XigH""’Xi,+l)}'

0<iy<n—A,j=1,...,r
my#Fmo# - #m,€{1,...,8} I=1
Assuming that for each choice of distinct m; € {1,...,s},j = 1,...,r, the mea-
SUTES L, X fm, X+ * + X i, satisfy hypothesis (H), the analysis carries over with
~* determined now as

max * s Bimgs -+« s tm, ) -
ml#m”e...;ém,e{l,...,s}’y (“ml Hims Nm)

6. Intrasequence maximal r-fold segment score. Suppose thatXj,...,
X, areii.d. ux. With X = Xy x Xx, a bounded score F: ¥ — R is considered and
the maximal (twofold) segment score is of interest. Explicitly,

A
(19) Mn = OSi;r}g—A {ZF()(i+l1}(j+l)}-
AZO =1

We claim that Theorems 1-5 of Section 1 hold in this case, with uy = ux.
In particular, relevant to the strong laws, there is no difference in the intrase-
quence maximal segment score M, of (19) and the intersequence maximal seg-
ment score for i.i.d. sequences. For the lower bound on M, (Lemmas 3 and
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4), we simply divide the sequence Xj,...,X, into two independent sequences
of equal length [n/2], assigning Y1 = X[5/9)41,--+,Y[n/2) = X,. The maximal
segment score allowing shifts between the latter two sequences, provides a
lower bound on the intrasequence maximal score M, of (19). In fact, because
log(n/2)/logn — 1 as n — oo, this argument establishes (11) for the case
at hand. ,

For the upper bound on M, (Lemmas 1 and 2) observe first that their val-
idation in Section 2 relies only on the independence between the segments
(Xi+1,---,Xi+a) and (Yj41q,...,Yj, o). Consequently, without any change, they
yield the correct upper bounds for the nonoverlapping intrasequence score

A
(20) Mn = Ogif?g)rf—zk {ZF(‘Xz#la)(J#l)}'
li—ji>a>0 \i=1

To treat the case of 1 < | —j| < A, let us assume for definiteness thati <j < i
+ A and owing to the i.i.d. character of {X;}, we may take { = 0, so we need to
deal with =2 | F(X;,X; ;) for some 1 <j < (A - 1).

For any A and any j, the following simple algorithm partitions the collection
{Z,j+ l)}lA=1 into two disjoint subsets S; and S, differing in size by at most
one, such that for each fixed j + 1 < a < A the pairs (@ —j,a) and (a,a +j) are
not in the same subset. Thus, start with (1, j+ 1) € S;. Then let (j+ 1,25+ 1)
€ Sy and (25 + 1,3 + 1) € Sy, and continue in this alternating manner until
reaching an index £j + 1 > A. Now, if the most recent pair have been put in S,
let (2, j + 2) € Sy and vice versa. Continue in the foregoing manner until 25 + 2
> A. Then move to (3, j + 3), and so on, until all pairs are exhausted.

Within the [ values for which (/, j+1) € S1, we may view X;,; = Y; as samples
from an independent second sequence of law uy = pux. Similar treatment applies
to the [ values for which ([, j +1) € S,.

With the union of the events

A

=1
C { Z F(AXI,AXjH)ZO}U { Z F(Xz,Xja,z)ZO}
(A, j+Des; ¢,j+DES,

and with |Sy|,|S2| > [A/2], the proof of Lemma 1 follows increasing co by a

factor of 2.
Finally, in the proof of Lemma 2, the independence of the X and Y sequences

is relevant only for v € £, such that
21) EH*(v) = gH(l/ | ux X py) > tlogn,
in which case (9) follows from the bound

P(A, 1) < nzexp(—kH(V | ux X NY)) <p~2-D < p-E-1)
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This bound still holds for the nonoverlapping choices of i, j, that is, for
A, ={30<i,j<n—k, li—j|>k LTXTO =y},

There are at most (2k — 1)n choices of i #j that cause an overlap between
(Xi+1,...,Xi4r) and (Xj.1,...,Xj.2). For each of these choices we partition {(i
+1,j+ l)}z , into the two subsets S; and S, as done above, and let vy, 15 be
the candidate empirical measures of the pairs (X;.;, Xj,;) w1th G+l j+De S,
and (@ +1, j +1) € So, respectively. Assuming with no real loss of generality that
kiseven, v = %(1/1 +vg), and (21) implies that

k k
(22) max{ §H(V2 | px X px), EH(VI | ux x MX)} > tlogn.

When considering the k/2 pairs within each S; by themselves, we may regard
the relevant X; random variables as resulting from two independent sequences
of length %£/2 each. Hence, it follows that

P(Ay,1\A,4) <n(2k - Dmin{P(LE," = 11), P(LE," = 15) }.
Combining the basic bound (3) with (22) it thus follows that
P(A, ) < 2kn~¢-D,

With £ < ¢glogn, the preceding inequality suffices for the conclusion that for
Jy>0and¢>1,

23) P(A_l,? > tJylogn) < 2(cologn + 1)\¥!+1p=¢ -1,

Coupled with Lemmas 1 and 4, the bound (23) suffices for proving Theorem 3.
Similar arguments identify the results for maximal r-fold segment score

Mn_ O<zl#lz# #L,<n— {ZF i1+l 12+l, . Xi,+l)}7 7'>2,

with the results of Section 5, where in this case ¥; = ¥x, y; = ux and )\; = 1/r for
j=1,...,r. In particular, when F: (Xx)" — R is invariant under permutations,

(E,) holds and thus
M;/logn —r/6* and v, — o,
where E,; [e”F] = 1 and do* /dyy = 7"

7. Asymptotics of the longest quality g segment. As in Section 1, let
Xi,...,X, beiid. uy and Yy,...,Y, beii.d. uy. We are now interested in char-
acterizing all sets of pairs (x,y) € S C X, and segments yielding a large relative
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occupation time of S. Formally, a threshold level ¢ > (ux x uyX(S) > 01is specified
and a segment {(X;,;,Yj.)}5 , is said to be of quality g if

A
> 15(Xiv1, Y0 2 9A.
1=1

For fixed S, let @, denote the maximal length among quality g segments, thatis,

A
Q= max{A: 30 <i,j <n—Asuchthat » 1s(X;., Y1) > qA}.
I=1

This problem has been considered by Arratia and Waterman (1989) and Arratia,
Gordon and Waterman (1990) for ¥x = Sy and S = {(x,x): x € Xx}. Without
shifts the maximal length of quality ¢ segments, defined as

A
R, = max{A: 30 <i<n-—Asuchthat »_ 15(Xis;, Yist) 2 qA},
=1

is known to behave as H(q | p)log n+o(log n), where p = (ux x uy)(S) and H(g | p)
= glog(g/p) + (1 — @)1og(1 — g)/(1 — p) is the binary relative entropy, whereas
the empirical measure v;* within the longest quality g segment converges to the
measure o*, defined via

q
do* _ p
dlux X piy) ____l—q, on S°.
1-p
These are easy applications of the Erdés—Rényi strong law for coin tossing

[cf. Erdos and Rényi (1970)]. Finer asymptotic analysis of R, was carried out
in Arratia, Gordon and Waterman (1990), using the Chen—Stein method for

Poisson approximation.
To put the study of the asymptotics of @, within the framework developed

earlier, we define

[yHW), S =g,
J0) = { 0, otherwise,

and let v*(ux, py) = max, J(v) and M = {v: J(v) = v*}, where H*(v) = H*(v | px,
py) is as defined in Section 1. We then obtain the following analogues of Theo-
rems 1 and 2.

‘THEOREM 1. ~* (ux, py) is finite and positive and Q,/logn — v* (ux, LUy) a.s.

THEOREM 2'. All limit points of v belong to the set M a.s.
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In duality with hypothesis (H), our assumption that ¢ > (ux x uy)(S) > 0
implies that v* is finite and positive, the sets {v: J(v) > 8} are compact for all
B > 0 and so is the nonempty set M. Therefore, the preceding theorems are
direct consequences of the following analog of Theorem 3.

THEOREM 3'. Let Mp(X) = {v: (S) > q}. For any U C Mp(X), let Jy =
sup, ¢y J(v) and

n

QU = max{A: 0 <i,j<n-—A, such that

A . n
D 15X, Y)40) > qA, LTXID ¢ U},
=1

iX 1Y) . .
where Lgtx’T Y is as defined in Theorem 3. Then, a.s.,

Jyo < liminfQV/logn < limsup QY /logn < Jy,
n—o00 n — oo

where U° denotes the relative interior of U in Mp(%).

The proof of Theorem 3’ is quite similar to the proof of Theorem 3 as presented
in Section 2. We omit the details.

With o*, v* and M as defined earlier, Theorems 4 and 5 apply to the present
context if we define F(x,y) = 1g(x,y) — q [i.e.,, v(S) > q iff E,(F) > 0] and
set 6* = 1/H(q | p) (this definition of 6* differs from the definition used in
Sections 1-6). The proofs parallel those presented in Section 3; thus the details
are omitted.

Specializing Theorems 1 and 4 to ¥x = Xy, px = puy and S = {(x,x): x € Xx},
we recover Theorem 1 of Arratia and Waterman (1989).

In the framework of bounded vector-valued scores F: ¥ — R%, longest quality
segments with shifts are defined by

A

Q;:‘ = max{A:EIO <1i,j <n— A suchthat %ZF(XHI,Y}”) EA},
=1

and without shifts by

A
RA = max{A:EIO <i<n - A suchthat % ZF(XiJ,z,YHl) GA},
I=1 )

where A C R? is a closed subset of the convex hull of the support of F(X;,Y1),
such that E,,, » ,, [F(X,Y)] ¢ A and A = A°. The preceding results correspond
to F(x,y) = 15(x,y) — q and A = [0,1 — q]. The asymptotics of R4 are treated in
Dembo and Zeitouni [(1993), Section 3.2]. The.-formula determining v*(ux, uy)
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and v* for @4 is based on

{ 1/H*(v), E,/(F)eA,
J@) =
0, otherwise,

and for the analysis of Theorem 4 to apply, we should take

1/{uE (F)€eA} H(v | ux x pr)
and set a* to be the measure for which the infimum is achieved (this measure
is unique for convex A).

Similar extension of the maximal segment score without shifts R, (of
Section 1) to the vector-valued scoring system is considered in Dembo and
Zeitouni [(1993), Section 5.5]. Analogously, the maximal segment score allowing
shifts will be defined as

1 A
M‘:: max {y:; E F(X’i...l,Yj.,.l)GA},
=1

0<i,j<n-A
A>0

where A = A° C R? is such that ¢tE,, « ,, [F(X,Y)] ¢ A, for all ¢ > 0. Restrict-
ing attention to bounded scores and convex A, which excludes a cone around
the ray {tE,, x uy [F(X,Y)]};> 0, similar results hold for M4 with the formula
determining v*(ux, py) and v* based on

J)=1/ {t:t>0, tEf(F)eA} @).

8. Extension to Polish alphabets. Suppose now that X;,...,X, arei.i.d.
ux and Y7,...,Y, areii.d. uy, where ux and uy are Borel measures on Polish
(complete, separable, metric) spaces (Xx,dx) and (Xy,dy), respectively. One
motivating example is Ty = R? and Ty a singleton, corresponding to the strong
laws of Dembo and Karlin (1991a). Throughout, let ¥ = Yy x Xy denote the
product Polish space, let M1(Xx), M;(Zy) and M(¥) denote the sets of Borel
probability measures on Xy, Xy and X, respectively, and let the score F: ¥ — R
be any bounded, Borel measurable function on X. Henceforth, the Borel o-fields
on Yy, Yy and ¥ are taken as the completed o-fields with respect to ux, 1y and
ux X py, respectively, and P denotes the product measure on =N generated by
bx X py.

The random variables M,,, A} and v are now defined paralleling the finite
alphabet case. The relative entropy is given by the formula

flogfdu, ifdv/du=f exists,
H(v|p) = { /E -,
00, otherwise

and (H) and J(v) are as previously defined in Section 1. Because the relative
entropy is a lower semicontinuous function in the 7-topology on M;(X) having
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compact level sets ({v: H(v| 1) < a}, a < oo, see Deuschel and Stroock [(1989),
Section 3.2] or Dembo and Zeitouni [(1993), Section 6.2)], it follows by the con-
tinuity of the map v — E,(F), that the function J(-) is upper semicontinuous.
Moreover, the upper boundedness of F' implies that the sets {v: J(v) > (3} are
compact for all 3 > 0. Hence, v*(ux, sy) determined by (1) is finite and positive,
and M = {v € M{(2): v*(ux, py) = J(v)} is a nonempty compact set. We claim
that both Theorems 1 and 2 hold in the present context, where the convergence
of the empirical measures v;; of Theorem 2 is now to be interpreted in the sense
of weak convergence in M;(X). The proof of these results is based on a reduction
to the finite alphabet case via the following approximation lemma.

LEMMA 6. There exists {F, }°_, such that:

(a) limy, o fz |F F |d,u,X x py = 0.
(b) Fr(x,y) = Z lAm(x)IBm(y) where {Am} XO is a finite partition

of Xx to disjoint measurable sets, {Bm} is a finite partition of Ty to disjoint
measurable sets, which may be ordered by refinements, and |o| < ||F||co.

PrOOF. Because Cy(X), the collection of bounded continuous real-valued
functions on X, is dense in L1 (¥, ux X py), it suffices to consider F' € Cy,(X). With
px tight in ¥y and py tight in Ty, there exist compacts K C £x and K C Sy
such that ux(Kg) > 1—1/m and py(K}) > 1 - 1/m.

Because F is uniformly continuous on the compact set K x K¥, there exist
6m > 0 small enough such that, for all (x,y) € K¢ x K¢ and (x',y’) € K§ x K,

dx(x,x") < b, dy(y,y) < bm = |Fx,y)—F@&',y)| <1/m.

Moreover, there exist finite partitions {A;"}f’: of K¢ and { ”‘} 7, of K¢
such that

diam(A}*) < 6, and diam(BJ'f‘) < bm,

where diam(A) = sup, ,s ¢4 dx(x,x'). Taking A} = (K¢, Bf = (K) and af;
F(x;,y;) for an arbltrary choice x; € AT, y; € Bm it follows that

N3 Ny

/ |F — ledﬂxxuy<22/ |F—F(xi’yj)|d/1'XX/—‘Y

i=0,j=0
< 2/|F o0 [uX(Az’) + 1y (BF)] +1/m < (4]Flow + 1) /m.

Consequently, both (a) and (b) hold for this sequence of functions. O
To facilitate the use of Lemma' 6, we make the following observation.

LEMMA 7. If [ |F — Fo|dpx x py — 0and ||Fnllo < |Floo, then:
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(a) Forevery 6 > 0, there exists 1,,(6) — 0o, as m — oo, such that forallk > 1,

k
P(Z |F(Xl’m) _Fm(){laYl)l > k6> < exp (—kﬂm(5))
=1

(b) For every a < 0o, [, |F — Fp|dv — 0as m — oo uniformly in {v: H(v | ux
X /,Ly) < a}.

ProoF. (a)By Chebychev’s bound it follows that for every § > 0 and integer
k, m,

k

1

3 logP( 3" IR, YY) - Fu(X,, V)| > k6> < —AL(6),
=1

where A}, (-)is the Fenchel-Legendre transform of A,(A\) = log E ., [eNF=Fn 1],
With |F —Fp| < 2||F||co and B, x uy [|FF—Fp|] — 0 as m — oo, it is easy to check
that for every fixed § > 0, A};,(6) — co as m — 0.

(b) Fix o < oo and v such that H(v | ux x py) < o. Then, with f = dv/(d(ux

X py)),
VP = Faldy <3 [ 1F = Fuldp x py +20Plec [ 17530, v
Recall that
logM/E ly>mdv—1/e < /2(10ng 0)dv +x1121f(;[xlogx] Ldux Xy
< /Eflogfdux x py =H(v|px x py) <o,
implying that
/2 Ly>muydv < (a+1/e)/logM,
which completes the proof. 0O
With the assistance of Lemmas 6 and 7, we turn to prove Theorem 1 in the
present context. First observe that Lemma 1 applies even though the alphabet

is no longer finite. Consequently, it suffices to consider M, the maximal seg-
ment score, restricting to A < ¢ logn with ¢y as determined by Lemma 1. With

M, denoting the analog maximal segment score corresponding to the approx-
imations {F,} of Lemma 6, we have that the event {|M, — M, | > &logn} is
contained in the event ’

A A
{ai,j <n-A, A<cologn, |3 FXiu, Y = 3 FnXir, Y50
=1 =1

> 5logn}.
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Hence, by the union of events bound,

P(|]l_/.fn —Jl_l,:nl > 5logn)

A
<n®  sup p( Y IF(X, Y1) — Fr(X,, Y0)| > 61og n)
1<A<cologn I=1

< n? exp( ~(co log nnm (6/co) ),

where the second inequality follows by part (a) of Lemma 7. With 7,,(6/¢¢) — oo
as m — oo it thus follows that almost surely, for all m > mq(6),

=— =—=m
(24) im | M _Ma | o
n—oollogn logn

Assuming that (H) holds, it easily follows that for all m large enough,
(Hm) By x uy[Fm] <0, px X py(Fpm > 0) > 0.

Consequently, Theorem 1 applies to the asymptotics of M, ,:n for all m large
enough (because the partitions {A™} and {B™} map Xx and Xy, respectively,
into finite alphabets that suffice for representing the joint law of {F,,(X;,Y;)}).

Letting 7, (ux, uy) denote the corresponding limits of M ,’,n /logn, the proof of
Theorem 1 in the current setup is completed by showing that

(25) lim y, (ux, py) = v*(ux, py)-
m — o0
To this end observe first that

Ymlix, py) =  sup  JnpW),
v € My, (%)

where
In(W) = E,(Fp)/H* (v | px X py).

Let now vy, be such that J,,(vn) = v, (ux, py) and let v* be such that J(v*)
= v*(ux, ty) [such measures exist as soon as (H) and (H,,) hold, paraphrasing
the discussion following (1)].

Because Jp,(vn) > Jn(v*), it follows that

l’inm io%f Yo Cpix, py) > lglnl ing,,*(Fm)/H *Ww*).
Obviously, because v*(ux, py) = E,-(F)/H*(v*) > 0, it follows that co > H(v* |

ux X py) > 0 and, hence, by part (b) of Lemma 7, E,«(F,,) — E,-(F), yielding
the inequality

(26) Lim infy7, (ux, py) > 7" (ux, py)-
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Note that with E,,,(Fp) < |F||c, (26) implies that H*(v,,) is bounded uni-
formly in m and hence sois H(v;, | ux X py). Consequently, |E,,,(Fpn)—E,, (F) — 0
by part (b) of Lemma 7, and as soon as we show that H*(v,,) are bounded away
from zero, we will have

[vm (kix, piy) — J(Wp)| — 0,

implying that (25) holds [as v*(ux, uy) > J(Wn)].

Suppose now that H*(vy,) are not bounded away from zero. Then, by the
compactness of level sets of H(- | x X y) in the 7-topology of M1(X), passing to a
subsequence, H*(vy,) — Oyields H(vy, | px X py) — 0, resulting with vy, — ux x py
in 7-topology of M (). In particular, E,,,(F) — E ,, « ,,(F), implying by (H) that
for some 6 > 0 and all m large enough, E,, (F) < —6. With |E,, (F,,) — E,, (F)|
— 0 [again by part (b) of Lemma 7], it follows that E,, (F,,) < 0 for all m large
enough, contradicting the underlying assumption that J,,(v,,) = 75 (ux, uy) > 0.
In conclusion, H*(v,,) are bounded away from zero; hence (25) holds and the
proof of Theorem 1 is complete.

Utilizing the same reduction to finite alphabets and applying there Theorem
3, Theorem 2 holds in the current setup provided that for all § > 0,

v*(ux, py) > lim inf I (),
m = oo u(A"'xB’") v (A"'xB’")}
d(u M>6

where here d(-, M) denotes the Lévy metric compatible with weak convergence
and {A]"}, {BI"} are the partitions specified in Lemma 6.

To this end, assume that
7" (ux, py) < lim inf sup I (),

V(A] x BI'.")=V' (A7 x B]'.")
dw',Mm>é

that is, there exist v, v}, such that

l'hm ianm(Vm) > ’Y*

and
@27 Um (AT x BJ"‘) = v}, (AP x B}"), d,,,M) > 6.

Note that for large enough m, H(vn, | px X py) < 3||F||c0/7*; hence, passing to a
suitable subsequence, v, converges in the 7 topology to some v*. By part (b) of
Lemma 7 and the upper semicontinuity of J(-), it follows that J(v*) > +* and
hence v* € M.

We now claim that, necessarily, v, converges weakly to v*, contradicting (27).
Indeed, note that {A"} and {B]"} could be taken as forming a refinement (in
m) of partitions. Then, for each i,J, mo,

y,’n(A:"O X BJ’.”") —v* (A;"0 X BJ'."").
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Let now G be an arbitrary open subset of . Then, up to the ux x uy null set
(U, K% x K3')Y, the set G may be written as a countable union of terms of the
form AZ:” X BJ’.:"@. Because A x B[" are disjoint for every fixed m and form a
refinement with respect to m, every finite union of such terms can be made into
a finite union of disjoint sets of this form. Thus, using Fatou’s lemma and the
absolute continuity of v* with respect to ux x uy,

liminf v (G) > v*(@),
m — 00
which yields the required weak convergence and hence the contradiction.

REMARKS. (a)For Xy = Yy and px = uy, the construction of Lemma 6 allows
for {A™} = {B™} for all m. Thus, the preceding arguments apply for the nonover-
lapping intrasequence score M,, of (20), for which Theorems 1 and 2 persist in
the present context of X; i.i.d. ux, taking values in the Polish space (Zx, dx).
By splitting the overlapping pairs into index sets S7, Sy of almost equal size
before applying part (a) of Lemma 7, we conclude that (24) applies also for the
intrasequence score M, of (19) and, consequently, Theorems 1 and 2 persist in
the context of M,, of (19) and of X; taking values in a Polish space.

(b) For S c X Borel measurable, the approach taken earlier can be modified
to allow for the extension of Theorems 1’ and 2’ of Section 7 to the present
context of general Polish alphabets. To this end, Lemmas 6 and 7 are replaced
by the following standard approximation lemmas whose proofs are omitted.

LEMMA 6'. Thereexist S, C S C S;, measurable sets of £, with S}, monotone
decreasing in m and S;, monotone increasing in m, such that:

(@) limp, _, o0 px X py(SH\S) = limy, o ux x uy(S\S,,) = 0.
(b) For each m, both S}, and S;, are finite unions of disjoint product sets of
the form A" x B* with measurable AT C £x and B C Ly, and the partitions

induced on ¥x and Xy by {A"}; and {BJ'” }; may be ordered by refinements.

LEMMA 7’.  For every 3 > 0, both 1(S},) \ v(S) and (S;;) / v(S)as m — oo,
uniformly in {v: J(v) > (3}.

To the sets S;, (S;,) correspond longest quality g segments in finite alphabets,
induced by the relevant partitions, say Q" (@™, respectively). The set inclu-
sions in Lemma 6’ imply that @7~ < @, < @"". Hence, with Theorems 1’ and
3’ already holding for finite alphabets, the general case follows provided that
(28) lim inf H*'(v) < . in)f }H*(u) < mlim inf  H*®v)

q

m = {y:u(S,)>q} viv(S) > —'oo {v: (St) > q}
and for all 6 > 0,

(29) lim sup inf H*v) > {

inf H*(v).
m— oo {u(Af'xB}"):w<A§"xB}")} :(S)>q}

v
dw', M > 6,
u(Sh)>q
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Applying Lemma 7’ and paraphrasing the arguments presented earlier, it is
easy to check that (29) holds, whereas (28) holds provided that f(a) = infy,. ,(s) >a}
H*(v) is continuous for all ¢ > p. The convexity of H*(v) and the compactness
of its level sets imply that f(e) is convex, and being finite on a € [p, 1], it is
also continuous on (p, 1). The continuity of f(:) at @ = 1 can be verified directly.

The definition of * and o* is exactly as in the finite alphabet case and then
the analogues of Theorems 4 and 5 are:

THEOREM 4'.  v*(ux, py) < 2/0* and v*(ux, py) = 2/60* iff (E) holds, in which
case M = {a*}. In particular (E) holds whenever ¥x = Xy, F(x,y) = F(y,x) and

Hx = MKy

Proor. Apart from (13), the proof of these statements in Section 3 did not
rely on finiteness of ¥y or Yy. For completeness, we outline here a proof of
(13) in the current setup. First, because the relative entropy function is non-
negative and monotone with respect to partitions, the left-hand side of (13) is
infinite as soon as the right-hand side is infinite. Hence, we may assume that
f = dv/(dux x py) exists and let fx = fzyfd,uy and fy = fy_;xfdltX denote the

marginals of dv/dux X py, in which case
H(vx |ix) + Hlvy | uy) ~H( i % r) = [ log(fXﬁ)du,
{f>0} f
The proof is complete by applying Jensen’s inequality and checking that [, 0}

fxfr/fdv<1. O

THEOREM 5. Let

Gx(x) = ess sup F(x,y)
yEZy
with the essential supremum being with respect to py and defined up to ux null
sets of values of x. Similarly, let

Gy(y) = ess sup F(x,y).
x € EX

IfE, (Gx) > 0 and E,,(Gy) > 0, then M = {v*}.

REMARK. Note that by an application of Lusin’s theorem, both Gx and
Gy are measurable with respect to the completed Borel o-fields of ¥x and
Yy, respectively.

Proor. The proof of uniqueness of v* as presented in Section 3 carries over
as soon as we show that there exist ¢ € M;(X) with H(o | ux % py) < oo and with
Jx(co) [or with Jy(c)] arbitrarily large. Thus, all that is needed here is to adapt
the argument of part (a) of Lemma 5, using the following well known result:

(30) E[Gx] = lim E,,[G}]
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with
\ Js, Fla,y) exp(A\F(x,y))dpy
Gx(x) =
Js, exp(\F(x,y))dpy
Let o be defined by
doy _ exp(\F(xy))

dlux x py) ~ Jg, exp(A\F(x,y))dpy

Note that H(oy | ux x py) < 2)||F||o < 00. Moreover, for all )\, (o))x = ux and
hence H((a,\)xlllx) = 0. Consequently, if E,,, [Gx] > 0, then by (30), E,, (F) =
E,,[G}] > 0 for X large enough, implying that Jx(c») = oo, while H(o, | px X
1y) < oo as required.

A slightly more involved construction is needed when E,,[Gx] = 0. In this
case, let @ = uxy x py(F > 0) > 0 and define ¢ € M(T) via

d¢ _Lrsoy

A xp) - a1

Because f is bounded, H(¢ | ux X py) < oo. Moreover,
E¢(F) = E,u,x X py [Fl{p>0}]/a =26 >0.

By (80), for every > 0 there exists A, large enough for E,,, [G’\s] > —¢é. Con-
sider now the probability measures ¢. = (1—¢)o, +£¢. Note that H(¢. | px x uy)
< 0o, and by the foregoing choice of \., Ey_ (F') > 6.

Because (o), )x = px, it also follows that

H(¢ey | px) = H((1 — e)ux +edx | px) = /): (1—-e+eg)log(l —e+eg)duy,

where g = d¢x /dux = fzyfd,uy. Expanding [1 + (g — 1)] log[1 + (g — 1)] up to
second order in € around ¢ = 0 results in

(g — 1)

v (L+&(g - 1)) dux

H(ge | 1x) -a/ (g~ Didpue + 3¢

_1)2
< 182 (g—-1
27 J5, (1-¢elg-1])
where £(x) € [0, ¢]. Hence, with g bounded above by 1/a > 1,
Jx(pe) = Eg,(F)/H (pey | px) > €6/ (5e2/a*(1 —€/a)) » 00 ase — 0,

while H(¢. | ux x py) < oo for all € > 0, as required.
Paraphrasing the preceding argument, if E,, [Gy] > 0, then there exists
o € M(%) with Jy(o) arbitrarily large and H(o | ux x py) < co. O

dﬂ’X )
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